v ABSTRAK Telur infertil adalah telur yang tidak mengalami perkembangan embrio pada saat penatasan. Pendeteksian telur infertil secara otomatis akan memberikan kemudahan saat penyeleksian dan pemindahan telur infertil tepat waktu, yang akan membawa keuntungan bagi peternakan seperti efesiensi tempat dan kontaminasi penyakit yang mempengaruhi penetesan karena telur infertil bisa menjadi tempat perkembangan jamur. Sebuah metode terdiri dari machine vision dan jaringan saraf tiruan multilayer perceptron dirancang. Dengan meletakkan telur dekat sumber cahaya dengan latar belakang hitam dalam ruangan gelap telur difoto dengan kamera kualitas tinggi. Dari citra yang dihasilkan kamera diekstrak fitur atau ciri-ciri yang membedakan antara telur fertil dan telur infertil. Shape index, roundness dan elongation diekstrak dari bentuk telur, sedangkan nilai rata-rata hue, saturation dan intensity diekstrak dari warna telur. Enam nilai fitur ekstraksi dijadikan nilai neuron pada lapisan inputan jaringan saraf tiruan multilayer perceptron. 100 data sampel digunakan untuk pelatihan jaringan dan pegujian memorasi dan 125 data sampel berbeda digunakan untuk uji generalisasi. Laju pembelajaran yang digunakan adalah 0.0005 dan parameter momentum sebesar 0.02 tingkat akurasi yang dihasilkan 98% untuk pelatihan dan 96% untuk uji generalisasi. Kata kunci : telur infertil, identifikasi, fitur ekstraksi, multilayer perceptron. Universitas Sumatera Utara vi INFERTILE EGGS DETECTION USING MULTILAYER PERCEPTRON NEURAL NETWORK ABSTRACT Infertile eggs are eggs that embryonic development did not occur on it when hacthery procces held. Automatic infertile eggs detection give ease to select and timely removal of the infertile eggs. which will bring benefits to the hactheries such space efficiency and egg contamination due to diseases caused by infertile eggs. A method based on machine vision and artificial neural network multilayer perceptron designed. By laying eggs near a light source with a black background in a dark room eggs photographed with a high resolution camera. Image that acquired by camera extracted from it features or characteristics that distinguish between fertile eggs and infertile eggs. Shape index, roundness and elongation extracted from the shape of the eggs, while the average value of hue, saturation and intensity are extracted from the color of the eggs. Six values of feature extraction is used as neurons value in the input layer of a multilayer perceptron neural network. 100 samples are used for training the network and memorization test and anoter 125 different samples used for generalization test. The value of learning rate used is 0.0005 and the momentum parameter is 0,02. After test phase done , accuracy rate is 98% for memorizing test and 96% for the generalization test. Keywords : infertile egg, identification, feature extraction, multilayer perceptron. Universitas Sumatera Utara