PEMANFAATAN ALAT PERAGA UNTUK

advertisement
PEMANFAATAN ALAT PERAGA UNTUK PEMBELAJARAN MATEMATIKA
BERMAKNA
Oleh. Sri Wulandari Danoebroto
A. Karakteristik Matematika dan Proses Belajar yang Bermakna
Matematika merupakan ilmu pengetahuan dengan objek kajian yang bersifat abstrak. Ide-ide
matematika dapat berkembang begitu luas, seluas daya imajinasi dan daya pikir manusia. Oleh
karena itu, seakan ada lead times antara abstraksi matematika dengan realitas kehidupan saat ini.
Dengan matematika kita dapat menjangkau dimensi n, sementara dalam realitas kehidupan (pada
umumnya) kita baru mampu menjangkau dimensi 3 yaitu melalui panca indera. Daya prediksi
matematika tersebut menjadi salah satu alasan para ilmuwan muslim pada jaman keemasan Islam
begitu gemar belajar matematika. Matematika saat itu dipelajari karena berguna untuk keperluan
religi misalnya untuk melakukan perhitungan kalender Islam, menentukan waktu sholat, atau
untuk menentukan waktu yang akurat berdasarkan pola gerakan bulan.
Memahami kegunaan matematika akan menumbuhkan sikap menghargai pentingnya belajar
matematika. Namun demikian, matematika di sekolah pada umumnya disampaikan langsung ke
tataran yang abstrak, seakan terlepas dari kegunaannya dalam kehidupan sehari-hari. Gagasan
abstrak matematika yang murni terlahir dari pemikiran manusia seakan menjadi sesuatu yang
turun dari langit bila disajikan secara “tiba-tiba” kepada siswa. Sifat matematika yang abstrak
menjadi alasan mengapa matematika menjadi sulit dipahami. Keabstrakan matematika pula yang
menjadi sebab mengapa siswa kurang memahami manfaat belajar matematika bagi
kehidupannya. Beberapa alasan ini membuat siswa enggan bahkan takut atau cemas belajar
matematika, karena matematika direpresentasikan dalam bahasa simbol semata. Simbol yang
disajikan “tiba-tiba” tentu tanpa makna bagi siswa. Akibatnya, siswa hanya menghafalkan saja
rumus matematika karena tidak memahami asal usul dan tujuannya.
Konsep matematika menjadi bermakna jika siswa “melihat” kaitan konsep matematika tersebut
dengan sesuatu yang telah diketahuinya. Pengetahuan tersebut dapat berupa pengetahuan tentang
fakta, konsep, prinsip atau prosedur matematika. Oleh karena itu, hendaknya dalam proses
1
belajar matematika dibuka kesempatan bagi siswa untuk merekonstruksi pengetahuan baru
matematika berdasarkan skema berpikirnya.
B. Pemanfaatan Alat Peraga untuk Pembelajaran Matematika yang Bermakna
Salah satu alternatif agar pembelajaran matematika menjadi bermakna adalah dengan
memanfaatkan alat peraga. Alat peraga sebagai alat bantu pembelajaran dapat berfungsi sebagai
model konsep yang riil sehingga siswa dapat mempelajarinya dengan menggunakan panca
inderanya. Dengan demikian, alat peraga berperan menurunkan derajat keabstrakan matematika.
Secara sederhana, sebelum mempelajari tentang dimensi n, siswa memahami ide dasarnya
melalui model objek berdimensi 2 atau berdimensi 3. Terjadi proses rekonstruksi pengetahuan
melalui pengamatan, percobaan, atau pengalaman nyata lainnya.
Pembelajaran matematika dengan menggunakan alat peraga dapat dipandang sebagai
pembelajaran dengan pendekatan induktif. Proses mempelajari pengetahuan matematika yang
terkandung dalam suatu kondisi, kejadian khusus atau model tertentu. Hendaknya dalam proses
pembelajaran matematika, dengan pendekatan apapun, melibatkan kognitif, afektif dan
psikomotorik siswa. Alat peraga sebagai objek riil yang dipelajari dimanfaatkan secara optimal
agar siswa terdorong untuk berpikir, belajar dengan panca inderanya (melihat, mendengar,
menyentuh, bercakap-cakap), timbul rasa ingin tahunya, dan merasakan senang belajar.
Gagasan alat peraga matematika dalam kerangka rekonstruksi matematika umumnya
menggunakan konsep dan prinsip geometri, bahkan untuk mempelajari konsep aljabar sekalipun.
Hal ini karena geometri merupakan ide matematika yang dapat dimodelkan secara riil atau
konkrit sehingga objeknya dapat dipelajari dengan menggunakan pancaindera manusia. Gagasan
lainnya adalah dengan menggunakan model faktual yaitu pemodelan berdasarkan fakta dalam
kehidupan sehari-hari.
C. Contoh Pemanfaatan Alat Peraga untuk Pembelajaran Matematika
Salah satu contoh alat peraga untuk merekonstruksi konsep bilangan melalui model faktual
adalah Loncat Katak.
Katak Hitam
Katak Hijau
2
Alat peraga ini dapat dimanfaatkan untuk menemukan konsep bilangan yaitu pola bilangan,
melalui aktivitas pemecahan masalah. Model faktual yang diangkat adalah figur katak dengan
konteks masalah yang harus dipecahkan bersifat imajinatif namun bermakna bagi siswa.
Problematikanya adalah bagaimana kedua pasukan katak hitam dan katak hijau dapat bertukar
tempat dengan batasan kondisi:
a. Katak berpindah satu persatu
b. Langkah perpindahan yang mungkin, karena figurnya adalah katak, yaitu melompat
(melompati katak lain atau melompat maju selangkah)
c. Setiap katak hanya mampu melompati satu katak lainnya
d. Katak tidak bisa melompat mundur
Siswa akan melakukan eksplorasi dengan memanipulasi alat peraga tersebut. Siswa memikirkan
strategi untuk menyelesaikan masalah tersebut, yang umumnya berdasarkan pengamatan penulis
menggunakan strategi trial and error. Sejalan dengan aktivitas kognitif ini, siswa
mengembangkan kemampuan psikomotoriknya melalui aktivitas memindahkan model katak
sesuai analisis atau mengikuti intuisinya. Problematika pasukan katak ini cukup menggugah rasa
ingin tahu siswa dan memunculkan rasa fun in doing mathematics.
Proses pindah memindahkan katak ini sesungguhnya merupakan aktivitas yang teratur sehingga
membentuk sebuah pola. Tugas siswa adalah menemukan keteraturan perpindahan ini yang bisa
ditemukan jika tidak hanya mengandalkan strategi trial and error tetapi juga menganalisis
dengan logikanya. Tantangannya adalah, jika banyaknya anggota pasukan katak masing-masing
adalah n, maka berapa langkah yang diperlukan untuk memindahkan semuanya.
Proses berpikir induktifnya dari sepasang katak hijau dan hitam, kemudian dua pasang katak
hijau dan hitam, dan seterusnya hingga lima pasang katak hijau dan hitam. Tahap akhir dari
aktivitas ini adalah generalisasi untuk n pasang katak. Demikian contoh pemanfaatan alat peraga
matematika yang membuka kesempatan bagi siswa untuk merekonstruksi pengetahuan baru
matematika berdasarkan fakta yang diketahuinya dalam kehidupan sehari-hari, meskipun sedikit
imajinatif.
3
Contoh alat peraga untuk merekonstruksi prosedur aljabar melalui model geometri adalah Peraga
Al Khwarizmi.
Salah satu cara mencari akar persamaan kuadrat adalah dengan menggunakan bentuk kuadrat
sempurna, bila persamaannya adalah
adalah
maka rumus untuk mencari akarnya
. Apabila rumus ini diberikan “tiba-tiba” pada siswa, maka mereka
akan cenderung menghafalkannya saja karena persamaan matematika itu tidak bermakna
baginya, kecuali hanya simbol p, q, dan x yang harus diingatnya.
Penyelesaian persamaan kuadrat dengan bentuk kuadrat sempurna merupakan salah satu temuan
Al Khwarizmi, seorang matematikawan muslim yang juga mendapat julukan Bapak Aljabar. Al
Khwarizmi memperoleh akar dari persamaan
melalui eksplorasi terhadap
model geometri.
Untuk memahami atau menemukan asal usul rumus
langkah-langkah Al Khwarizmi menyelesaikan persamaan
, siswa mengikuti
. Bentuk aljabar
tersebut diaktualkan dalam bentuk persegi panjang kemudian menggunakan pengetahuan tentang
luas daerah persegi dan persegi panjang yang telah diketahui siswa sebelumnya, maka simbol p,
q, dan x menjadi bermakna.
Proses Al Khwarizmi menemukan solusi persamaan kuadrat tersebut dapat direkonstruksi oleh
siswa menggunakan alat peraga. Pada mulanya berpikir induktif berdasarkan penyelesaian
4
persamaan
kemudian dibawa kepada generalisasi jika konstantanya adalah
sembarang bilangan p dan q.
Peraga Al Khwarizmi ini dapat dimanfaatkan dalam pembelajaran dengan penyajian satu arah
atau guru yang dominan menjelaskan asal usul rumus. Alternatif lainnya adalah guru memberi
kesempatan siswa melakukan rekonstruksi sendiri sehingga kemampuan kognitif, afektif, dan
psikomotoriknya lebih terstimulasi.
D. Kesimpulan
Alasan perlunya memanfaatkan alat peraga dalam pembelajaran matematika adalah:
1. Menjadi alat bantu dalam proses pembelajaran matematika yang bermakna
2. Menurunkan derajat keabstrakan matematika, sehingga siswa menjadi lebih mudah
memahaminya
3. Memotivasi siswa belajar matematika karena objek yang dipelajari konkrit, dapat
dimanipulasi, dan dapat dimanfaatkan sebagai sumber belajar yang menantang dan
mengasyikkan
Alat peraga merupakan alat bantu pembelajaran, sehingga peran guru masih sangat penting
sebagai sutradara yang memainkan alat bantu tersebut. Sebaiknya guru merancang pembelajaran
yang dapat mengoptimalkan proses rekonstruksi pengetahuan baru matematika dengan
menstimulasi kemampuan kognitif, afektif dan psikomotorik siswa. Alat peraga kemudian
dimanfaatkan untuk memperkuat proses tersebut.
5
Download