Sekuensing DNA - DocShare.tips

advertisement
Sekuensing DNA
Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Sekuensing DNA atau pengurutan DNA adalah proses atau teknik penentuan
urutan basa nukleotida pada suatu molekul DNA. Urutan tersebut dikenal sebagai sekuens DNA, yang
merupakan informasi paling mendasar suatu gen atau genom karena mengandung instruksi yang
dibutuhkan untuk pembentukan tubuh makhluk hidup.[1] Sekuensing DNA dapat dimanfaatkan untuk
menentukan identitas maupun fungsi gen atau fragmen DNA lainnya dengan cara membandingkan
sekuens-nya dengan sekuens DNA lain yang sudah diketahui. [2] Teknik ini digunakan dalam riset
dasar biologi maupun berbagai bidang terapan seperti kedokteran,[3] bioteknologi,forensik,
[4]
dan antropologi.[5]
Teknik sekuensing DNA mulai dikembangkan pada tahun 1970-an dan telah menjadi hal rutin dalam
penelitian biologi molekular pada dekade berikutnya berkat dua metode yang dikembangkan secara
independen namun hampir bersamaan oleh tim Walter Gilbert diAmerika Serikat dan tim Frederick
Sanger di Inggris sehingga kedua ilmuwan tersebut mendapatkan Penghargaan Nobel Kimia pada
tahun 1980.[6][7] Selanjutnya, metode Sanger menjadi lebih umum digunakan dan berhasil diautomatisasi
pada pertengahan 1980-an. Sejak tahun 1995, berbagai proyek genom yang bertujuan menentukan
sekuens keseluruhan DNA pada banyak organisme telah diselesaikan, termasuk Proyek Genom Manusia.
Sekuensing DNA seluruh genom semakin terjangkau dan cepat dilakukan berkat pengembangan sejumlah
teknik sekuensing generasi berikutnya mulai tahun 2000-an.
Daftar isi
[sembunyikan]
1 Aplikasi
2 Sejarah
3 Metode
o
3.1 Metode Maxam-Gilbert
o
3.2 Metode Sanger
o

3.2.1 Metode Sanger asli

3.2.2 Sekuensing dye terminator

3.2.3 Automatisasi dan penyiapan sampel
3.3 Sekuensing generasi berikutnya
3.3.1 Pyrosequencing

4 Sekuensing DNA skala besar
5 Lihat pula
6 Referensi
7 Pranala luar
[sunting]Aplikasi
Sekuens DNA menyandikan informasi yang diperlukan bagi makhluk hidup untuk melangsungkan hidup
dan berkembang biak. Dengan demikian, penentuan sekuens DNA berguna di dalam ilmu pengetahuan
'murni' mengenai mengapa dan bagaimana makhluk hidup dapat hidup, selain berguna dalam penerapan
praktis. Karena DNA merupakan ciri kunci makhluk hidup, pengetahuan akan sekuens DNA dapat berguna
dalam penelitian biologi manapun. Sebagai contoh, dalam ilmu pengobatan sekuensing DNA dapat
digunakan untuk mengidentifikasi, mendiagnosis, dan mengembangkan pengobatan penyakit genetik.
Demikian pula halnya, penelitian pada agen penyebab penyakit (patogen) dapat membuka jalan bagi
pengobatan penyakit menular. Bioteknologi, yang dapat pula memanfaatkan sekuensing DNA, merupakan
bidang yang berkembang pesat dan berpotensi menghasilkan banyak barang dan jasa berguna.
Pengetahuan akan sekuens DNA berguna untuk mengetahui sekuens asam amino yang disandikan oleh
gen.[8]
Karena RNA dibentuk dengan transkripsi dari DNA, informasi yang dikandung RNA juga terdapat di dalam
DNA cetakannya sehingga sekuensing DNA cetakan tersebut sudah cukup untuk membaca informasi pada
RNA. Namun demikian, sekuensing RNA dibutuhkan khususnya pada eukariota, karena molekul RNA
eukariota tidak selalu sebanding dengan DNA cetakannya karena pemotongan intronsetelah
proses transkripsi.
[sunting]Sejarah
Pada mulanya, sekuensing DNA dilakukan dengan mentranskripsikannya ke dalam bentuk RNA terlebih
dahulu karena metode sekuensing RNA telah ditemukan sebelumnya. Pada tahun 1965, Robert Holley dan
timnya dari Cornell University di New York,Amerika Serikat, mempublikasikan
sekuens tRNA alanin dari khamir yang terdiri atas 77 nukleotida.[9] Sekuensing tRNA tersebut
membutuhkan waktu 7 tahun dan hasilnya merupakan sekuens molekul asam nukleat yang pertama kali
dipublikasikan.[10] Sekuens DNA yang pertama kali dipublikasikan adalah DNA sepanjang 12 nukleotida dari
suatu virus, yaitu bakteriofag lambda, pada tahun 1971, yang ditentukan dengan cara serupa oleh Ray Wu
dan Ellen Taylor, keduanya juga dari Cornell University.[11][12]
Pada tahun 1975, Frederick Sanger dan Alan Coulson dari laboratorium biologi molekular Medical
Research Council Inggris diCambridge mempublikasikan metode sekuensing DNA secara langsung yang
disebut teknik plus–minus.[13] Dengan teknik tersebut, tim mereka berhasil melakukan sekuensing DNA
sebagian besar genom bakteriofag ΦX174 sepanjang 5.375 nukleotida yang dipublikasikan pada Februari
1977.[14] Pada bulan yang sama, metode sekuensing DNA yang dicetuskan Allan Maxam dan Walter
Gilbert dari Harvard University di Cambridge, Massachusetts, Amerika Serikat, dipublikasikan.[15]
Sejak pertengahan tahun 1980-an, metode Sanger menjadi lebih umum digunakan. [16] Pada tahun 1986,
tim Leroy Hood di California Institute of Technology dan Applied Biosystems berhasil membuat mesin
sekuensing DNA automatis berdasarkan metode Sanger.[17][18]
[sunting]Metode
[sunting]Metode
Maxam-Gilbert
Metode ini mulanya cukup populer karena dapat langsung menggunakan DNA hasil pemurnian, sedangkan
metode Sanger pada waktu itu memerlukan kloning untuk membentuk DNA untai tunggal. Seiring dengan
dikembangkannya metode terminasi rantai, metode sekuensing Maxam-Gilbert menjadi tidak populer
karena kerumitan teknisnya, digunakannya bahan kimia berbahaya, dan kesulitan dalam scale-up.
[sunting]Metode
Sanger
Gel sekuensing metode Sanger yang telah dilabel radioaktif.
Dewasa ini, hampir semua usaha sekuensing DNA dilakukan dengan menggunakan metode terminasi
rantai yang dikembangkan oleh Frederick Sanger dan rekan-rekannya [1]. Teknik tersebut melibatkan
terminasi atau penghentian reaksi sintesis DNA in vitro yang spesifik untuk sekuens tertentu menggunakan
substrat nukleotida yang telah dimodifikasi.
Pada metode terminasi rantai (metode Sanger), perpanjangan atau ekstensi rantai DNA dimulai pada situs
spesifik pada DNA cetakan dengan menggunakan oligonukleotida pendek yang disebut primeryang
komplementer terhadap DNA pada daerah situs tersebut. Primer tersebut diperpanjang menggunakan DNA
polimerase, enzim yang mereplikasi DNA. Bersama dengan primer dan DNA polimerase, diikutsertakan
pula empat jenis basa deoksinukleotida (satuan pembentuk DNA), juga nukleotida pemutus atau penghenti
rantai (terminator rantai) dalam konsentrasi rendah (biasanyadi-deoksinukleotida). Penggabungan
nukleotida pemutus rantai tersebut secara terbatas kepada rantai DNA oleh polimerase DNA menghasilkan
fragmen-fragmen DNA yang berhenti bertumbuh hanya pada posisi pada DNA tempat nukleotida tertentu
tersebut tergabungkan. Fragmen-fragmen DNA tersebut lalu dipisahkan menurut ukurannya
dengan elektroforesis gel poliakrilamida, atau sekarang semakin lazim dengan elektroforesis
menggunakan tabung gelas berjari-jari kecil (pipa kapiler) yang diisi dengan polimer kental.
Seiring dengan perkembangannya, kini terdapat beberapa macam metode sekuensing terminasi rantai
yang berbeda satu sama lain terutama dalam hal pendeteksian fragmen DNA hasil reaksi sekuensing.
[sunting]Metode Sanger asli
Pada metode yang asli, urutan nukleotida DNA tertentu dapat disimpulkan dengan membuat secara paralel
empat reaksi perpanjangan rantai menggunakan salah satu dari empat jenis basa pemutus rantai pada
masing-masing reaksi. Fragmen-fragmen DNA yang kemudian terbentuk dideteksi dengan menandai
(labelling) primer yang digunakan dengan fosfor radioaktif sebelum reaksi sekuensing dilangsungkan.
Keempat hasil reaksi tersebut kemudian dielektroforesispada empat lajur yang saling bersebelahan pada
gel poliakrilamida.
Hasil pengembangan metode ini menggunakan empat macam primer yang ditandai dengan
pewarna berpendar (fluorescent dye). Hal ini memiliki kelebihan karena tidak menggunakan
bahan radioaktif; selain menambah keamanan dan kecepatan, keempat hasil reaksi dapat dicampur dan
dielektroforesis pada satu lajur pada gel. Metode ini dikenal sebagai metode dye primer sequencing.
[sunting]Sekuensing dye terminator
Contoh hasil bacaan suatu sekuensing metode dye terminator.
Cara lain pelabelan primer adalah dengan melabel pemutus rantainya, lazim disebut metode
sekuensing dye terminator. Keunggulan cara ini adalah bahwa seluruh proses sekuensing dapat dilakukan
dalam satu reaksi, dibandingkan dengan empat reaksi terpisah yang diperlukan pada
penggunaanprimer berlabel. Pada cara tersebut, masing-masing dideoksinukleotida pemutus rantai
ditandai dengan pewarna fluoresens, yang berpendar pada panjang gelombang yang berbeda-beda. Cara
ini lebih mudah dan lebih cepat dibandingkan penggunaan primer berwarna, namun dapat menimbulkan
ketidaksamaan tinggi kurva atau puncak (peak) yang disebabkan oleh ketidaksamaan penggabungan
pemutus rantai berwarna berukuran besar pada pertumbuhan DNA (ketidaksamaan tersebut bergantung
pada DNA cetakan). Masalah tersebut telah dapat dikurangi secara nyata dengan penggunaan macammacam enzim dan pewarna baru yang meminimalkan perbedaan dalam penggabungan.
Metode ini kini digunakan pada sebagian besar usaha reaksi sekuensing karena lebih sederhana dan lebih
murah. Primer-primer yang digunakan tidak perlu dilabel secara terpisah (yang bisa jadi cukup mahal
untuk primer yang dibuat untuk sekali pakai), walaupun hal tersebut tidak terlalu bermasalah dalam
penggunaan universal primer.
[sunting]Automatisasi dan penyiapan sampel
Mesin sekuensing DNA automatis modern mampu mengurutkan 384 sampel berlabel fluoresens sekaligus
dalam sekali batch(elektroforesis) yang dapat dilakukan sampai 24 kali sehari. Hal tersebut hanya
mencakup proses pemisahan dan proses pembacaan kurva; reaksi sekuensing, pembersihan, dan
pelarutan ulang dalam larutan penyangga yang sesuai harus dilakukan secara terpisah.
Untuk memperoleh hasil reaksi berlabel yang dapat dideteksi dari DNA cetakan, metode "sekuensing daur"
(cycle sequencing) paling lazim dilakukan. Dalam metode ini dilakukan berturut-turut
penempelan primer (primer annealing), ekstensi oleh polimerase DNA, dan denaturasi (peleburan
atau melting) untai-untai DNA cetakan secara berulang-ulang (25–40 putaran). Kelebihan utama
sekuensing daur adalah lebih efisiennya penggunaan pereaksi sekuensing yang mahal (BigDye) dan
mampunya mengurutkan templat dengan struktur sekunder tertentu seperti hairpin loop atau daerah kayaGC. Setiap tahap pada sekuensing daur ditempuh dengan mengubah temperatur reaksi menggunakan
mesin pendaur panas (thermal cycler) PCR. Cara tersebut didasarkan pada fakta bahwa dua untai DNA
yang komplementer akan saling menempel (berhibridisasi) pada temperatur rendah dan berpisah
(terdenaturasi) pada temperatur tinggi. Hal penting lain yang memungkinkan cara tersebut adalah
penggunaan enzim DNA polimerase dari organisme termofilik (organisme yang hidup di lingkungan
bertemperatur tinggi), yang tidak mudah terurai pada temperatur tinggi yang digunakan pada cara tersebut
(>95 °C).
[sunting]Sekuensing
generasi berikutnya
[sunting]Pyrosequencing
Pyrosequencing adalah teknik pemetaan DNA yang berdasarkan deteksi terhadap pirofosfat (PPi) yang
dilepaskan selama sintesisDNA.[19] Teknik ini memanfaatkan reaksi enzimatik yang dikatalisis oleh ATP
sulfurilase dan luciferase untuk pirofosfat inorganik yang dilepaskan selama penambahan nukleotida.[19]
http://id.wikipedia.org/wiki/Southern_blot
Download