III. METODOLOGI PENELITIAN A. Tempat dan Waktu Penelitian ini dilaksanakan di Laboratorium Fisika dan Mekanika Tanah dan Laboratorium Hidrolika dan Hidromekanika, Departemen Teknik Pertanian, Fakultas Teknologi Pertanian, Institut Pertanian Bogor. Penelitian ini dilaksanakan dari bulan Mei sampai Agustus 2009. B. Bahan dan Alat 1. Bahan Bahan yang digunakan pada penelitian ini adalah : a. Contoh tanah jenis Gleisol yang berasal dari Kebon Duren, Depok, Jawa Barat yang terletak pada 106049´13.7˝ BT dan 06026´55.1˝ LS. 2. b. Lem resin + katalis c. Air destilasi d. Larutan H2O2 6% Alat a. Oven n. Sendok pengaduk b. Desicator o. pelantak (rammer) c. Timbangan p. Stopwatch d. Obeng q. Gelas ukur e. Cangkul r. Gelas plastik f. Kotak tumbuk manual s. Selang g. Wadah/ember/cawan t. Kamera digital h. Pisau u. Hidrometer i. Termometer v. Dongkrak hidrolik j. Piknometer w. Kotak model tanggul k. Penyemprot air & Corong x. Meteran l. Pemadat tanah (Proctor test) y. Alat uji permeabilitas m. Saringan (4760, 2000, 840,420, z. Alat uji pF 250,105,75) µm 20 C. Metode Penelitian a. Pengambilan Contoh Tanah Sebagai bahan timbunan model tanggul digunakan contoh tanah tidak utuh (terganggu). Contoh tanah tersebut diambil dengan alat cangkul pada kedalaman 20-40 cm, kemudian tanah dikeringkan dengan udara untuk mengurangi kadar airnya sehingga memudahkan dalam pengayakan. Tanah yang kering selanjutnya disaring dengan saringan 4760 m sesuai dengan uji pemadatan standar JIS A 1210-1980 ditutup rapat untuk menjaga agar tidak terjadi penguapan air tanah yang berlebihan. b. Pengukuran Sifat Fisik Tanah 1. Pengukuran Kadar Air Pengukuran kadar air pada contoh tanah dilakukan dengan metode gravimetrik atau dengan menggunakan metode JIS A 1203-1978. Kadar air tanah dihitung dengan persamaan sebagai berikut (Sapei, et al., 1990) : w= x 100 %............................................................ (6) dimana : 2. w = kadar air tanah (%) ma = berat tanah basah dan wadah (g) mb = berat tanah kering oven dan wadah (g) mc = berat wadah (g) Uji Tekstur Uji tektur dilakukan untuk menentukan distribusi (sebaran) ukuran setiap butir partikel tanah. Distribusi ukuran partikel tanah ditentukan oleh variasi diameter partikel dan berdasarkan persentase berat setiap fraksi terhadap berat total. Metode yang digunakan sesuai standar JIS A 1204 – 1980 (Sapei et al, 1990). 3. Uji Permeabilitas Permeabilitas merupakan kemampuan fluida untuk mengalir melalui medium yang berpori. Pengujian permeabilitas menggunakan metode ”falling 21 head”. Untuk mendapatkan koefisien permeabilitas tanah dengan metode ini digunakan persamaan : Kr = ................................................. (7) dimana : Kr = koefisien permeabilitas tanah pada suhu T0C a = luas permukaan pipa gelas (cm2) l = panjang contoh tanah (cm) A = luas permukaan contoh tanah (cm2) T = waktu (detik) h1 = tinggi minikus atas (cm) h2 = tinggi minikus bawah (cm) Permeabilitas pada suhu standar (T = 200C) dihitung dengan menggunakan rumus sebagai berikut (Sapei, et al., 1990) : K20 = (µT / µ20) KT .................................................................. (8) dimana : K20 = koefisien permeabilitas pada suhu standar (T = 200C) µT = Viskositas air pada suhu T0C µ20 = viskositas air pada suhu 200C KT = koefisien permeabilitas pada suhu T0C Gambar 6. Alat uji permeabilitas dengan metode falling head 22 4. Pengukuran Berat Jenis Tanah Metode pengukuran berat jenis tanah yang digunakan sesuai dengan standar JIS A 1202 – 1978 (Sapei et al, 1990) dan menggunakan persamaan : ………………………………………… (9) Gs = dimana : ms = Berat tanah kering oven di dalam piknometer, g ma = Berat piknometer dan air pada suhu TºC, g mb = Berat tanah, air, dan piknometer pada TºC, g 5. Pengukuran Berat Isi (Bulk Density) Pengukuran berat isi (bulk density) dilakukan pada contoh tanah utuh. Pengukuran berat isi menggunakan persamaan (Das, 1993) : t = ……………..……………………………..…… (10) d = ……………..…………...………………… (11) dimana : t = berat isi basah (g/cm3) d = berat isi kering (g/cm3) Wtb = berat tanah basah (g) Wtk = berat tanah kering oven (g) V = volume tanah (cm3) W = kadar air (%) Pada uji pemadatan, nilai berat isi kering maksimum dari beberapa selang kadar air merupakan tingkat kepadatan maksimum dari suatu tingkat pemadatan. Sedangkan kadar air pada berat isi maksimum tersebut merupakan kadar air optimum dari suatu pemadatan. 6. Porositas Porositas (n) adalah bagian dari volume tanah yang diisi oleh pori-pori dan didefinisikan sebagai (Hardiyatmo, 1992) : 23 ………………………………………………….….. (12) n= Nisbah antara volume pori-pori (void) dengan bahan padatan disebut angka pori (nisbah void) (e). e= ……………………………………………………. (13) e= ……...…………………………………………...…(14) Vv = Vw + Va ……………………………………………… (15) dimana : n = porositas e = angka pori V = volume total contoh tanah (cm3) Vv = volume pori (cm3) Vs = volume butiran padat (cm3) Vw = volume air dalam pori (cm3) Va 7. = volume udara dalam pori (cm3) Pengukuran Potensial Air Tanah (pF) Pengukuran nilai potensial air tanah yang dipadatkan dilakukan dengan menggunakan sand box dan wide range pF meter. Nilai potensial air tanah diambil dari tanah tanggul yang telah dialiri dengan menggunakan ring sample. Sand box digunakan untuk pengujian nilai pF 0 – 1.0, sedangkan wide range pF meter digunakam untuk nilai pF 1.5 – 3.2. Untuk contoh tanah yang diukur pada nilai pF 4.2 adalah tanah terganggu yang lolos saringan 2000 µm yang diukur di laboratorium Departemen Ilmu Tanah. Pembacaan dalam pengukuran nilai pF dilakukan setelah ± 24 jam, selanjutnya nilai pF tersebut diplotkan dengan nilai kadar air yang didapatkan untuk mendapatkan kurva hubungan antara pF dengan nilai kadar air tersebut. 24 Gambar 7. Sand box Gambar 8. Wide range pF meter dan automatic pressure controller c. Pengukuran Sifat Mekanik Tanah 1. Uji Pemadatan Uji pemadatan dilakukan dengan uji Proctor sebagai uji standar. Metode yang digunakan sesuai standar JIS A 1210 – 1980 1.1.1. Dari uji ini diperoleh kadar air optimum dan berat isi maksimum. Kedua nilai tersebut merupakan nilai uji pemadatan standar sebagai acuan untuk melakukan pemadatan tanggul. Perhitungan untuk pemadatan tanah tersebut menggunakan persamaan berikut (Sapei et al, 1990) : a) Berat isi basah ( t) t = ………………………………………………. (16) b) Berat isi kering ( d) 25 Berat isi kering dihitung dengan menggunakan persamaaan 11. c) Berat isi jenuh ( dsat dsat) ……………………………………….. (17) = dimana : m1 = berat cetakan dan piringan dasar (kg) m2 = berat tanah padat, cetakan dan piringan dasar (kg) = kapasitas cetakan (cm3) v Gs = berat jenis w = kadar air (%) w = berat jenis air (kg/cm3) Gambar 9. Proctor test dan dongkrak hidrolik 2. Uji Tumbuk Manual Uji tumbuk manual dilakukan untuk mendapatkan ratio of compaction (RC) > 90% . Pada bahan timbunan tanggul, tanah dipadatkan dengan menggunakan alat tumbuk manual yang memiliki berat, tinggi jatuh, jumlah tumbukan, jumlah lapisan, dan energi serta frekuensi penumbukan yang telah diperhitungkan sehingga besarnya energi yang diberikan melalui jumlah tumbukan akan menunjukkan kepadatan maksimum dan kadar air optimum bahan tersebut. Nilai RC didapatkan dari persamaan berikut : d RC = d di lapangan ................................................. (18) max uji standar proctor 26 Jumlah energi yang diberikan saat melakukan pemadatan bahan tanah dihitung dengan persamaan : WxHxNxLxg CE = dimana : V ………………………………... (19) CE = jumlah energi pemadatan (kJ/m3) W = berat rammer (kg) H = tinggi jatuhan rammer (m) N = jumlah tumbukan pada setiap lapisan L = jumlah lapisan V = volume cetakan (m3) g = gravitasi (m/detik2) Setelah didapatkan hasil uji tumbuk manual ini, selanjutnya nilai tersebut dijadikan acuan perbandingan untuk melakukan pemadatan tanah pada model tanggul dengan persamaan sebagai berikut : N2 = ………………………………………………..(20) Dimana : N2 = jumlah tumbukan pada setiap lapisan pada model tanggul N1 = jumlah tumbukan pada setiap lapisan pada uji tumbuk manual L1 = luas kotak tumbuk manual (cm2) L2 = luas tiap lapisan pada model tanggul (cm2) Spesifikasi uji tumbuk manual ini seperti tertera pada Tabel 4, sedangkan alat uji tumbuk manual pada Gambar 10. Tabel 4. Spesifikasi uji tumbuk manual Komponen Berat rammer Tinggi jatuhan Cetakan panjang Lebar Tinggi Satuan Kg M M M M Nilai 2.05 0.3 0.4 0.3 0.1 27 Gambar 10. Kotak tumbuk manual dan pelantak (rammer) 3. Pengujian Konsistensi Tanah Metode pengukuran konsistensi tanah untuk batas cair (liquid limit) yang digunakan merupakan standar JIS A 1205-1980 dan peralatan yang digunakan disebut LL Device Grooving Tools. Sedangkan untuk pengukuran batas plastis (plastic limit) menggunakan metode standar JIS A 1206-1970 (1978). Nilai-nilai batas cair dan plastis yang diperoleh akan diplotkan dalam grafik plastisitas untuk mengetahui klasifikasi tanah yang diuji dengan menggunakan Sistem Klasifikasi Tanah Unified (Unified Soil Classification System). d. Pembuatan Model Tanggul Model adalah representasi suatu masalah dalam bentuk yang lebih sederhana sehingga lebih jelas dan mudah dikerjakan. Selain itu, pembuatan model juga bertujuan agar biaya yang dikeluarkan lebih murah. Secara umum, model terdiri dari beberapa jenis yaitu model ikonik, model analog, dan model matematik/simbolik. Model ikonik adalah memberikan visualisasi atau peragaan dari permasalahan yang ditinjau, model analog adalah didasarkan pada keserupaan gejala yang ditunjukkan oleh masalah dan dimiliki oleh model, sedangkan model matematik/simbolik adalah menyatakan secara kuantitatif persamaan matematik yang mewakili suatu masalah. Pembuatan model pada penelitian ini sendiri termasuk jenis model ikonik. Model tanggul dibuat dalam sebuah kotak model yang terbuat dari bahan acrylic (fiberglass). Kotak model ini dilengkapi dengan inlet, spillway (sebagai kontrol ketinggian), dan outlet untuk pembuangan rembesan air. 28 Model tanggul yang dibuat direncanakan untuk mengkontrol kedalaman air kurang dari 1.5 m dengan lebar atas minimum tanggul 1.5 m. Tanggul yang direncanakan merupakan model dengan skala 1 : 12 dan “geometrically similar”, yaitu mempunyai skala horizontal dan vertikal yang bernilai sama. Nilai 1 : 12 diambil dengan pertimbangan untuk memudahkan dalam penentuan dan perhitungan dimensi model. Dimensi model tanggul selengkapnya tertera pada Tabel 5. Tabel 5. Dimensi tanggul Dimensi Ukuran Lapangan H (tinggi muka air), cm Model 150 12.5 Hf (tinggi jagaan), cm 60 5.0 Hd (tinggi tanggul), cm 210 17.5 B (lebar atas/mercu), cm 150 12.5 1680 140.0 Hp (tinggi tekanan air), cm 180 15.0 Kemiringan 1/3 1/3 L (lebar bawah), cm Sumber : Soedibyo (1993) B Hf 1 Hd Hp H 3 L Gambar 11. Model tanggul 29 Gambar 12. Kotak model tanggul Dimensi tanggul ditentukan berdasarkan kriteria kemiringan talud. Nilai kemiringan talud yang digunakan dalam pembuatan tanggul adalah 1 : 3 untuk memudahkan perhitungan. Selain itu, kemiringan talud ini sudah cukup aman pada selang tersebut. Lebar bawah tanggul dihitung berdasarkan kemiringan talud dan lebar atas. Sehingga lebar bawah tanggul adalah jumlah lebar atas dan dua kali tinggi tanggul yang dikalikan dengan talud. e. Pengaliran Air pada Kotak Model Tanggul Setelah tanah dipadatkan dan membentuk suatu model tanggul kemudian air dialirkan ke dalam kotak model tanggul melalui inlet dengan debit air tertentu. Selama pengaliran air pada kotak model tanggul dilakukan beberapa kegiatan, yaitu : Gambar 13. Proses pengaliran air 30 a) Pengambilan foto garis rembesan Pengambilan foto rembesan pada tubuh tanggul dilakukan 3 menit sekali dari awal pengaliran pada bagian hulu tanggul sampai rembesan berada pada bagian hilir tanggul. b) Pengukuran debit rembesan Debit rembesan adalah besarnya jumlah air yang mengalir pada tubuh tanggul. Besarnya debit rembesan dihitung atau diukur dengan menggunakan tiga metode yaitu rumus empiris (berdasarkan persamaan 1 & 5), analisis program Seep/w dan pengukuran pada model tanggul secara langsung. Pada penelitian ini rencananya perhitungan debit rembesan secara langsung dilakukan pada kondisi dimana debit rembesan diperoleh dari air yang keluar di bagian hilir model tanggul (outlet) sampai didapatkan debit outlet yang konstan. Jumlah air yang keluar akan ditampung dengan menggunakan gelas ukur. Selama pengukuran debit rembesan, permukaan air di hulu dipertahankan agar tetap. Gambar 14. Pengukuran debit outlet f. Pembongkaran Model Tanggul Setelah pengaliran air selesai dilakukan, tahap selanjutnya yaitu pembongkaran model tanggul. Sebelum pembongkaran, contoh tanah diambil dengan menggunakan ring sampel tanah untuk dilakukan pengukuran permeabilitas tanah dan uji potensial air tanah (pF). Tanah yang sudah dibongkar 31 dikeringkan udara dan disaring kembali untuk pengujian selanjutnya dengan beberapa ulangan. g. Pengukuran Permeabilitas Tanah pada Model Tanggul Setelah selesai pengamatan tahapan selanjutnya yaitu pengujian permeabilitas menggunakan metode falling head dengan contoh tanah diambil dari model tanggul di bagian hilir. Setelah dilakukan pengukuran permeabilitas tersebut, nilai koefisien permeabilitas yang diperoleh digunakan sebagai salah satu input untuk analisis debit rembesan dengan program Geo-Slope jenis Seep/w. Untuk analisis debit rembesan dan panjang zona basah tersebut, selain data koefisien permeabilitas diperlukan juga data-data seperti : jenis bahan, tekanan, tinggi tekan (pressure head) dan unit flux. Pada penelitian ini penentuan analisis debit rembesan selain menggunakan program Seep/w digunakan pula metode pengukuran debit secara langsung (qinlet dan qoutlet) dan berdasarkan rumus empiris (metode Cassagrande, metode Grafik, dan metode Bowles). Tahapan-tahapan penelitian ini seperti yang tertera pada Gambar 15. 32 Mulai Pengambilan contoh tanah Pengukuran sifat fisik tanah Pengukuran konsistensi tanah Uji pemadatan standar Uji tumbuk manual tidak RC > 90 % ya Pembuatan model tanggul Model tanggul dialiri air Pengambilan foto dan pengukuran debit rembesan Uji permeabilitas & uji pF Pembongkaran model tanggul Nilai permeabilitas dan pF Pengeringan tanah ya Analisis debit rembesan 1. Pengukuran langsung 2. Rumus empiris 3. Program Geoslope tidak Debit rembesan Selesai Gambar 15. Tahapan penelitian 33