BAB 1 - Universitas Sumatera Utara

advertisement
BAB 2
TINJAUAN PUSTAKA
2.1. Minyak dan Lemak
Minyak dan lemak termasuk salah satu anggota dari golongan lipida yaitu merupakan
lipida netral. Lipida itu sendiri dapat diklasifikasikan menjadi 4 kelas yaitu : lipid
netral, fosfatida, spingolipid dan glikolipid. Semua jenis lipid ini banyak terdapat di
alam. Minyak dan lemak yang telah dipisahkan dari jaringan asalnya mengandung
sejumlah kecil komponen selain trigliserida yaitu : lipid kompleks ( lesitin, cephalin,
fosfatida, lainnya serta glikolipid), sterol berada dalam keadaan bebas atau terikat
dengan asam lemak, asam lemak bebas, lilin, pigmen yang larut dalam lemak dan
hidrokarbon. Minyak merupakan trigliserida yang berwujud cairan pada suhu kamar
dan umumnya diperoleh dari sumber nabati. Sedangkan lemak merupakan trigliserida
yang pada suhu kamar berwujud padatan dan umumnya bersumber dari hewani .
Minyak dan lemak adalah merupakan trigliserida yang merupakan bagian
terbesar dari kelompok lipida. Pembentukan trigliserida dihasilkan dari proses
esterifikasi satu molekul gliserol dengan tiga molekul asam lemak dapat sama atau
bebeda (Gambar 2.1) membentuk satu molekul trigliserida dan tiga molekul air.
O
O
OH
H2C
R1
OH + R2
HC
OH
C
OH
Gliserol
R3
O
C
OH
HC
O
O
Asam Lemak
OH
C
O
H2C
C
R1
C
O
O
H2C
H2C
C
O
R2 +
R3
3 H2O
Air
Trigliserida
Gambar 2.1. Reaksi Pembentukan Trigliserida dari Gliserol dan Asam Lemak.
Jika R1 = R2 = R3 maka trigliserida yang terbentuk adalah trigliserida
sederhana dan jika berbeda-beda disebut trigliserida campuran. Apabila satu molekul
gliserol hanya
mengikat satu molekul asam lemak, maka hasilnya disebut
monogliserida dan bila dua molekul asam lemak disebut digliserida.
Universitas Sumatera Utara
Modifikasi dari lemak dapat dilakukan dengan mengubah komposisi dari pada
asam lemak sebagai trigliserida untuk membentuk lemak baru misalnya lemak dengan
titik lebur yang tinggi atau titik lebur rendah. Demikian juga transformasi dari lemak
atau minyak adalah melakukan reaksi reaksi tertentu terhadap gliserida sehingga
gugus ester, asam lemak baik jenuh maupun tidak jenuh mengalami perubahan
menjadi turunan asam lemak ataupun gliserida (Meffert, 1984). Jenis asam lemak dari
penyusun trigliserida dapat dikelompokkan berdasarkan :
a. Panjang rantai yaitu : rantai pendek (kurang dari 8 karbon), rantai medium ( 8- 10
karbon) dan rantai panjang ( 12 karbon lebih).
b. Tingkat kejenuhan, asam lemak jenuh (saturated fatty acid ) yang tidak
mempunyai ikatan rangkap, asam lemak tak jenuh ( monoansaturated fatty acid )
yang mempunyai satu ikatan rangkap dan asam lemak tak jenuh ganda
(polyunsaturated fatty acid, FUPA) yang mempunyai dua ikatan rangkap atau
lebih.
c. Isomer geometrik : asam lemak bentuk cis dan asam lemak bentuk tans dari asam
lemak tak jenuh. Asam lemak alami umumnya ditemukan dalam bentuk cis.
Isomer trans terbentuk selama reaksi kimia seperti hidrogenasi dan oksidasi
terhadap asam lemak tidak jenuh
Dalam hal ini secara umum suatu trigliserida dengan komposisi asam lemak
rantai karbon pendek dan medium ( atom C≤ 12 ) atau komp osisi u taman ya asam
lemak tidak jenuh akan berwujud cair pada suhu kamar, tetapi jika komposisi
utamanya asam lemak jenuh dengan rantai atom karbon panjang
≥ 14 akan berwujud
padat pada suhu kamar. Demikian juga asam lemak tidak jenuh dengan bentuk isomer
geometri ikatan π-trans lebih padat dari bentuk ikatan π-cis (Silalahi, 2000).
Minyak dan lemak dapat mengalami berbagai perubahan
kimia seperti
hidrolisis, oksidasi, hidrogenasi dan interesterifikasi.
2. 1.1. Hidrolisis Minyak dan Lemak
Dalam reaksi hidrolisis minyak dan lemak akan dirubah menjadi asam lemak
bebas dan gliserol (Gambar 2.2).
Reaksi hidrolisis akan
dapat mengakibatkan
kerusakan minyak atau lemak dan dapat terjadi karena terdapatnya sejumlah air dalam
minyak atau lemak tersebut (Ketaren, 2008). Reaksi ini akan mengakibatkan
ketengikan hidrolisis yang menghasilkan flavor dan bau tengik pada minyak tersebut
Universitas Sumatera Utara
O
O
O
C
O
C
O
O
O
R2
OH
C
O
+
3
H2O
R2
OH +
OH
C
O
Air
R3
OH
R3
C
R1
OH
R1
OH
Asam Lemak
Gliserol
Minyak/Lemak
C
Gambar 2.2. Reaksi Hidrolisis Minyak dan Lemak.
Proses hidrolisis seperti ini dapat
terjadi secara alamiah terhadap
minyak/lemak dan akan dapat dipercepat oleh mikroorganisme seperti lipase. Proses
hidrolisis yang disengaja, biasanya dilakukan dengan penambahan basa, proses ini
dikenal sebagai reaksi penyabunan ( Gambar 2.3).
O
O
O
C
O
C
O
C
O
O
OH
R1
ONa/K
C
O
R2 + 3 NaOH
R3
R1
Atau
KOH
Minyak/Lemak
OH +
R2
C
ONa/K
O
OH
Gliserol
R3
C
ONa/K
Na/K-Asam Lemak
(Sabun)
Gambar 2.3. Reaksi Penyabuanan Lemak/ Minyak.
Proses penyabunan ini banyak digunakan dalam industri.dimana minyak atau lemak
pertama-tama dipanasi dalam ketel dan selanjutnya ditambah alkali (NaOH atau
KOH) sehingga terjadi penyabunan. Sabun yang terbentuk dapat diambil dari lapisan
teratas pada larutan yang merupakan campuran dari larutan alkali, sabun dan gliserol.
Dari larutan ini dapat dihasilkan gliserol murni melalui penyulingan.
2.1.2. Oksidasi Minyak dan Lemak.
Proses oksidasi dapat belangsung bila terjadi kontak antara sejumlah oksigen
dengan minyak atau lemak. Terjadinya reaksi oksidasi ini akan mengakibatkan bau
tengik pada minyak dan lemak. Oksidasi biasanya dimulai dengan pembentukan
peroksida dan hidroperoksida. Tingkat selanjutnya ialah terurainya asam-asam lemak
disertai dengan konversi hidroperoksida menjadi aldehida dan keton serta asam-asam
lemak bebas. Ketengikan (rancidity) terbentuk oleh otooksidasi radikal asam lemak
tidak jenuh atau aldehida bukan oleh peroksida. Jadi kenaikan bilangan peroksida (
Universitas Sumatera Utara
Peroksida Value, PV) hanya indikator dan peringatan bahwa minyak sebentar lagi
akan berbau tengik.
R1
C
H2
CH2
CH
CH
R2
energi
o
R1
UV
C
H
Asam Lemak tidak jenuh
O2
R1
CH
CH
O-Oo
R1
CH
CH
O-Oo
R1
CH
CH
CH2
CH
CH2
CH
CH
R2
Radikal bebas
R2
Peroksida aktif
CH2
R2 +
R1
C
H2
CH
CH2
CH
R2
Peroksida aktif
CH
CH
CH2
R2
+
R1
o
C
H
CH
CH
CH2
R2
Radikal bebas
O-O-H
Hidroperoksida
Gambar 2.4. Reaksi Pembentukan Hidroperoksida Akibat Oksidasi Minyak/Lemak.
Otooksidasi dimulai dengan pembentukan radikal-radikal bebas yang
disebabkan oleh faktor
yang dapat mempercepat reaksi
seperti cahaya, panas,
peroksida lemak atau hidroperoksida dan logam-logam berat. Mekanisme yang terjadi
secara umum pada asam lemak tidak jenuh pembentukan hidroperoksida akibat
oksidasi karena pemanasan (Gambar 2.4). Hidrperoksida dan radikal yang terbentuk
merupan zat antara yang reaktif dan mengalami reaksi lanjut secara berantai
menghasilkan berbagai jenis senyawa seperi polimer, aldehida, asam dengan rantai
rendah, keton gliserida sehingga akhirnya menyebabkan kerusakan minyak seperti
halnya bau tengik (Ketaren, 2008).
2.1.3. Hidrogenasi Minyak
Hidrogenasi adalah suatu proses penambahan hidrogen dengan menggunakan
katalis pada ikatan rangkap (Kent, 1992). Proses hidrogenasi sebagai suatu proses
untuk menjenuhkan ikatan rangkap dari rantai karbon asam lemak tidak jenuh pada
minyak atau lemak. Reaksi hidrogenasi ini dilakukan dengan menggunakan hidrogen
murni dan ditambahkan serbuk nikel sebagai katalisator. Setelah proses hidrogenasi
selesai minyak didinginkan dan katalisator dipisahkan dengan cara penyaringan. Hasil
yang terjadi adalah minyak yang bersifat plastis atau keras yang tergantung kepada
derajat kejenuhannya (Gambar. 2.5).
Universitas Sumatera Utara
O
O
O
R
C
O
C
O
C
O
7
O
7
R
7
R
O
H2
Raney Ni
(Hidrogenasi Partial)
Trigliseriada (cair)
R
C
O
7
O
7
R
7
Trigliserida ( padat)
R
O
C
O
C
Gambar 2.5. Reaksi Hidrogenasi Partial Minyak
Trigliseriada yang dihasilkan biasanya digunakan sebagai bahan lemak
margarin yang mana dalam proses ini mampu mengubah minyak menjadi setengah
padat. Dengan cara tersebut dapat menghindari terjadinya proses oksidasi lemak yang
mengakibatkan ketengikan (Hauman, 1997). Sebaliknya proses hidrogenasi dapat
mengakibatkan terbentuknya asam lemak trans 60%. Kadar yang tinggi dari asam
lemak bentuk trans dalam menu makanan dapat menimbulkan resiko penyakit jantung
koroner. Pada umumnya asam lemak dari minyak nabati yang mengalami hidrogenasi
adalah asam oleat (C18:1), linoleat(C18:2) maupun linolenat (C18:3).
2.2. Minyak Kelapa Sawit
Tabel 2.1. Komposisi asam lemak minyak kelapa sawit dan minyak inti kelapa
sawit
Asam lemak
Minyak kelapa sawit (%)
Minya inti sawit (%)
Asam kaprilat
-
3–4
Asam kaproat
-
3–7
Asam laurat
-
46 – 52
Asam miristat
1,1 – 2.5
14 – 17
Asam palmitat
40 – 46
6,5 – 9
Asam stearat
3,6 – 4,7
1 – 2,5
Asam oleat
39 – 45
13 – 19
Asam linoleat
7 – 11
0,5 – 2
Sumber : (Eckey, 1955).
Salah satu dari beberapa tanaman golongan palm yang dapat menghasilkan
minyak adalah kelapa sawit. Kelapa sawit dengan nama kerajaan plantae, divisi
magnoliophyta, kelas liliopsida, ordo arecales, famili arecaceae dan genus elaeis,
Universitas Sumatera Utara
mengandung kurang lebih 80 persen perikarp dan 20 persen buah yang dilapisi kulit
yang tipis, kadar minyak dalam perikarp sekitar 34 – 40 persen. Minyak kelapa sawit
adalah lemak semi padat yang mempunyai komposisi yang tetap.
2.2.1. Sifat fisio-kimia Minyak Kelapa Sawit
Sifat fisio-kimia biasanya berada dalam suatu kisaran nilai, dan karena
perbedaanya cukup kecil, nilai tersebut dinamakan konstanta. Konstanta fisik yang
dianggap cukup penting adalah berat jenis, indeks bias, dan titik cair; sedangkan
konstanta kimia yang penting adalah bilangan iod, bilangan penyabunan, bilangan
asam, bilanagan reichert meisel, bilangan polenske, dan residu fraksi tak tersabunkan.
Sifat lainnya dari asam lemak dicerminkan oleh sifat rantai hidrokarbon. Secara
alamiah asam lemak jenuh yang mengandung atom karbon C1 – C8 berbentuk cair,
sedangkan jika lebih besar dari C8
akan berwujud padat. Asam stearat (C18)
o
mempunyai titik cair 70 C, tetapi dengan adanya 1 ikatan rangkap maka titik cair
turun mencapai 14 oC. Makin banyak jumlah ikatan rangkap pada suatu rantai karbon
tertentu maka titik cairnya semakin rendah (Ketaren, 2008).
Tabel 2.2. Sifat fisio-kimia minyak sawit dan minyak inti sawit
Sifat
minyak sawit
minyak inti sawit
Bobot jenis pada suhu kamar
0.900
0.900 – 0.913
Indeks bias D 40 oC
1.4565 – 1.4585
1.495 – 1.415
Bilangan iod
48 – 56
14 – 20
Bilangan penyabunan
196 – 205
244 – 254
Sumber : (krischenbauer, 1960).
2.2.2. RBDOlein dan RBDStearin
Proses pengolahan minyak kelapa sawit atau CPO menjadi RBDOlein,
RBDStearin dilakukan melalui dua tahapan proses yaitu tahap pemurnian (refinery)
dan tahap fraksinasi kering (dry fractionation). Tahap Pemurnian (refinery) adalah
proses penghilangan getah (gum), proses pemucatan (bleaching) dan proses
penghilangan bau serta pengurangan kadar asam lemak bebas yang dikenal dengan
proses deodorisasi. Sedangkan tahap fraksinasi kering adalah proses pemisahan antara
Universitas Sumatera Utara
fraksi cair (olein) dan fraksi padat (stearin) yang terbagi dalam dua bagian proses ,
yaitu kristalisasi dan filtrasi (penyaringan).
Proses Penyulingan Minyak Kelapa Sawit
CPO
Degumming
(penghilangan getah)
Bleaching
(pemucatan)
Refining
(pemurnian)
Deodorizing
(penghilangan bau)
RBDPO
Winterization
(pendinginan)
RBDPOleoin
RBDPStearin
Bleaching
(pemucatan)
Margarin, Shortening
Industri sabun dan deterjen
Gambar 2.6. Proses Penyulingan Minyak Kelapa Sawit
Pemisahan fraksi olein dan fraksi stearin didasarkan atas perbedaan titik
cairnya. Fraksi olein mempunyai titik cair yang lebih rendah dibandingkan dengan
fraksi stearin karena rendahnyan kandungan asam lemak jenuh dan tingginya
kandungan asam lemak tidak jenuhnya. Untuk menghasilkan super olein, minyak
sawit mengalami dua kali penyaringan. RBDOlein hasil fraksinasi pertama
dikristalisasi kembali sehingga menghasilkan fraksi cair berupa super olein dan fraksi
padat berupa PMF (Palm Mid Fraction). Filtrasi merupakan proses pemisahan bahan
Universitas Sumatera Utara
secara mekanis berdasarkan pada perbedaan ukuran partikel yang dimiliki. Dalam
proses dengan fraksinasi, filter yang digunakan adalah membran press filter (Alfian,
2005).
2.2.3. RBDPKO
RBDPKO (Refined, Bleached and Deodorized
Palm Kernel Oil) adalah
minyak mentah dari inti kelapa sawit (CPKO) setelah dilakukan proses degumming
(penghilangan getah), bleaching (pemucatan), dilanjutkan dengan
deodorizing
diperoleh minyak yang disebut RBDPKO (Refined, Bleached and Deodorized Palm
Kernel Oil). Minyak inti sawit yang baik berkadar asam lemak bebas yang rendah dan
berwarna kuning terang serta mudah dipucatkan. Bungkil inti sawit diinginkan
berwarna relative terang dan nilai gizi serta kandungan asam aminonya tidak berubah.
Tabel 2.3. Komposisi rata – rata inti sawit
Komponen
Jumlah
Minyak
47 – 52
Air
6–8
Protein
7.5 – 9.0
Extractable non nitrogen
23 – 24
Selulosa
5
Abu
2
Sumber : (Bailey, 1950).
2.3. Asam Lemak
Asam lemak − terdiri dari karbon, hidrogen, dan oksigen merupakan salah
satu komponen penyusun lipid. Asam ini banyak terdapat dalam lemak sederhana dan
lemak majemuk. Beberapa asam lemak yang penting adalah asam palmitat, stearat, linoleat
dan oleat (Nursanyoto, 1993).
Asam lemak terbagi dua yaitu asam lemak jenuh dan tak jenuh. Dalam bahan
pangan, asam lemak jenuh yang paling banyak ditemukan adalah asam palmitat,
yaitu 15% - 50% dari seluruh asam lemak yang ada, sedangkan asam stearat paling
banyak pada lemak atau minyak dari biji-bijian. Asam lemak tak jenuh (unsaturated
fatty acid ), didatangkan dari luar tubuh, umumnya tidak dapat disintesa sendiri oleh
Universitas Sumatera Utara
tubuh.
Asam jenis ini biasa dikenal dengan asam lemak esensial, misalnya asam
oleat, linoleat, dan arachidonat, yang banyak terdapat pada minyak sayur, minyak
jagung, minyak kacang, kedelai, dan alpukat.
Asam lemak esensial ini berfungsi
untuk membantu proses pertumbuhan, selain itu dapat mempertahankan kesehatan kulit
terutama mencegah terjadinya peradangan kulit (dermatitis) (Marsetyo, 1991).
Tabel 2.4. Asam lemak yang penting terdapat dalam minyak dan lemak
Jenis asam
Rumus molekul
Sumber(asal)
Titik cair
Asetat
CH3COOH
Minyak pohon spindle
-16.66
n-Butirat
CH3(CH2)2COOH
lemak susu sapi, mentega
-7.6
Isovalerat
(CH3)2CHCH2COOH minyak ikan lumba-lumba
-37.6
n-Kaproat
CH3(CH2)4COOH
-1.5
Asam lemak jenuh
mentega,minyak kelapa,
minyak kelapa sawit
n-Kaprilat
CH3(CH2)6COOH
mentega,minyak kelapa
1.6
minyak kelapa sawit
Kaprat
CH3(CH2)8COOH
susu sapi dan kambing,
31.5
Minyak kelapa,
Minyak kelapa sawit
Laurat
CH3(CH2)10COOH
44
minyak laural, minyak
Inti sawit,minyak kelapa
Miristat
CH3(CH2)12COOH
minyak pala,susu ternak
58
Minyak ikan hiu
Palmitat
CH3(CH2)14COOH
lemak hewani,minyak
64
nabati
Stearat
CH3(CH2)16COOH
lemak hewani,minyak
69.4
nabati
Arachidat
CH3(CH2)18COOH
minyak kacang
76.3
Behenat
CH3(CH2)20COOH
minyak behenat lemak
80.7
mentega
Lignoserat
CH3(CH2)22COOH
minyak kacang,spingo
81
nyelin,minyak kacang tanah
Universitas Sumatera Utara
Tabel 2.4. (lanjutan)
Jenis asam
Rumus molekul
Sumber(asal)
Titik cair
CH3(CH2)7 = CH –
minyak dan lemak
14
Asam lemak tidak
jenuh
Oleat
(CH2)7COOH
Rapat gadoleat
Erukat
CH3(CH2)9 = CH –
minyak kolza dan rape
(CH2)7COOH
minyak hering
CH3(CH2)7 = CH –
minyak raope seed,
(CH2)11COOH
mustard, minyak hati
31 - 32
Ikan hiu
2 ikatan rangkap atau lebih
Linoleat
CH3(CH2)4 = CH –
minyak biji kapas
CH2CH = CH –
biji lin, biji poppy
-11
(CH2)7COOH
Linolenat
CH3CH2CH = CH –
minyak perilla
CH2CH = CHCH2 –
biji lin
-11
CH = CH(CH2)7COOH
Clupanodonat
Arachidonat
C22H34O2
C20H32O2
minyak ikan paus
kurang
Hati ikan hiu, herring
dari -78
jaringan hati babi
Sumber : (Krischenbeuer.1960).
Asam oleat merupakan asam lemak tak jenuh yang paling banyak dijumpai
pada makanan. Sepertiga lemak daging ayam adalah asam oleat.
Margarin
merupakan bahan makanan dengan kandungan asam oleat yang tinggi, sekitar 47% total
kandungan lemaknya adalah asam oleat (Nursanyoto, 1993).
Trigliserida adalah komponen lipid yang paling banyak terdapat di alam, dan
karena sifatnya yang tidak menguap, trigliserida sukar sekali untuk dianalisis
secara langsung dengan kromatografi gas. Meskipun demikian keterbatasan pemisahan
ini diperbaiki dengan kemudahan pemisahan berbagai metal ester dari asam lemak
dengan kromatografi gas. Karena itu, berbagai asam lemak trigliserida dapat
dianalisis dengan kromatografi gas melalui pembentukan turunan seperti turunan metal
Universitas Sumatera Utara
ester. Berbagai asam lemak metil ester diperoleh dari reaksi esterifikasi.
Pereaksi
yang biasa digunakan untuk reaksi esterifikasi ini adalah boron trifluorida (BF3 )
dalam metanol (14%) (Fardiaz, 1989).
2.4. Oleokimia
Oleokimia merupakan bahan kimia yang berasal dari minyak/lemak alami,
baik tumbuhan maupun hewani. Bidang keahlian teknologi oleokimia merupakan
salah satu bidang keahlian yang mempunyai prospek yang baik dan penting dalam
teknik kimia. Pada saat ini dan pada waktu yang akan datang, produk oleokimia
diperkirakan akan semakin banyak berperan menggantikan produk-produk turunan
minyak bumi (petrokimia). Pada saat ini, permintaan akan produk oleokimia
semakin meningkat. Hal ini dapat dimaklumi karena produk oleokimia mempunyai
beberapa keunggulan dibandingkan produk petrokimia, seperti harga, sumber yang
dapat diperbaharui dan produk yang ramah lingkungan (Spitz, 2004).
Pada saat ini industri oleokimia masih berbasis kepada minyak/trigliserida
sebagai bahan bakunya. Hal ini terjadi karena secara umum, para pengusaha masih ragu
untuk terjun secara langsung ke industri oleokimia. Masih sangat jarang dijumpai
sebuah industri yang mengolah bahan baku langsung menjadi bahan kimia tanpa
melalui trigliserida. Padahal secara ekonomi dan teknik, banyak produk dari bahan
alami yang bisa diolah langsung dari bahan nabati tanpa melalui trigliserida. Contohnya
adalah pengolahan secara langsung buah kelapa sawit menjadi asam lemak. Selama ini
asam lemak dari kelapa sawit selalu diolah dari minyak/trigliserida. Padahal dari segi
teknik dan ekonomi akan lebih efisien untuk mengolah secara langsung buah sawit
menjadi asam lemak melalui pengaktifan enzim lipase yang terkandung pada buah
sawit. Hal ini juga bisa ditemukan pada bahan baku nabati lainnya (Spitz, 2004).
Universitas Sumatera Utara
Skema industri oleokimia dan turunannya dapat dilihat seperti pada gambar berikut.
Gambar 2.7. Skema bahan baku oleokimia dan turunannya
Universitas Sumatera Utara
2.5. Amida
Suatu amida adalah senyawa yang mempunyai nitrogen trivalent yang terikat
pada suatu gugus karbonil. Amida merupakan turunan asam karboksilat, dimana
gugus –OH digan-ti dengan –NH2 atau amoniak, dimana 1 H diganti dengan asil.
Sifat fisika : zat padat kecuali formamida yang berbentuk cair, tak berwarna, suku suku yang rendah larut dalam air, bereaksi kira – kira netral. Struktur Amida : R –
CONH2 (Fessenden, 1999).
Seperti asam karboksilat, amida memiliki titik cair dan titik didih yang tinggi
karena adanya pembentukan ikatan hydrogen. Amida mampu membentuk ikatan
hidrogen intermolekular selama masih terdapat hydrogen yang terikat pada nitrogen.
Senya ini juga sangat istimewa karena nitrogennya mampu melepaskan electron dan
mampu membentuk sebuah ikatan π dengan karbon karbonil. Pelepasan electron ini
menstabilkan hibrida resonansi. (Bresnick, 1996).
2.5.1. Pembuatan Amida
Reaksi asam karboksilat dengan amoniak atau amina
O
O
R- C - OH
+ R" - NH2
Asam Karboksilat
Amina
O
Amida
O
R- C - Cl
+ R" - NH2
Asil Klorida
O
R – C - NHR" + H2O
Amina
O
R – C - NHR" + HCl
Amida
O
O
R - C – O – C – R + R" - NH2
R – C - NHR" + R – O – C - OH
Anhidrida Asam
Amida
Amina
O
R- C - OR'
Ester
O
+ R" - NH2
Amina
R – C - NHR" + R – OH
Amida
(Fessenden, 1999).
Universitas Sumatera Utara
Kemudian telah dilakukan pula pembuatan alkanolamida secara langsung dari
minyak kacang kedelai :
O
R
O
O
CH3
H–N
O
+
OH
O
R
R
O
CH3
CH3ONa
60 0C
OH
OH
OH
HO
N
R
O
( Rawlins, 2008).
2.5.2. Penggunaan Amida
Formamida berbentuk cair, sebagai pelarut, Untuk identifikasi asam yang
berbentuk cair. Untuk sintesis nilon, dsb. Amida asam lemak seperti N-steroil asam
amino dapat digunakan sebagai bahan surfaktan dan sebagai anti mikroba
(Silvansany,et, al, 2001). Senyawa amida juga digunakan dalam bidang farmasi
misalnya sulfonamide yang digunakan untuk mengobati bermacam – macam penyakit
infeksi, antara lain disentri baksiler yang akut, radang usus dan untuk mengobati
infeksi yang telah resisten terhadap antibiotik (Nuraini, 1988).
Amida asam lemak yang berantai panjang bila direaksikan dengan epoksida
membentuk senyawa bis ( 2-hidroksi etil) amina asam lemak yang banyak digunakan
sebagai anti static. Bahan anti static ini berfungsi untuk mencegah pembentukan
muatan statis pada permukaan resin yang disebabkan sifat plastic yang konduktif,
sehingga dengan demikian amida dapat digunakan sebagai slip agent dalam
pembuatan resin polietilena dan propilen (Richtler, 1984).
2.5.3. Amida Asam Lemak
Amida asam lemak dibuat secara sintesis pada industri oleokimia`, dimana
ammonia dan asam lemak bebas bereaksi pada suhu 200 oC dan tekanan 345 – 690
kpa selama 10 – 12 jam. Dengan proses tersebutlah dibuat seperti lauramida,
stearamida serta lainnya. Amida juga dapat di buat dengan mereaksikan ammonia
dengan metil ester asam lemak. Reaksi ini mengikuti konsep HSAB dimana H+ dari
ammonia merupakan hard-acid yang mudah bereaksi dengan hard-base CH3O- untuk
membentuk methanol. Sebaliknya NH2- lebih soft-base dibandingkan dengan CH3O-
Universitas Sumatera Utara
akan terikat dengan R – C+
O yang lebih soft-acid dibandingkan H+ membentuk
amida.
O
R–C
O
+ NH3
R–C
OCH3
+ CH3OH
NH2
Amida sekunder merupakan turunan dari amoniak dimana 2 atom H diganti dengan 2
gugus asil ( Ismail, 1982).
Pembuatan amida sekunder dilaksanakan dengan mereaksikan asam lemak dengan
amina.
O
R–C
O
+ R – CH2 - NH2 150-200 oC
R–C
OH
+ 2H2O
NHR
Senyawa amina yang digunaklan untuk reaksi tersebut antara lain
ethanolamine dan diethanoamine, yang jika direaksikan dengan asam lemak pada suu
tinggi, 150 – 200 oC, akan membentuk suatu amida dan melepaskan air. Reaksi
amidasi antara alkyl klorida lebih mudah dengan gugus amina dibandingkan dengan
terjadinya reaksi esterifikasi dengan gugus hidroksil, juga sebelumnya telah teruji
denga adanya reaksi antara laurel anhidrida dengan propanolamine utuk membentuk
senyawa N, N' – dilauril propanolamine ( Cho, 1985).
2.6. Dietanolamin
Dietanolamin, sering disingkat sebagai DEA, adalah senyawa organik dengan
rumus :
HN(CH2CH2OH)2. Ini adalah cairan tak berwarna polyfunctional, menjadi amina
sekunder dan diol.Seperti amina organik lainnya, dietanolamin bertindak sebagai basa
lemah. Mencerminkan sifat hidrofilik kelompok alkohol, DEA dapat larut dalam air,
dan bahkan higroskopik. Amida dibuat dari DEA sering juga hidrofilik
Produksi dan menggunakan Reaksi etilen oksida dengan amonia berair
pertama menghasilkan etanolamin:
C2H4O + NH3 → H2NCH2CH2OH
Universitas Sumatera Utara
yang bereaksi dengan kedua dan ketiga setara dengan etilen oksida untuk memberikan
DEA dan trietanolamin:
C2H4O + H2NCH2CH2OH → HN (CH2CH2OH)2
C2H4O + HN(CH2CH2OH)2 → N(CH2CH2OH)3.
DEA digunakan sebagai surfaktan dan inhibitor korosi. Hal ini digunakan
untuk menghilangkan sulfid dan hidrogen karbon dioksida dari gas alam.
DEA dalam larutan air biasanya digunakan untuk menghilangkan hidrogen sulfida
dari berbagai proses gas. Ini memiliki keunggulan lebih dari etanolamin yang sama
dalam konsentrasi yang lebih tinggi dapat digunakan untuk korosi yang sama
potensial.
Amida berasal dari DEA dan asam lemak, yang dikenal sebagai dietanolamida,
adalah amphiphilic. Common Dietanolamida adalah bahan kosmetik dan shampoo
yang ditambahkan untuk memberikan tekstur yang lembut dan berbusa. DEA derivatif
yang relevan termasuk lauramida dietanolamin (Klein, 2001).
2.7. SURFAKTAN
Surfaktan ( surface
active
agent )
merupakan
bahan kimia yang
berpengaruh pada aktifitas permukaan. Surfaktan memiliki kemampuan untuk larut
dalam air dan minyak. Molekul surfaktan terdiri dari dua bagian yaitu gugus yang
larut dalam minyak (hidrofob) dan gugus yang larut dalam air (hidrofil). Surfaktan
yang memiliki kecenderungan untuk larut dalam minyak dikelompokkan dalam
surfaktan oil soluble, sedangkan yang cenderung larut dalam air dikelompokkan
sebagai surfaktan water soluble (Allen, 1993). Menurut Piispanen (2002), bagian
polar surfaktan dipengaruhi oleh gaya elektrostatik (ikatan hidrogen, ikatan ionik,
interaksi dipolar) sehingga dapat berikatan dengan molekul seperti air dan senyawa
ion. Gugus non-polar surfaktan berikatan dengan struktur non-polar dengan dukungan
gaya van der walls. Surfaktan dibagi menjadi empat kelompok penting dan digunakan
secara meluas pada hampir semua sektor industri modern. Jenis-jenis surfaktan
tersebut adalah surfaktan anionik, surfaktan kationik, surfaktan nonionik dan
surfaktan amfoterik (Rieger, 1985). Surfaktan anionik adalah molekul yang
bermuatan negatif pada bagian hidrofilik atau aktif permukaan (surface - active).
Universitas Sumatera Utara
Sifat hidrofilik disebabkan karena keberadaan gugus ionik yang sangat besar, seperti
gugus sulfat atau sulfonat. Surfaktan kationik adalah senyawa yang bermuatan positif
pada gugus hidrofiliknya atau bagian aktif permukaan (surface-active). Sifat hidrofilik
umumnya disebabkan karena keberadaan garam amonium, seperti quaternery
ammonium salt (QUAT). Surfaktan nonionik adalah surfaktan yang tidak bermuatan
atau tidak terjadi ionisasi molekul. Sifat hidrofilik disebabkan karena keberadaan
gugus oksigen eter atau hidroksil. Surfaktan amfoterik adalah surfaktan yang
bermuatan positif dan negatif pada molekulnya, dimana muatannya bergantung kepada
pH, pada pH rendah akan bermuatan negatif dan pada pH tinggi bermuatan positif
(Matheson, 1996).
Tabel 2.5. Harga HLB beberapa gugus fungsi
Gugus Hidrofil
Harga HLB
-SO4Na+
38,7
-COO-Na+
19,1
-N (amina tersier)
9,4
Ester (cincin sorbitan)
6,8
Ester (bebas)
2,4
Hidroksil (bebas)
1,9
Hidroksil
(cincin
0,5
sorbitan)
Gugus Lipofil
Harga HLB
-CH3
0,475
-CH2-
0,475
=CH-
0,475
Untuk menentuklan kegunaan dari suatu surfaktan maka biasanya terlebih
dahulu ditentukan harga HLB nya (Hidrofilik-Lipofilik- Balance). Harga HLB dapat
ditentukan secara teoritis dan praktek. Harga HLB secara praktek dilakukan dengan
Universitas Sumatera Utara
menggunakan tensiometer cincin du Nuoy, dimana akan diperoleh harga tegangan
permukaan yang setelah diplotkan dengan logaritma konsentrasi akan diperoleh harga
konsentrasi kritik misel (CMC).
HLB = 7 – 0.36 ln (Co/Cw)
Dimana : Cw = CMC
Co = 100 – Cw.
Secara teori harga HLB suatu bahan dapat dihitung berdasarkan harga gugus
fungsi hidrofil, lipofil dan derivatnya yang dapat dilihat pada tabel 2.4. (Belitz, 1986).
Gambar 2.8. Skala keseimbangan Hydrophilic Lipophilic (HLB).
Harga HLB dapat juga ditentukan berdasarkan harga bilangan penyabunan dan
bilangan asam, yakni dengan menggunakan rumus berikut (Shinoda, 1986).
HLB = 20 (1 – S/A)
Dimana: S = bilangan penyabunan
A = bilangan asam
Hubungan antara nilai HLB dengan penggunaannya sebagai surfaktan dapat
dilihat pada gambar 2.8.
Surfaktan digunakan dalam volume besar pada berbagai produk kebutuhan
rumah tangga, detergent dan produk – produk pembersih lainnya. Biasanya setelah
digunakan, produk yang mengandung surfaktan tersebut di buang sebagai limbah yang
mana pada akhirnya akan dibebaskan kepermukaan air, biodegradasi dan mekanisme
penguraian lain sangat diperlukan untuk mengurangi jumlah dan konsentrasi surfaktan
yang mencapai lingkungan (Brahmana, 1994).
Universitas Sumatera Utara
Download