IDENTIFIKASI FLAVONOIDA HASIL FRAKSINASI

advertisement
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
IDENTIFIKASI FLAVONOIDA HASIL FRAKSINASI
DENGAN KROMATOGRAFI KOLOM VAKUM
EKSTRAK METANOL-AIR HERBA PEGAGAN
EMBUN (Hydrocotyle sibthorpioides Lmk.)
SKRIPSI
Diajukan untuk Memenuhi Salah Satu Syarat
Memperoleh Gelar Sarjana Farmasi (S.Farm)
Program Studi Ilmu Farmasi
Oleh :
Anita Devi Ariesnawati
NIM : 038114057
FAKULTAS FARMASI
UNIVERSITAS SANATA DHARMA
YOGYAKARTA
2007
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
“Being Aware of
Ignorance is the First Step
to Develop……”
Dedicated to:
Papa, Mama and Mas Aris…
iv
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
INTISARI
Pegagan Embun (Hydrocotyle sibthorpioides Lmk.) dipercayai dapat
mengobati sakit kuning (hepatitis), batu empedu, kencing batu, infeksi saluran
kencing, batuk, sesak nafas, sariawan, radang tenggorokan, amandel, infeksi
telinga tengah (Anonim, 2005). Dimungkinkan bahwa flavonoida berperan dalam
mengatasi penyakit di atas. Anonim (2005) menyebutkan adanya kandungan
flavonoida dalam pegagan embun yaitu hiperin. Penelitian ini diarahkan untuk
menentukan golongan flavonoida lain yang ada dalam herba pegagan embun dan
diharapkan hasil penelitian ini dapat memberi informasi tentang kandungan aktif
senyawa obat alami
Serbuk diekstraksi dengan metanol-air (9:1 dan 1:1) dan penyarian
dilakukan dengan maserasi. Fraksinasi flavonoida dari ekstrak dilakukan dengan
kromatografi kolom vakum. Fase diam yang digunakan adalah selulosa,
sedangkan fase geraknya adalah BAW (4:1:5 v/v,fase atas). Pemeriksaan
kandungan flavonoida dilakukan dengan kromatografi lapis tipis dengan
menggunakan fase diam dan fase gerak yang sama dengan yang digunakan pada
kromatografi kolom. Deteksi bercak dilakukan dengan sinar ultraviolet λ 365 nm
dan uap amonia.
Identifikasi menggunakan KLT menghasilkan dua bercak yaitu ungu (Rf
0,86 yang selanjutnya disebut isolat flavonoida) dan biru (Rf 0,76). Isolasi bercak
dilakukan dengan KLTP. Bercak ungu dikerok kemudian dilarutkan dalam
metanol dan disaring, lalu diuji kemurniannya. Pemeriksaan kemurnian isolat
flavonoida menggunakan kromatografi multi eluen yang menunjukkan bahwa
isolat flavonoida sudah murni secra kromatografi. Pemeriksaan dilanjutkan
menggunakan reaksi warna dan spektroskopi ultraviolet dengan penambahan
pereaksi geser.
Berdasarkan analisis data dari KLT, reaksi warna dan spektroskopi
ultraviolet menunjukkan bahwa isolat flavonoida diduga mempunyai golongan
flavon dengan kemungkinan struktur parsial 7,3’,4’ trihidroksi flavon atau
7,4’,5’ trihidroksi flavon.
Kata kunci : flavonoida, kromatografi, spektroskopi, Hydrocotyle sibthorpioides.
vi
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
ABSTRACT
Pegagan embun (Hydrocotyle sbthorpioides. Lmk) is believed can cure
hepatitis, kidney stone, urethra infection, cough, short winded, ulcer, throat
inflammation, tonsil, middle chamber ear infection, (Anonym, 2005). It is possible
that flavonoid plays important roles in curing such diseases. Anonym (2005)
mentions that pegagan embun contains flavonoid, which is hyperin. This research is
aimed at determining another type of flavonoid that exists in the pegagan embun
herbs and it is hoped that the finding of the research will provide information to
invent new medicine.
Powder is extracted using methanol – water (9:1 and 1:1) and the extraction is
done using maseration. Flavonoid fractionation from the extract is done using
vacuum column chromatography. Stationer phase used is cellulose, while mobile
phase is BAW (4:1:5 v/v, upper phase). The investigation of flavonoid content is
done by employing thin layer chromatography (TLC) using stationer and mobile
phase similar to what is used in the vacuum column chromatography. The spot
detection is done using ultraviolet ray λ 365 nm and ammonia steam.
Identification using TLC results two spots, they are purple ( Rf 0,86 which is
called flavonoid isolate then) and blue (Rf 0,76). Spot isolation is done by using
Preparative Thin Layer Chromatography (PTLC). The purple spot is scrapped and
dissolved in the methanol and filtered, and then the genuineness is tested. The
genuineness check up of flavonoid isolate is using multi eluen chromatography that
indicates that flavonoid isolate is genuine in terms of chromatography. The check up
continues with color reaction and ultraviolet spectroscopy with an addition of shift
reagent.
Based on the data analysis from TLC, color reaction and ultraviolet
spectroscopy shows that flavonoid isolate has flavone type with the possibility
partial structure 7,3’,4’ trihydroxy flavone or 7,4’,5’ trihydroxy flavone.
Keywords: flavonoid, chromatography, spectroscopy, Hydrocotyle sibthorpioides.
vii
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
KATA PENGANTAR
Puji syukur penulis panjatkan kepada Tuhan Yesus Kristus yang telah
memberikan limpahan kasih-Nya sehingga penulis dapat menyelesaikan skripsi
berjudul “Identifikasi Flavonoida Hasil Fraksinasi dengan Kromatografi Kolom
Vakum Ekstrak Metanol-Air Herba Pegagan Embun (Hydrocotyle sibthorpioides
Lmk.)”. Penyusunan skripsi ini dimaksudkan sebagai salah satu syarat memperoleh
gelar Sarjana Farmasi (S. Farm) pada Fakultas Farmasi Universitas Sanata Dharma
Yogyakarta.
Dalam penyusunan dan menyelesaikan skripsi ini penulis telah banyak
memperoleh bantuan dari berbagai pihak. Pada kesempatan ini penulis ingin
menyampaikan ucapan terima kasih kepada:
1. Rita Suhadi, M.Si., Apt. selaku Dekan Farmasi Universitas Sanata Dharma
Yogyakarta.
2. Yohanes Dwiatmaka, M.Si. selaku dosen pembimbing yang telah dengan sabar
membimbing dan mengarahkan penulis baik pada penyusunan usulan penelitian,
penelitian dan penyusunan skripsi ini.
3. Erna Tri Wulandari, M.Si. selaku dosen penguji yang memberikan masukan,
kritik, dan saran dalam skripsi ini.
4. Christine Patramurti, M.Si., Apt. selaku Ketua Panitia Skripsi Fakultas Farmasi
Universitas Sanata Dharma sekaligus dosen penguji yang banyak membantu serta
memberikan masukan, kritik, dan saran dalam skripsi ini.
viii
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
5. Dr. Pudjono selaku dosen Farmasi Universitas Sanata Dharma yang memberikan
bantuan dan masukan yang berharga.
6. Seluruh staf dan karyawan Laboratorium Biologi Fakultas Farmasi Universitas
Sanata Dharma Yogyakarta.
7. Seluruh staf dan karyawan Laboratorium Kimia Analisis dan Kimia Analisis
Instrumen Fakultas Farmasi Universitas Sanata Dharma Yogyakarta.
8. Papa, Mama dan Mas Aris yang telah memberikan doanya, dukungan dan cinta
sehingga memotivasi penulis dalam menyelesaikan studi dan skripsi ini.
9. Timur Pamenang dengan segala kesabarannya telah mendampingi dan banyak
membantu dalam menyelesaikan skripsi ini.
10. Mbok Nah dan Yu Dhar, yang sudah setia menemani saya sejak sebelum saya
lahir hingga sekarang.
11. My best friends, Komang, Ocha, Titien, Ratna, Anin, Madya, Hartono, Essy,
Hani, Tata, Silih, Nia, Jule, Bodonx, Phian and Pharmacy 2003 fellows for your
support, time, laughter, hatred and every lesson we have learned to grow together.
12. Every single person that I have met, who has supported me so much so that I can
compile this thesis, who I never met but has given an obvious lesson during my
study, who I cannot mention his or her name here and now.
ix
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
Penulis menyadari, skripsi ini jauh dari sempurna, untuk itu penulis membuka
diri untuk menerima kritik dan saran demi kesempurnaan skripsi ini.
Akhirnya, penulis berharap hasil peneltitan ini dapat bermanfaat dan
memberikan sumbangan bagi perkembangan ilmu dan pengetahuan.
Yogyakarta, 15 Agustus 2007
Penyusun
Anita Devi Ariesnawati
x
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
DAFTAR ISI
Halaman
HALAMAN JUDUL ............................................................................................
i
HALAMAN PERSETUJUAN PEMBIMBING ..................................................
ii
HALAMAN PENGESAHAN ..............................................................................
iii
HALAMAN MOTTO DAN PERSEMBAHAN ..................................................
iv
PERNYATAAN KEASLIAN KARYA ...............................................................
v
INTISARI .............................................................................................................
vi
ABSTRACT .........................................................................................................
vii
KATA PENGANTAR .........................................................................................
viii
DAFTAR ISI ......................................................................................................... xi
DAFTAR TABEL ................................................................................................. xv
DAFTAR GAMBAR ...........................................................................................
xvii
DAFTAR LAMPIRAN......................................................................................... xviii
BAB I. PENDAHULUAN ...................................................................................
1
A. Latar Belakang .........................................................................................
1
B. Permasalahan ...........................................................................................
3
C. Keaslian Penelitian ...................................................................................
3
D. Manfaat Penelitian ...................................................................................
3
E. Tujuan Penelitian .....................................................................................
4
xi
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
BAB II. PENELAAHAN PUSTAKA ..................................................................
5
A. Tanaman Pegagan Embun (Hydrocotyle sibthorpioides Lmk.) ...............
5
1. Keterangan Botani ..............................................................................
5
2. Nama Lokal ........................................................................................
5
3. Morfologi Tanaman ...........................................................................
5
4. Penyebaran .........................................................................................
6
5. Kegunaan ...........................................................................................
6
B. Flavonoida ................................................................................................
7
C. Penyarian ..................................................................................................
9
1. Cairan Penyari ....................................................................................
9
2. Ekstraksi .............................................................................................
9
D. Kromatografi Kolom Vakum ……………………………………………
11
E. Kromatografi Lapis Tipis .........................................................................
12
F. Kromatografi Lapis Tipis Preparatif ........................................................
13
G. Identifikasi Flavonoida ............................................................................
13
1. Reaksi Warna .....................................................................................
13
2. Kromatografi Lapis Tipis……………………………………………
14
3. Spektroskopi Ultraviolet ....................................................................
15
H. Keterangan Empiris ..................................................................................
24
xii
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
BAB III. METODOLOGI PENELITIAN ...........................................................
25
A. Jenis dan Rancangan Penelitian ...............................................................
25
B. Definisi Operasional ................................................................................
25
C. Bahan Penelitian .......................................................................................
25
D. Alat Penelitian ..........................................................................................
26
E. Jalannya Penelitian ...................................................................................
26
F. Tata Cara Analisis Hasil ...........................................................................
32
BAB IV. HASIL PENELITIAN DAN PEMBAHASAN ....................................
33
A. Determinasi Tanaman ..............................................................................
33
B. Ekstraksi Herba Pegagan Embun .............................................................
33
C. Isolasi dengan Kromatografi Kolom Vakum ...........................................
34
D. Isolasi Flavonoida dengan Kromatografi Lapis Tipis ..............................
35
E. Isolasi Flavonoida dengan Kromatografi Lapis Tipis Preparatif .............
37
F. Pemeriksaan Kemurnian Isolat Flavonoida .............................................
38
G. Identifikasi Flavonoida dengan Reaksi Warna ........................................
42
H. Identifikasi Spektrum Isolat Flavonoida dengan Spektroskopi
Ultraviolet ................................................................................................
43
BAB V. KESIMPULAN DAN SARAN ..............................................................
56
A. Kesimpulan ..............................................................................................
56
B. Saran .........................................................................................................
56
xiii
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
DAFTAR PUSTAKA ..........................................................................................
57
LAMPIRAN .........................................................................................................
59
xiv
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
DAFTAR TABEL
I.
Penafsiran bercak dari segi struktur flavonoida .............................................
14
II.
Reaksi warna beberapa golongan flavonoida ................................................
15
III. Rentangan serapan spektrum UV pada flavonoida.................................................... 18
IV. Penafsiran spektrum ultraviolet flavonoida dengan penambahan NaOH......
21
V.
22
Penafsiran spektrum ultraviolet flavonoida dengan penambahan NaOAc....
VI. Penafsiran spektrum ultraviolet flavonoida dengan penambahan
NaOAc dan H3BO3 .......................................................................................
22
VII. Penafsiran spektrum ultraviolet flavonoida dengan penambahan AlCl3 serta
AlCl3 dan HCl ...............................................................................................
23
VIII.Data kromatogram dari bercak fraksi herba pegagan embun menggunakan fase
diam selulosa dan fase gerak BAW (4:1:5 v/v, fase atas) deteksi dengan sinar
UV 365 nm sebelum dan sesudah diuapi amonia ..........................................
37
IX. Reaksi warna isolat flavonoida herba pegagan embun ..................................
42
X.
Data spektrum dan pergeseran yang terjadi setelah diberi pereaksi – pereaksi
kimia ..............................................................................................................
44
XI. Perbandingan data spektrum isolat flavonoida dengan hiperin dalamn MeOH
dan NaOMe..................................................................................................... 46
XII. Perbandingan data spektrum isolat flavonoida dengan hiperin dalamn MeOH
dan AlCl3/ HCl................................................................................................ 50
xv
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
XIII.Perbandingan data spektrum isolat flavonoida dengan hiperin dalamn MeOH
dan NaOAc/ H3BO3........................................................................................ 54
xvi
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
DAFTAR GAMBAR
1. Struktur hiperin ………………………………………………………………
6
2. Tata cara penomoran flavonoida …………………………………………….
7
3. Penggolongan umum flavonoida …………………………………………….
8
4. Kerangka dasar flavonoida ..............................................................................
17
5. Reaksi antara Flavon dengan amonia ..............................................................
36
6. Kromatogram isolasi flavonoida dengan KLTP .............................................. 39
7. Kromatogram pemeriksaan kemurnian isolat flavonoida ................................
40
8. Kromatogram pemeriksaan kemurnian isolat flavonoida ................................
41
9. Spektrum UV isolat flavonoida dalam MeOH dan NaOH ................................
45
10. Spektrum UV hiperin dalam MeOH dan NaOMe ..........................................
46
11. Reaksi antara Flavon dengan NaOH ................................................................ 47
12. Spektrum UV isolat flavonoida dalam MeOH dan AlCl3 ............................... 48
13. Spektrum UV isolat flavonoida dalam AlCl3 dan HCl .................................... 49
14. Spektrum UV hiperin dalam MeOH dan AlCl3/HCl ....................................... 50
15. Reaksi antara Flavon dengan AlCl3/HCl ......................................................... 51
16. Spektrum UV isolat flavonoida dalam MeOH dan NaOAc ..........................
52
17. Reaksi antara Flavon dengan NaOAc .............................................................
52
18. Spektrum UV isolat flavonoida dalam MeOH dan NaOAc/ H3BO3 .............
53
19. Spektrum UV hiperin dalam MeOH dan NaOAc/ H3BO3 .............................. 54
20. Reaksi antara Flavon dengan NaOAc/ H3BO3 ................................................
xvii
55
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
DAFTAR LAMPIRAN
Lampiran 1. Determinasi tanaman pegagan embun
(Hydrocotyle sibthorpioides Lmk.) ..................................................
60
Lampiran 2. Kromatogram pemeriksaan kandungan flavonoida dengan kromatografi
lapis tipis........................................................................................... 61
Lampiran 3. Alat kromatografi kolom vakum ...................................................... 62
Lampiran 4. Pegagan Embun (Hydrocotyle sibthorpioides Lmk.) ....................... 63
Lampiran 5. Reaksi warna isolat flavonoida herba pegagan embun..................... 64
xviii
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
BAB I
PENDAHULUAN
A. Latar belakang
Indonesia yang kaya dengan berbagai macam sumber alam telah
memanfaatkan tumbuh-tumbuhan sebagai bahan obat tradisional secara turuntemurun. Akan tetapi hanya sedikit tumbuhan yang berkhasiat sebagai bahan obat
tersebut yang telah diteliti kandungan kimia dan efek farmakologinya. Oleh
karena itu perlu dilakukan penelitian tentang zat aktif yang terkandung dalam
tumbuhan tersebut, untuk selanjutnya tumbuhan yang semula digunakan sebagai
obat tradisional dapat digunakan dalam bentuk sediaan obat modern. Tumbuhan
tersebut salah satunya adalah pegagan embun (Hydrocotyle sibthorpioides Lmk.)
yang belum banyak dikenal masyarakat.
Pegagan embun tumbuh merayap, ramping, subur di tempat lembab,
terbuka maupun teduh di pinggir jalan, pinggir selokan, lapangan rumput dan
tempat lain sampai setinggi kira-kira 2.500 m dari permukaan laut (Anonim,
2005).
Pegagan embun dapat dimanfaatkan untuk mengobati sakit kuning
(hepatitis), batu empedu, kencing batu, infeksi saluran kencing, batuk, sesak
nafas, sariawan, radang tenggorokan, amandel, dan infeksi telinga tengah
(Anonim, 2005). Kandungan kimia yang diketahui terdapat dalam pegagan
embun, antara lain minyak atsiri, kumarin, hiperin (Anonim, 2005). Hiperin
(kuersetin 3-O-galaktosida) merupakan salah satu senyawa flavonoida yang
1
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
2
disebutkan sebagai salah satu kandungan kimia yang terdapat dalam pegagan
embun. Pada umumnya suatu tanaman yang memiliki kandungan flavonoida
memiliki
lebih
dari
satu
jenis
senyawa
flavonoida
(Markham,1988).
Dimungkinkan masih terdapat kandungan senyawa flavonoida lain yang ada
dalam pegagan embun selain hiperin.
Flavonoida merupakan salah satu kandungan zat aktif yang banyak
terkandung dalam tumbuh-tumbuhan dan mempunyai berbagai macam aktivitas
biologis. Senyawa flavonoida berkhasiat sebagai anti radang, bersifat bakterisid,
anti jamur, dan anti histamin (Harborne, 1984). Kandungan flavonoida di dalam
herba pegagan embun dimungkinkan berperan penting dalam pengobatan
beberapa penyakit yang telah disebutkan di atas. Oleh karena itu perlu dilakukan
upaya untuk mengisolasi dan mengidentifikasi kandungan flavonoida yang ada
dalam suatu tumbuhan.
Penelitian ini dilakukan untuk mengisolasi dan mengidentifikasi
flavonoida lain dalam herba pegagan embun. Metode fraksinasi yang digunakan
adalah kromatografi kolom vakum karena dapat memisahkan suatu senyawa
dengan cepat. Hasil dari penelitian ini diharapkan dapat memberi informasi
tentang kandungan aktif senyawa obat alami.
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
3
B. Permasalahan
Permasalahan yang ada dalam penelitian ini adalah :
1. Golongan flavonoida apa yang terdapat dalam herba pegagan embun selain
hiperin ?
2. Bagaimana prakiraan struktur parsialnya ?
C. Keaslian Penelitian
Sejauh pengetahuan peneliti yang berdasar pada penelusuran terhadap
beberapa sumber, telah dilakukan penelitian mengenai kandungan flavonoida
dalam pegagan embun. Hasil penelitian mengenai kandungan flavonoida
sebelumnya menyatakan bahwa hiperin terdapat dalam pegagan embun (Anonim,
2005). Penelitian ini berusaha untuk mengisolasi dan mengetahui golongan
flavonoida lain yang terkandung dalam herba pegagan embun.
D. Manfaat Penelitian
Penelitian yang dilakukan terhadap ekstrak metanol-air herba pegagan
embun diharapkan dapat memberikan manfaat sebagai berikut :
1. Secara praktis
Untuk memberikan informasi dalam bidang ilmu kefarmasian khususnya dalam
bidang farmakognosi tentang golongan flavonoida yang terkandung dalam herba
pegagan embun.
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
4
2. Secara teoritis
Diharapkan dapat memberikan sumbangan ilmiah terhadap eksplorasi
kandungan aktif senyawa obat alami .
E. Tujuan Penelitian
Penelitian ini bertujuan untuk mengetahui golongan flavonoida yang
terkandung dalam herba pegagan embun selain hiperin dan melakukan prakiraan
struktur parsialnya.
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
BAB II
PENELAAHAN PUSTAKA
A. Tanaman Pegagan Embun
1. Keterangan botani
Pegagan embun (Hydrocotyle sibthorpioides Lmk.) merupakan
salah satu anggota familia Umbelliferae (Apiaceae). Pegagan embun mempunyai
sinonim H.rotundifolia Roxb.,dan H.formosana Masamune (Anonim, 2005).
2. Nama lokal :
Pegagan embun, antanan beurit, antanan lembut (Sunda) ; andem,
katepa’n, rending, semanggi (jawa), salatun ; take cena (Madura), tikim,
patikim ; tian hu sui (China) (Anonim,2005).
3. Morfologi tanaman
Pegagan embun tumbuh merayap, ramping, subur di tempat
lembab, terbuka maupun teduh di pinggir jalan, pinggir selokan, lapangan
rumput dan tempat lain sampai setinggi kira-kira 2.500 m dari permukaan laut
(Anonim, 2005).
Tumbuhan
pegagan embun mempunyai batang lunak dan
bercabang-cabang. Daunnya majemuk menjari tiga yang anak daunnya
berbentuk jantung dengan warna hijau muda. Bunga keluar dari ketiak daun,
berwarna kuning berbentuk payung kecil-kecil. Buah berupa kotak lonjong,
tegak, bagian ujungnya seperti paruh, bila sudah masak berwarna coklat
merah yang pecah bila disentuh (Anonim, 2004).
5
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
6
4. Penyebaran
Tanaman pegagan embun tumbuh liar pada tempat-tempat yang
lembab, terbuka maupun yang teduh di sisi jalan atau lapangan rumput. Di
pulau Jawa tumbuhan ini terdapat dari pantai sampai pegunungan dengan
ketinggian 3.000 meter diatas permukaan laut (Anonim, 2004)
5. Kegunaan
Pegagan embun dapat digunakan untuk mengobati sakit kuning
(hepatitis), batu empedu, batu dan infeksi saluran kencing, batuk dan sesak
nafas, sariawan, radang tenggorokan, amandel, infeksi telinga tengah
(Anonim, 2005).
Kandungan kimia yang diketahui terdapat dalam pegagan embun, antara
lain minyak atsiri, kumarin, hiperin (Anonim, 2005). Hiperin mempunyai nama
lain kuersetin 3-O-galaktosida (Gambar 1) (Anonim,2007).
OH
OH
HO
O
O
galaktosa
OH
O
Gambar 1. Struktur hiperin
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
7
B. Flavonoida
Flavonoida adalah golongan senyawa alam yang strukturnya terdiri dari 2
cincin aromatik yang dihubungkan oleh tiga atom karbon membentuk rangka
dengan sistem C6-C3-C6; masing-masing C6 merupakan cincin benzene. Untuk
memudahkan dalam penomoran cincin diberi tanda A, B dan C, serta angka
“beraksen” untuk cincin B (Gambar 2) (Markham, 1988).
3'
2'
4'
B
8
O
A
C
1'
2
7
5'
6'
3
6
4
5
O
Gambar 2. Tata cara penomoran flavonoida (Markham,1988)
Flavonoida adalah senyawa fenol alam yang terdapat dalam hampir semua
tumbuhan dari bangsa algae hingga Gimnospermae. Di dalam tumbuhan,
flavonoida biasanya berikatan dengan gula sebagai glikosida. Molekul yang
berikatan dengan gula disebut aglikon. Di alam dikenal hampir lebih dari 500
aglikon dan kurang lebih 200 flavonoida (Mursyidi, 1990).
Flavonoida
merupakan
kandungan
khas
tumbuhan
hijau
dengan
mengecualikan alga dan hornwort. Flavonoida sebenarnya terdapat pada semua
bagian tumbuhan termasuk daun, akar, kayu, kulit, tepung sari, nektar, bunga,
buah buni, dan biji (Markham, 1988).
Perbedaan penggolongan di dalam kelompok flavonoida dibedakan
dengan penambahan rantai oksigen heterosiklik dan gugus hidroksil. Senyawa
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
8
flavonoida meliputi katekin, leukoantosianidin, flavanon, flavanonol, flavon,
antosianidin, flavonol, khalkon, auron, dan isoflavon (Gambar 3) (Kaufman dkk,
1999).
O
O
OH
OH
Katekin
OH
Leukoantosianidin
O
O
OH
O
O
Flavanon
Flavanonol
O
OH
O
O
Flavonol
Khalkon
O
O
O
O
Auron
Isoflavon
Gambar 3. Penggolongan umum flavonoida (Kaufman dkk, 1999)
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
9
Flavonoida mempunyai aktivitas estrogenik, diuretik, hipotensif, anti
histamin, bersifat bakterisida dan anti jamur. Flavonoida juga dapat berkhasiat
sebagai anti radang, zat ini terutama berguna dalam menjaga kesehatan (Harborne,
1984). Flavonoida sering merupakan pereduksi yang baik, menghambat
banyaknya reaksi oksidasi, baik secara enzim maupun nonenzim. Flavonoida
tertentu mempunyai aktivitas anti oksidan yang digunakan secara tradisional
mengobati penyakit hati (Robinson, 1995).
C.Penyarian
1. Cairan penyari
Pemilihan cairan penyari harus mempertimbangkan banyak faktor antara
lain: mudah atau murah diperoleh, mudah menguap, tidak mudah terbakar,
selektif yaitu hanya mengekstraksi zat yang berkhasiat yang diinginkan, dan
tidak mempengaruhi zat berkhasiat, bereaksi netral, stabil secara fisika dan
kimia (Anonim,1986).
2. Ekstraksi
Cara penyarian dapat dibedakan menjadi infundasi, maserasi, perkolasi
dan penyarian berkesinambungan (Anonim,1986).
a.Infundasi
Infus adalah sediaan cair yang dibuat dengan menyari simplisia dengan
air pada suhu 90ْ C selama 15 menit. Infundasi adalah proses penyarian yang
umumnya digunakan untuk menyari zat kandungan aktif yang larut dalam air
dari bahan-bahan nabati. Penyarian dengan cara ini menghasilkan sari yang
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
10
tidak stabil dan mudah tercemar oleh kuman dan kapang. Oleh sebab itu sari
yang diperoleh dengan cara ini tidak boleh disimpan lebih dari 24 jam.
b. Maserasi
Maserasi merupakan cara penyarian yang sederhana. Maserasi dilakukan
dengan cara merendam serbuk simplisia dalam cairan penyari. Cairan penyari
akan menembus dinding sel dan masuk ke dalam rongga sel yang
mengandung zat aktif, zat aktif akan larut dan karena adanya perbedaan
konsentrasi antara larutan zat aktif di dalam sel dengan yang di luar sel, maka
larutan yang terpekat didesak ke luar. Peristiwa tersebut berulang sehingga
terjadi keseimbangan konsentrasi antara larutan diluar sel dan di dalam sel.
c. Perkolasi
Perkolasi adalah cara penyarian yang dilakukan dengan mengalirkan
cairan penyari melalui serbuk simplisia yang telah dibasahi. Prinsip perkolasi
adalah serbuk simplisia ditempatkan dalam suatu bejana silinder, yang bagian
bawahnya diberi sekat berpori. Cairan penyari dialirkan dari atas ke bawah
melalui serbuk tersebut, cairan penyari akan melarutkan zat aktif sel-sel yang
dilalui sampai mencapai keadaan jenuh.
d. Penyarian berkesinambungan
Penyarian berkesinambungan memiliki prinsip menghasilkan ekstrak cair
yang kemudian dilanjutkan dengan proses penguapan cairan penyari. Cairan
penyari diisikan pada labu, serbuk simplisia diisikan pada tabung dari kertas
saring atau tabung yang berlubang-lubang dari gelas, baja tahan karat atau
bahan lain yang cocok. Cairan penyari dipanaskan hingga mendidih, uap
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
11
penyari akan mengembun karena didinginkan oleh pendingin balik kemudian
embun turun melalui serbuk simplisia sambil melarutkan zat aktifnya dan
kembali ke labu. Cairan akan menguap kembali berulang proses seperti diatas.
D. Kromatografi Kolom Vakum
Isolasi flavonoida dapat ditingkatkan hampir ke skala industri dengan
menggunakan kromatografi kolom. Pada dasarnya, cara ini meliputi penempatan
campuran flavonoida (berupa larutan) di atas kolom yang berisi serbuk penjerap
(seperti selulosa, silika, poliamida), dilanjutkan dengan elusi beruntun setiap
komponen memakai pelarut yang cocok (Markham, 1988).
Kromatografi kolom vakum merupakan metode yang sederhana dan
memerlukan waktu yang relatif singkat untuk melakukan pemisahan. Metode ini
dapat digunakan untuk pemisahan campuran baik dalam jumlah sedikit maupun
banyak. Pemilihan sistem pelarut yang tepat didapat dengan percobaan analisis
kromatografi lapis tipis. Metode kromatografi kolom vakum menggunakan sebuah
perlengkapan yang sederhana dan murah yang dapat diterapkan pada laboratorium
manapun (Pelletier et al, 1986).
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
12
E. Kromatografi Lapis Tipis (KLT)
KLT merupakan metode pemisahan komponen-komponen atas dasar
perbedaan adsorpsi atau partisi oleh fase diam di bawah gerakan pelarut
pengembang
atau
pelarut
pengembangan
campur.
Pemilihan
pengembangan atau pelarut pengembangan campur sangat dipengaruhi
pelarut
oleh
macam dan polaritas zat-zat kimia yang dipisahkan (Mulja, 1995).
Keserbagunaan KLT disebabkan oleh kenyataan bahwa di samping
selulosa, sejumlah penjerap yang berbeda-beda dapat disaputkan pada pelat kaca
atau penyangga lain dan digunakan untuk kromatografi. Kecepatan KLT yang
lebih besar disebabkan oleh sifat penjerap yang lebih padat bila disaputkan pada
pelat dan merupakan keuntungan bila kita menelaah senyawa labil. Akhirnya,
kepekaan KLT sedemikian rupa sehingga bila diperlukan dapat dipisahkan bahan
yang jumlahnya lebih sedikit dari ukuran μg (Harborne, 1987).
Bilangan Rf adalah jarak yang ditempuh senyawa pada kromatografi, nisbi
terhadap garis depan. Bilangan Rf diperoleh dengan mengukur jarak antara titik
awal dan pusat bercak yang dihasilkan senyawa, dan jarak ini kemudian dibagi
dengan jarak antara titik awal dan garis depan (yaitu jarak yang ditempuh cairan
pengembang). Bilangan ini selalu berupa pecahan dan terletak antara 0,01 dan
0,99 (Harborne, 1987).
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
13
F. Kromatografi Lapis Tipis (KLT) Preparatif
KLT Preparatif dilakukan dengan menggunakan lapisan tebal (sampai 1
mm) sebagai pengganti lapisan penjerap yang tipis (0,10-0,25 mm). Pelat
preparatif yang dibuat oleh pabrik dapat dibeli. Kandungan yang sudah dipisah
dapat diperoleh kembali dengan cara mengerok penjerap di tempat yang sesuai
pada pelat yang telah dikembangkan, lalu serbuk dielusi dengan pelarut seperti
eter, dan akhirnya dipusingkan untuk menghilangkan penjerap (Harborne, 1987).
G. Identifikasi Flavonoida
1. Reaksi Warna
Flavonoida dapat dideteksi dengan amoniak, jika tidak bercampur dengan
pigmen lain. Reaksi ini memberikan warna spesifik untuk masing-masing
golongan. Flavon, flavonol dan xantin memberikan warna kuning kemerahan,
antosianin menunjukkan warna biru, flavonol berwarna orange sampai coklat,
warna merah dan lembayung akan timbul mendadak pada suasana asam
disebabkan adanya khalkon dan auron (Robinson, 1995).
Penelitian fitokimia lazimnya diawali dengan pengujian kimiawi tertentu,
seperti larutan natrium hidroksida, asam sulfat pekat, besi (III) klorida, logam
magnesium, asam klorida (Venkataraman, 1962; Harborne,1984).
Uji warna selanjutnya didukung analisis spektroskopi ultraviolet,
inframerah, spektroskopi inti dan massa (Mabry dkk,1970; Markham,1988;
Harborne, 1984). Uji warna flavonoida (Tabel II) (Venkataraman, 1962).
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
14
2. Kromatografi Lapis Tipis
Identifikasi flavonoida dengan kromatografi lapis tipis dilakukan dengan
mengamati warna bercak sebelum dan sesudah diuapi amonia dengan
dibandingkan dengan pustaka (Tabel I) (Markham,1998).
Tabel I. Penafsiran bercak dari segi struktur flavonoida (Markham, 1988)
Warna bercak dengan UV 366 nm
Jenis flavonoida yang mungkin
tanpa NH3
dengan NH3
Lembayung gelap Kuning, hijau-kuning a. Biasanya 5-OH flavon atau flavonol (tersulih pada
atau hijau
3-O dan mempunyai 4’-OH)
b. Kadang-kadang 5-OH flavanon dan 4’-OH khalkon
tanpa OH pada cincin B
Perubahan
warna a. Biasanya flavon atau flavonol tersulih pada 3-O
sedikit atau tanpa mempunyai 5-OH tetapi tanpa 4’-OH bebas
perubahan warna
b. Beberapa 6- atau 8-OH flavon dan flavonol tersulih
pada 3-O serta mengandung 5-OH
c. Isoflavon, dihidroflavon, biflavonil dan beberapa
flavanon yang mengandung 5-OH
d. Khalkon yang mengandung 2- atau 4-OH bebas
Biru muda
Beberapa 5-OH flavanon
Merah atau jingga
Khalkon yang mengandung 2- dan/atau 4-OH bebas
Fluoresensi biru Fluoresensi
hijau- a. Flavon dan Flavanon yang tidak mengandung 5muda
kuning atau hijau-biru
OH, misalnya 5-OH-glikosida
b. Flavanol tanpa 5-OH bebas tetapi tersulih pada 3OH
Perubahan
warna Isoflavon yang tidak mengandung 5-OH
sedikit atau tanpa
perubahan
Fluoresensi
murup Isoflavon yang tak mengandung 5-OH bebas
biru muda
Tak tampak
Fluoresensi biru muda Isoflavon tanpa 5-OH bebas
Kuning
redup
dan kuning, atau
fluoresensi jingga
Perubahan
sedikit atau
perubahan
Fluoresensi
kuning
Hijau-kuning,
hijau-biru, atau
hijau
Jingga atau merah
Merah
jingga
redup atau merah
senduduk
Merah
jambu
atau fluoresensi
kuning
Biru
Auron yang mengandung 4’-OH bebas dan beberapa
2- atau 4-OH bebas
warna a. Auron yang tak mengandung 4’-OH bebas dan
tanpa
flavanon tanpa 5-OH bebas
b. Flavanol yang mengandung 3-OH bebas dan
disertai atau tanpa 5-OH bebas
Antosianidin 3-glikosida
Biru
Sebagian besar antosianidin 3,5-diglikosida
Perubahan
sedikit atau
perubahan
warna
tanpa
Flavonol yang mengandung 3-OH bebas dan
mempunyai atau tak mempunyai 5-OH bebas
(kadang-kadang dari dihidroflavonol)
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
15
Tabel II. Reaksi warna beberapa golongan flavonoida (Venkataraman, 1962)
Tipe flavonoida
Reaksi warna
H2SO4 pekat
Khalkon
Jingga, merah
Dihidrokhalkon
Agak kuning
Logam Mg dan
HCl
Jingga, merah, atau Tidak berwarna
magenta
Tidak berwarna
Agak kuning
Auron
Merah-ungu
Merah-magenta
Flavanon
Jingga
Kuning-jingga,
jika dingin merah,
dipanaskan ungu
Flavon
Kuning
Flavonol
Kuning-jingga
Kuning-jingga,
bila
teroksidasi dengan fluoresensi
coklat
Merah-magenta
Flavanonol
Kuning
cepat Agak merah-kuning
menjadi coklat
Merah-magenta
Leukoantosianin
Kuning
Merah tua
Merah muda
Antosianidin
dan antosianin
Biru-violet
Kuning-jingga
Merah-merah
muda
Katekin
Kuning berubah Merah
merah/coklat
Isoflavon
Kuning
Kuning
Kuning
Isoflavanon
Kuning
Kuning
Tidak berwarna
NaOH
Kuning-jingga
Tidak berwarna
Merah-magenta,
violet, biru
Kuning, merah
Tidak berwarna
3. Spektroskopi Ultraviolet
Dasar metode ini adalah interaksi antara radiasi elektromagnetik dengan
atom, molekul atau ion, di daerah ultraviolet dan daerah sinar tampak. Energi
yang diserap menyebabkan elektron tereksitasi dari orbital tingkat dasar ke
orbitel yang berenergi tinggi (Sastroamijoyo,1985; Silverstein, 1986).
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
16
Beberapa istilah dalam spektroskopi ultraviolet (Sastrohamidjojo, 2001):
a. Kromofor
Suatu gugus tak jenuh kovalen yang dapat menyerap radiasi dalam daerahdaerah ultraviolet dan terlihat. Contoh: C=C, C=O.
b. Auksokrom
Suatu gugus jenuh yang bila terikat pada kromofor mengubah panjang
gelombang dan intensitas serapan maksimum. Ciri auksokrom adalah
heteroatom yang langsung terikat pada kromofor, misal: -OCH3, -Cl, -OH
dan NH2.
c. Pergeseran batokromik (pergeseran merah)
Pergeseran serapan kearah panjang gelombang yang lebih panjang
disebabkan substitusi atau pengaruh pelarut.
d. Pergeseran hipsokromik (pergeseran biru)
Pergeseran serapan kearah panjang gelombang yang lebih pendek
disebabkan substitusi atau pengaruh pelarut.
e. Efek hiperkromik
Kenaikan dalam intensitas serapan.
f. Efek hipokromik
Penurunan dalam intensitas serapan.
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
17
Struktur flavonoida terdiri dari dua cincin aromatik dan ikatan rangkap
terkonjugasi, sehingga dapat menunjukkan pita serapan pada spektrum
ultraviolet dan serapan sinar tampak (Gambar 4). Flavonoida merupakan
senyawa yang mempunyai struktur sebagian besar dengan pola flavon (Mabry
dkk, 1970).
3'
2'
8
7
A
O
B
5'
6'
C
6
3
5
Sistem konjugasi
2
1'
4'
4
O
Benzoil
Sistem konjugasi
Cinnamoyl
Gambar 4. Kerangka dasar flavonoida (Mabry dkk, 1970)
Energi ultraviolet dapat diukur karena spektrum serapan timbul dari
transisi elektronik tunggal mengandung garis yang tunggal dan terputus-putus.
Garis ini tidak akan terlihat jika serapan elektronik berhimpit pada sub tingkat
putaran dan getaran. Spektrum molekul sederhana mengandung puncak serapan
yang sempit menggambarkan suatu transisi dari kombinasi tertentu dari tingkat
dasar elektronik dengan yang sesuai di dalam tingkat tereksitasi. Kekhasan dari
pita serapan adalah letak dan intensitasnya.
Pola spekrum flavonoida biasanya memberikan dua puncak pada rentang λ
240 – 285 nm (puncak I) dan λ 300 – 350 nm (puncak II). Panjang gelombang
dan besarnya absorbsi akan memberikan informasi yang berharga mengenai
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
18
sifat dan pola oksigenasi flavonoida. Ciri khas spektrum tersebut memberikan
puncak relatif rendah pada pita I untuk golongan: hidroflavon, dihidroflavonol,
dan isoflavon dengan kedudukan pita I dalam spektrum: khalkon, auron, dan
antosianin terdapat pada panjang gelombang yang relatif tinggi. Ciri ini tidak
berubah meskipun pada oksigenasi berubah. Petunjuk mengenai letak puncak
maksimum (Tabel III) (Markham, 1988).
Tabel III. Rentangan serapan spektrum UV pada flavonoida (Markham, 1988)
Pita II (nm)
250-280
250-280
250-280
245-275
275-295
230-270
(kekuatan lemah)
230-270
(kekuatan kuat)
270-280
Pita I (nm)
310-350
330-360
350-385
310-330
320-329
300-330
340-390
Jenis Flavonoida
Flavon
Flavonol (3-OH tersubstitusi)
Flavonol 3-OH bebas
Isoflavon
Isoflavon 5-deoksi-6,7 dioksigenasi
Flavanon dan dihidroflavonol
Khalkon
380-430
Auron
465-560
Antosianin, antosianidin
Flavon, isoflavon dan dihidroflavanol memberikan spektrum UV yang
mirip karena senyawa ini tidak mempunyai sistem konjugasi cinnamoil dengan
cincin B antara C-2 dan C-3.
Isoflavon memberikan spektrum UV dengan puncak II pada daerah λ 245
– 270 nm dan puncak I pada λ 310 – 330 nm. Flavon dan dihidroflavonol
memberikan puncak II pada λ 275 – 295 nm dan puncak I λ 310 – 330 nm
(Geissman, 1967; Harborne,1984; Markham, 1988).
Senyawa flavon dan flavonol dalam metanol memberikan spektrum UV
dengan puncak I λ 300 – 380 nm dan puncak II λ 240 – 280 nm penambahan
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
19
NaOMe pada senyawa menyebabkan gugus hidroksi pada inti aromatik akan
terionisasi dan mengakibatkan terjadinya pergeseran puncak I dan puncak II
menjadi pergeseran batokromik.
Efek yang timbul akibat penambahan pereaksi geser :
a. Efek hidroksilasi
Penambahan gugus OH dalam cincin A pada flavonol menghasilkan pergeseran
batokromik yang nyata pada pita puncak I dan efek puncak serapan II. Bila
gugus 5-OH tidak terdapat dalam flavonol dan flavon maka puncak tersebut
mempunyai panjang gelombang (λ) yang pendek dibanding gugus 5-OH pada
posisi 3,5,4’ yang mempunyai sedikit atau tidak sama sekali efek pada spektrum
UV.
b. Efek metilasi dan glikosilasi
Terjadi pada pola resapan flavon dan flavonol. Bila gugus 3,5 atau 4’-OH pada
flavon dan pergeseran hipsokromik pada puncak I, maka pergeseran itu terjadi
12-17 nm atau dapat pula mencapai 22 – 25 nm pada flavon yang tidak
mempunyai gugus 5-OH. Efek asetilasi bila gugus OH fenolik diasetilasi maka
efek dari gugus itu akan hilang.
c. Efek natrium metoksida
Penambahan basa menyebabkan pergeseran yang khas pada kebanyakan
flavonoidaa yaitu batokromik. Natrium-metoksida merupakan basa kuat yang
dapat mengionisasi gugus OH pada inti flavonoidaa. Penambahan Na-metoksida
pada flavon dan flavonol dalam metanol menyebabkan pergeseran batokromik
yang besar pada puncak serapan pergeseran tersebut 40 – 65 nm pada puncak I
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
20
tanpa penurunan intensitas menunjukkan gugus 4’-OH bebas. Flavonol
mengalami pergeseran batokromik 50 – 60 nm pada puncak I dengan penurunan
intensitas disebabkan oleh adanya 3-OH bebas. Flavonol mempunyai 5 dan 4’
OH bebas maka spektrumnya dengan Na-metoksida mengalami dekomposisi.
d. Efek natrium asetat
Merupakan basa lemah akan mengionisasi gugus yang keasamannya tinggi,
digunakan untuk mendeteksi adanya gugus 7-OH bebas. Flavon dan flavonol
dengan gugus 7-OH bebas menunjukkan pergeseran batokromik sebesar 5 – 20
nm pada puncak serapan II dengan natrium asetat. Adanya natrium asetat dan
asam borat akan membentuk kompleks dengan gugus ortohidroksi pada semua
posisi kecuali pada atom C-5 dan C-6 (Mabry dkk, 1970).
e. Efek alumunium klorida
Adanya alumunium klorida maka gugus OH pada C-3 dan C-5 flavon dan
flavonol akan membentuk kompleks yang stabil dengan penambahan asam.
Kompleks antara alumunium klorida dengan C4-keto dan atau 5-OH tetap stabil
dengan adanya asam. Adanya gugus ortohidroksi pada cincin B dapat diketahui
dengan penambahan AlCl3 menghasilkan pergeseran hipsokromik panjang
gelombang 20 -30 nm pada pita I (I.a terdiri dari dua puncak). Adanya
pergeseran batokromik pada I.a dalam AlCl3 dan HCl dibandingkan denga pita I
dalam metanol sebesar panjang gelombang 35 – 55, menunjukkan adanya 5-OH
flavon atau flavonol 3-OH tersubtitusi (Mabry dkk, 1970).
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
21
Tabel IV. Penafsiran spektrum ultraviolet flavonoida dengan penambahan
NaOH (Markham, 1988)
Jenis
Flavonoida
Flavon
Flavonol
Pergeseran tampak
Pita I
Pita II
Kekuatannya
menurun terus
Mantap ±45-65 nm
kekuatan
tidak
menurun
Mantap ±45-65 nm
kekuatan menurun
Pita baru (bandingkan dengan MeOH)
Isoflavon,
Tidak
ada
flavanon, dan
pergeseran
dihidroflavono
Kekuatan menurun
l
Auron
Khalkon
3’,4’OH,
o-diOH
pada cincin A dan
pada cincin B: 3OH
yang berdampingan
4’-OH
3-OH, tidak ada 4’OH bebas
7-OH
Tidak ada OH pada
cincin A
o-di OH pada cincin
A
(penurunan)
lambat;
O-diOH
pada cincin B)
dan
Bergeser dari ±280 Flavanon
nm ke ±325 nm, dihidroflavonol
dengan 5,7-OH, 7kekuatan
meningkat ke 330- OH tanpa 5-OH
bebas
340 nm
4’OH (auron) 6-OH
+
80-95
nm
tanpa
oksigenasi
(kekuatan meningkat)
pada 4’ (auron)
+60-70
(kekuatan
6-OH
dengan
naik) pergeseran kecil
oksigenasi pada 4’
(auron)
4’OH (auron)
+60-100nm
(kekuatan naik)
tanpa
kekuatan
kenaikan
+40-50 nm
Antosianidin
Antosian
Petunjuk penafsiran
Semuanya
terurai
kecuali
3deoksiantosianin
2-OH atau 4’OH
dan tanpa 4’OH
4’OH (2’OH atau
4’OH)
Nihil
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
22
Tabel V. Penafsiran spektrum ultraviolet flavonoida dengan penambahan
NaOAc (Markham, 1988)
Jenis
flavonoida
Flavon
Pergeseran yang tampak
Pita I
Pita II
+5-20
nm
(berkurang bila
Flavonol
ada
oksigenasi
pada 6/8)
Isoflavon
Kekuatannya berkurang dengan
bertambahnya waktu
Flavanon
+35 nm
Dihidroflavonol
+60 nm
Kekuatannya berkurang dengan
bertambahnya waktu
Pergeseran batokromik atau bahu
pada panjang gelombang yang
lebih panjang
Petunjuk
Flavonoidaa
7-OH
-OH di 6,7 atau 7,8
atau 3,4’
7-OH (dengan 5-OH)
7-OH (tanpa 5-OH)
-OH di 6,7 atau 7,8
4’-OH dan atau 4OH (khalkon) 4’-OH
dan atau tanpa 6-OH
(Auron)
Tabel VI. Penafsiran spektrum ultraviolet flavonoida dengan penambahan
NaOAc dan H3BO3 (Markham, 1988)
Jenis
flavonoida
Flavonol,
Auron,
Khalkon
Isoflavon,
Flavanon,
Dihidroflavonol
Pergeseran Tampak
Pita I
Pita II
+12-36 nm (nisbi
terhadap spektrum
metanol),
pergeseran lebih
kecil
Petunjuk
penafsiran
o- di OH pada
cincin B
o- di OH
cincin A
atau 7,8)
+10-15 nm (nisbi o- di OH
terhadap spektrum cincin A
metanol)
atau 7,8)
pada
(6,7
pada
(6,7
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
23
Tabel VII. Penafsiran spektrum ultraviolet flavonoida dengan penambahan
AlCl3 serta AlCl3 dan HCl (Markham, 1988)
Jenis flavonoida
(Pereaksi)
Flavanon
dan
flavonon (AlCl3 dan
HCl)
(AlCl3)
Isoflavon, flavanon,
dan dihidroflavonol
(AlCl3 dan HCl)
(AlCl3)
Auron, Khalkon
(AlCl3 dan HCl)
(AlCl3)
Antosianidin,
Antosianin (AlCl3)
Pergeseran yang tampak
Pita I
Pita II
+35 sampai 55
nm
+17 sampai 20
nm
Tak berubah
+ 50 sampai 60
nm
Pergeseran
AlCl3/HCl
tambah
30
sampai 40 nm
Pergeseran
AlCl3/HCl
tambah
20
sampai 25 nm
+10 sampai 14
nm
+20 sampai 26
nm
Pergeseran
AlCl3/HCl,
tambah
11
sampai 30 nm
Pergeseran
AlCl3/HCl
tambah
30
sampai 38 nm
+48 sampai 64
nm
+40 nm
+60 sampai 70
nm
Pergeseran
AlCl3/HCl
tambah
40
sampai 70 nm
Penambahan
lebih kecil
+25 sampai 35
nm (Pada pH 24)
Pergeseran lebih
besar
Petunjuk penafsiran
5- OH
5-OH dengan oksigenasi pada
6
Mungkin 5-OH dengan gugus
prenil pada 6
Mungkin 3-OH (dengan atau
tanpa 5-OH)
o-diOH pada cincin B
o-di OH pada cincin A
(Tambahan pada pergeseran odi OH pada cincin B)
5-OH (Isoflavon)
5-OH
(Flavanon,
dihidroflavonol)
o-diOH pada cincin A (6,7 dan
7,8)
Dihidroflavonol tanpa 5-OH
(tambahan pada sembarang
pergeseran o-di OH)
2’-OH (khalkon)
2’-OH
(Khalkon
oksigenasi pada 3’
4-OH (Auron)
dengan
o- diOH pada cincin B
Mungkin o-diOH pada cincin
A
o-diOH
Banyak o-diOH atau o-diOH
(3-deoksi antosianidin)
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
24
H. Keterangan Empiris
Dari ekstrak metanol herba pegagan embun dapat diidentifikasi jenis
flavonoida dan gambaran struktur parsial flavonoida tersebut.
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
BAB III
METODOLOGI PENELITIAN
A. Jenis dan Rancangan Penelitian
Penelitian ini merupakan penelitian non eksperimental yang dilakukan di
laboratorium Farmakognosi Fitokimia, Universitas Sanata Dharma, Yogyakarta.
B. Definisi Operasional
1. Herba pegagan embun adalah seluruh bagian tanaman pegagan embun yang
berada di atas tanah.
2. Ekstrak metanol-air adalah ekstrak yang diperoleh dari penyarian herba
pegagan embun secara maserasi dengan metanol-air (9:1 dan 1:1).
3. Struktur parsial merupakan kerangka dasar dari segi struktur senyawa dengan
gugus-gugus tersubstitusi pada bagian struktur tersebut.
C. Bahan Penelitian
Bahan-bahan kimia yang digunakan adalah bahan kimia yang berderajat pro
analisis (p.a), kecuali dinyatakan lain.
1. Bahan tanaman : herba segar dari pegagan embun (yang telah dikeringkan dan
diserbuk).
25
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
26
2. Bahan kimia untuk penyari : bahan yang digunakan adalah metanol dan
aquadest (lokal).
3. Bahan untuk kromatografi : kromatografi lapis tipis (KLT) dengan fase diam
selulosa, n-butanol, aquadest (lokal), asam asetat, amonia pekat.
4. Bahan pereaksi identifikasi warna flavonoida : serbuk Mg, asam klorida pekat,
asam sulfat pekat, natrium hidroksida (NaOH).
5. Pereaksi diagnostik untuk penentuan struktur flavonoida secara spektroskopi
ultraviolet : natrium hidroksida (NaOH), alumunium klorida (AlCl3), natrium
asetat (CH3COONa), asam borat (H3BO3).
D. Alat Penelitian
1. Alat pengeringan, penyerbukan dan penyarian : oven, blender, ayakan, kertas
saring, alat-alat gelas (pipet tetes, gelas ukur, Beaker glass, corong, pengaduk).
2. Alat kromatografi dan spektroskopi Ultraviolet : seperangkat alat spektroskopi
UV-Vis (Genesys 6), vakum, pipa kapiler, lampu 365 nm, seperangkat alat
kromatografi kolom, alat-alat gelas (corong pisah, Beaker glass, gelas ukur,
pipet), kertas saring.
E. Jalannya Penelitian
1. Determinasi tanaman pegagan embun
Determinasi dilakukan terhadap tanaman pegagan embun di
laboratorium Farmakognosi Fitokimia menurut Backer dan Backhuizen van de
Brink (1963).
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
27
2. Pengumpulan bahan
Herba segar dari pegagan embun dikumpulkan pada bulan januari
2006 pada musim penghujan dari daerah Paingan, Yogyakarta. Pencucian
dilakukan terlebih dahulu untuk menghilangkan kotoran yang menempel seperti
debu dan serangga. Bagian herba juga dipisahkan dari bagian tanaman lain yang
terikut saat pengumpulan.
3. Pengeringan herba pegagan embun
Herba pegagan embun dikeringkan tanpa dirajang terlebih dahulu
karena herba yang tipis.Pengeringan dilakukan dalam oven pada suhu 40ºC
selama 5 jam. Dikatakan kering jika herba pegagan embun sudah dapat hancur
ketika diremas dengan tangan.
4. Penyerbukan herba pegagan embun
Herba pegagan embun yang telah dikeringkan kemudian diserbuk
menggunakan blender, lalu diayak.
5. Ekstraksi herba pegagan embun
Penyarian dilakukan dengan memaserasi terlebih dahulu simplisia
yang telah digiling menjadi serbuk dengan campuran pelarut pertama yaitu
metanol : air (9 :1) secukupnya hingga terbentuk bubur cair. Campuran
dibiarkan selama 6 – 12 jam, di tempat yang terlindung cahaya pada suhu
kamar. Untuk pemisahan serbuk dan cairan hasil penyarian, dilakukan
penyarian menggunakan corong dengan kapas. Bagian serbuk disari lagi dengan
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
28
pelarut metanol : air (1:1), dilakukan dengan cara yang sama seperti di atas.
Kedua hasil penyarian dicampur, diuapkan hingga tinggal sepertiga atau
pelarutnya hampir menguap semua (Mursyidi, 1990).
6. Fraksinasi flavonoida dengan kromatografi kolom vakum
Kolom yang digunakan mempunyai diameter 4 cm dan mempunyai
tinggi 20 cm.
a. Cara membuat fase diam
Sejumlah selulosa dimasukkan ke dalam Beaker glass kemudian diaduk
hingga berbentuk bubur (slurry) menggunakan aquadest.
Bubur selulosa dimasukkan ke dalam kolom setinggi 5 cm dengan bantuan
corong dan batang pengaduk.
b. Penempatan sampel
Sebanyak 1,0 gram ekstrak kering diletakkan di atas fase diam.
c. Pemisahan fraksi
Sebanyak 25 ml fase gerak dituang di atas sampel, kemudian divakum sampai
semua fase gerak tersedot keluar. Hal tersebut dilakukan 15 kali sampai fraksi
yang dihasilkan berwarna bening. Masing-masing fraksi lalu dipekatkan.
7. Identifikasi flavonoida dengan KLT
Kandungan flavonoida fraksi dari hasil fraksinasi dengan kromatografi
kolom vakum diperiksa dengan kromatografi lapis tipis. Fraksi ditotolkan pada
lempeng selulosa, kemudian dikembangkan dengan jarak pengembangan 8 cm
dari totolan menggunakan pelarut BAW (n-butanol:asam asetat:air = 4:1:5 v/v,
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
29
fase atas) hingga batas yang ditetapkan. Bercak dideteksi menggunakan uap
amonia, dan lampu UV 365 nm.
8. Isolasi flavonoida dengan KLT preparatif
Dilakukan isolasi KLT preparatif dalam fase diam selulosa dan fase
gerak BAW (4:1:5 v/v, fase atas). Isolat ditotolkan berupa garis yang
selanjutnya dikembangkan, dan didapatkan pemisahan bercak. Hasil kerokan
diekstraksi dengan metanol kemudian disaring dengan kertas saring. Maka
diperoleh isolat flavonoida untuk diuji kemurnian, reaksi warna, dan
spektroskopi ultraviolet.
9. Pemeriksaan kemurnian isolat senyawa flavonoida
Kemurnian isolat flavonoida dapat diketahui menggunakan lempeng
kromatrografi dengan menotolkan pada dua lempeng yang masing-masing
dikembangkan menggunakan fase gerak BAW (4:1:5 v/v, fase atas) dan asam
asetat 15 %.
10. Reaksi warna flavonoida
Isolat senyawa flavonoida dianalisis reaksi warna menggunakan
pereaksi-pereaksi warna :
a. Natrium hidroksida 4% (larutan ini dibuat dengan melarutkan 4 g NaOH
dalam air bebas CO2 hingga 100 ml), 3 tetes larutan isolat flavonoida pada
droping plate ditambah dengan 1 tetes larutan natrium hidroksida, warna
yang terjadi dicatat.
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
30
b. Logam magnesium dan asam klorida, 3 tetes larutan isolat flavonoida pada
droping plate ditambah sedikit serbuk magnesium dan asam klorida, warna
yang terjadi dicatat.
c. Asam sulfat pekat 98%, 3 tetes larutan isolat flavonoida pada droping plate
ditambah dengan 1 tetes larutan asam sulfat pekat 98%, warna yang
terjadi dicatat.
11. Identifikasi spektra senyawa flavonoida dengan spektroskopi ultra violet
Tiap isolat senyawa flavonoida yang telah diperiksa kemurniannya,
diencerkan dengan metanol sampai konsentrasi 0,2% dan kemudian dilakukan
pembacaan absorbansi melalui tahapan sebagai berikut :
a. isolat flavonoida dimasukkan dalam kuvet sampel dan ke dalam kuvet
pembanding diisikan metanol. Pembacaan absorbansi dilakukan pada
panjang gelombang 200 – 500 nm.
b. Penambahan pereaksi geser NaOH, pembacaan absorbansi pada panjang
gelombang 200 – 500 nm dilakukan segera setelah penambahan 3 tetes
NaOH 2 N. Untuk memeriksa apakah ada penguraian pergeseran panjang
gelombang diperiksa lagi setelah 5 menit, kemudian cuplikan dibuang dan
kuvet yang telah dicuci diisi dengan larutan isolat persediaan.
c. Penambahan pereaksi geser AlCl3, pembacaan absorbansi pada panjang
gelombang 200 – 500 nm dilakukan setelah penambahan larutan AlCl3
pada isolat flavonoida. Selanjutnya dibaca lagi absorbansi setelah
penambahan 3 tetes HCl.
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
31
d. Penambahan pereaksi geser natrium asetat, pembacaan pada panjang
gelombang 200 – 500 nm dilakukan dengan cara serbuk natrium asetat
dimasukkan dalam kuvet berisi 2 -3 ml isolat flavonoida lalu digojog,
sedemikian rupa sehingga terdapat kira-kira 2 mm lapisan natrium asetat
pada dasar kuvet. Pembacaan dilakukan setelah 2 menit penambahan
natrium asetat.
e. Penambahan pereaksi geser natrium asetat / H3BO3, pembacaan absorbansi
pada panjang gelombang 200 – 500 nm dilakukan dengan cara serbuk
H3BO3 dimasukkan ke kuvet berisi 2 ml isolat flavonoida, larutan
dijenuhkan secepatnya dengan serbuk kasar natrium asetat lalu dibaca
absorbansinya. Pembacaan absorbansi dilakukan pada kecepatan 50 nm
per menit.
12. Pembuatan pereaksi geser (Markham, 1988)
a. Natrium hidroksida (NaOH)
Pereaksi NaOH menggunakan larutan NaOH 2 M dalam air.
b. Natrium asetat (NaOAc)
Digunakan serbuk NaOAc anhidrat.
c. Alumunium klorida (AlCl3)
Sebanyak 5 g AlCl3 ditambahkan ke dalam 100 ml metanol.
d. Asam hidroklorida (HCl)
Sejumlah 50 ml HCl pekat ditambahkan ke dalam 100 ml aquadest.
e. Asam borat (H3BO3)
Digunakan serbuk asam borat anhidrat.
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
32
F. Tata Cara Analisis Hasil
Analisis hasil dilakukan terhadap data yang diperoleh dari
kromatografi
lapis
tipis,
reaksi
warna
,dan
spektroskopi
ultraviolet
dibandingakan dengan pustaka Markham (1988) dan Venkataraman (1988).
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
BAB IV
HASIL PENELITIAN DAN PEMBAHASAN
A. Determinasi Tanaman
Determinasi tanaman pegagan embun dilakukan dengan tujuan untuk
mengetahui kebenaran identitas nama ilmiah tanaman pegagan embun.
Determinasi pada penelitian ini dilakukan dengan cara mencocokkan keadaan
tanaman dengan ciri-ciri yang terdapat pada pustaka acuan (Backer dan
Backhuizen van de Brink, 1963).
Tanaman yang digunakan dalam penelitian adalah tanaman pegagan
embun yang dideterminasi sampai tingkat spesies menurut Backer dan
Backhuizen van de Brink (1963) (Lampiran 1). Berdasarkan determinasi hingga
kategori spesies tersebut, maka tanaman yang digunakan dalam penelitian ini
adalah benar pegagan embun dengan nama ilmiah Hydrocotyle sibthorpioides
Lmk.
B. Ekstraksi Herba Pegagan Embun
Herba pegagan embun yang telah diambil kemudian dicuci dan
dibersihkan dengan air untuk memisahkan kotoran , tanah dan mikroba yang
melekat pada herba. Setelah itu, herba dikeringkan dalam oven pada suhu 40˚ C
selama 5 jam. Pengeringan dimaksudkan untuk menghentikan reaksi enzimatik
yang dapat menguraikan senyawa aktif dan mencegah tumbuhnya mikroba.
Setelah kering, yang ditandai dengan herba mudah hancur ketika diremas dengan
33
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
34
tangan maka herba tersebut diserbuk. Penyerbukan dilakukan untuk memperbesar
luas permukaan sehingga pada waktu penyarian hasilnya akan optimal.
Flavonoida merupakan polifenol yang memiliki sifat kimia fenol. Adanya
gula yang terikat pada aglikon akan meningkatkan polaritas, maka flavonoida
cukup larut dalam pelarut polar yaitu metanol. Adanya gula yang terikat pada
flavonoida cenderung menyebabkan flavonoida lebih mudah larut dalam air dan
dengan demikian campuran metanol-air merupakan pelarut yang baik untuk
melarutkan flavonoida. Maka penyarian yang dilakukan secara maserasi dengan
prinsip perendaman dan penggojogan sudah dapat membuat flavonoida tersari ke
dalam cairan penyari. Selain itu, maserasi dapat dikerjakan tanpa alat yang khusus
dan cara kerjanya sederhana.
Cairan penyari menembus membran dan masuk ke dalam rongga sel
herba sehingga zat aktif herba terlarut karena terjadi perpindahan dari konsentrasi
yang lebih besar ke konsentrasi yang lebih kecil dari dalam sel ke cairan penyari.
Penyarian dengan maserasi dapat mencapai titik jenuh, maka penggojogan
dilakukan untuk menjaga perbedaan konsentrasi di dalam sel dan di luar sel
sehingga tetap terjadi perpindahan senyawa aktif dari sel tersebut.
C. Isolasi dengan Kromatografi Kolom Vakum
Fraksi
metanol
dipisahkan
dengan
kromatografi
kolom
vakum
menggunakan fase diam selulosa dan fase gerak BAW. Digunakan fase diam
selulosa karena selulosa ideal untuk memisahkan glikosida yang satu dari
glikosida yang lain, glikosida dari aglikon, serta untuk memisahkan aglikon yang
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
35
kurang polar (Markham,1988). Sedangkan dipilih fase gerak BAW karena BAW
sesuai untuk memisahkan glikosida, aglikon, dan gula (Markham,1988). Selulosa
bersifat non polar dan BAW bersifat polar sehingga sesuai untuk memisahkan
flavonoida dimana flavonoida akan lebih terikat dalam fase gerak Penggunaan
vakum dimaksudkan untuk mempercepat proses keluarnya fraksi dari kolom.
Jika fraksi yang dihasilkan sudah bening dan jika dilihat di bawah lampu
UV sudah tampak tidak ada bercak warna, maka proses pemisahan dapat
dihentikan. Pemisahan komponen-komponen fraksi metanol dengan kromatografi
kolom vakum menghasilkan 15 fraksi.
D. Identifikasi Flavonoida dengan Kromatografi Lapis Tipis (KLT)
Pemeriksaan selanjutnya dilakukan dengan kromatografi lapis tipis.
Kromatografi lapis tipis merupakan metode yang umum dan cocok untuk
memeriksa senyawa polar seperti flavonoida yang umumnya mempunyai
kelarutan polar (struktur flavonoida banyak mengandung gugus hidroksi).
Jumlah ekstrak yang ditotolkan menentukan kualitas pola flavonoida yang
terjadi. Jika ekstrak yang ditotolkan terlalu sedikit, bercak flavonoida yang
terbentuk setelah pengembangan akan sulit untuk dideteksi. Jika terlalu banyak,
maka setelah dilakukan pengembangan akan terjadi pengekoran (tailing) yang
akan mengganggu hasil analisis karena menurut Sastrohamidjojo (2005), ekor
akan menaikkan kelebaran pita sehingga cenderung menimbulkan penindihan pita
satu dengan pita lainnya (overlap).
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
36
Fraksi-fraksi dari hasil kromatografi kolom vakum diperiksa dengan KLT dengan
fase diam selulosa dan fase gerak BAW (4:1:5, fase atas). Hasil pemisahan fraksi
3 - 12 dengan KLT menghasilkan dua bercak pemisahan yang dideteksi di bawah
lampu UV 365 nm, yaitu bercak A yang berwarna ungu gelap dengan harga Rf
0,86 dan bercak B yang berwarna biru dengan harga Rf 0,76 (Lampiran 2). Reaksi
antara flavonoida dengan amonia akan memperpanjang ikatan rangkap
terkonjugasi sehingga intensitas warna kuning menjadi jelas (Gambar 5). Dari
hasil penelitian, setelah diuapi dengan amonia maka intensitas warna kuning
menjadi jelas jika dilihat secara visible. Fraksi 3 – 12 menunjukkan kromatogram
yang sama, oleh karena itu fraksi-fraksi tersebut disatukan dan dipekatkan untuk
kemudian
dipisahkan
dengan
kromatografi
lapis
tipis
preparatif.
Berdasarkan data tersebut yang didapat dari warna bercak dan nilai Rf pada
kromatografi lapis tipis dan dibandingkan dengan pustaka ada indikasi bahwa
fraksi BAW ekstrak metanol herba pegagan embun kemungkinan mengandung
flavonoida (Harborne, 1984; Markham, 1988) (Tabel VIII).
OH
OH
O-
OH
HO
HO
O
-NH 4
+
O
+
NH 3
O
O
OH
O
HO
O
O
-
Gambar 5. Reaksi antara Flavon dengan amonia
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
37
Tabel VIII. Data kromatogram dari bercak fraksi herba pegagan embun
menggunakan fase diam selulosa dan fase gerak BAW (4:1:5 v/v, fase atas)
deteksi dengan sinar UV 365 nm sebelum dan sesudah diuapi amonia (Markham,
1988)
Bercak
Rf
A
0,86
B
0,76
Warna Bercak
Visible
UV 365
Amonia/
visible
Agak kuning Ungu gelap Kuning
jelas
Tidak
Biru
berwarna
Kuning
Amonia /UV
365
Ungu gelap
Biru
E. Isolasi flavonoida dengan Kromatografi Lapis Tipis Preparatif
Penggunaan kromatografi lapis tipis preparatif (KLTP) lebih ditekankan
untuk mendapatkan isolat dengan menggunakan pelarut seminimal mungkin.
Keuntungan lain yang didapat yaitu penghematan waktu dan biaya yang
diperlukan.
Pada kromatografi lapis tipis preparatif fraksi BAW (4:1:5 v/v, fase atas)
ekstrak metanol-air ditotolkan berupa garis / pita 10 cm pada lempeng
kromatografi dengan fase diam selulosa dan fase gerak BAW (4:1:5 v/v, fase
atas). Penotolan diulang beberapa kali agar bercak yang diperoleh lebih jelas.
Pengembangan dilakukan dengan jarak pengembangan 10 cm dari totolan awal.
Bercak pita dengan harga Rf dan warna yang sama dengan bercak yang dipilih
pada pemeriksaan sebelumnya, dikerok kemudian dikumpulkan dan diekstraksi
dengan metanol (Gambar 6).
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
38
Pada penelitian, dipilih bercak yang berwarna ungu dengan harga Rf 0,86.
Pemilihan bercak dilakukan karena pertimbangan bercak yang lebih dominan.
Hasil pengerokan dari kromatografi lapis tipis preparatif dari bercak tersebut
selanjutnya disebut isolat flavonoida.
F. Pemeriksaan Kemurnian Isolat Flavonoida
Kemurnian isolat flavonoida diperiksa secara KLT multi eluen dengan
menggunakan dua macam fase gerak yang mempunyai kepolaran yang berbeda
yaitu BAW dan asam asetat, dimana asam asetat 15% bersifat lebih polar daripada
BAW.
Hasil pengembangan KLT multi eluen diperoleh bercak tunggal berwarna
ungu yang mengindikasikan bahwa isolat flavonoida sudah murni dan dapat
diperiksa secara spektroskopi UV. Bercak tersebut dilihat di bawah sinar UV 365
nm sebelum dan sesudah diuapi amonia. Diperoleh harga Rf 0,55 untuk
pengembangan dengan fase gerak BAW (Gambar 7)
pengembangan dengan fase gerak asam asetat (Gambar 8).
dan Rf 0,93 untuk
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
39
A
B
Gambar 6. Kromatogram isolasi flavonoida dengan KLTP
Keterangan :
Sampel
: Fraksi BAW (4:1:5 v/v, fase atas) ekstrak metanol-air
herba pegagan embun
Fase diam
: Selulosa
Fase gerak
: BAW (4:1:5 v/v, fase atas)
Bercak 1
: Bercak A (warna ungu) Rf 0,86
Bercak 2
: Bercak B (warna biru) Rf 0,76
Jarak pengembang : 10 cm
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
40
Gambar 7 . Kromatogram pemeriksaan kemurnian isolat flavonoida
Keterangan :
Sampel
: Pita bercak (Rf 0,69) dari Fraksi BAW (4:1:5
v/v, fase atas) ekstrak metanol-air herba
pegagan embun
Fase diam
: Selulosa
Fase gerak
: BAW (4:1:5 v/v, fase atas)
Bercak pada pengembangan : Rf 0,93
Jarak pengembang
: 10 cm
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
41
Gambar 8. Kromatogram pemeriksaan kemurnian isolat flavonoida
Keterangan :
Sampel
: Pita bercak (Rf 0,69) dari Fraksi BAW (4:1:5
v/v, fase atas) ekstrak metanol-air herba
pegagan embun
Fase diam
: Selulosa
Fase gerak
: Asam asetat 15 %
Bercak pada pengembangan : Rf 0,55
Jarak pengembang
: 10 cm
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
42
G. Identifikasi Flavonoida dengan Reaksi Warna
Reaksi warna flavonoida merupakan uji pendahuluan untuk menentukan
golongan senyawa flavonoida. Uji ini memberi informasi berupa gambaran umum
golongan senyawa flavonoida pada hidroksilasi dan substitusinya.
Penambahan NaOH yang bersifat basa menyebabkan flavonoida menjadi
kuning. Warna ini timbul disebabkan oleh pembentukan garam dan terbentuknya
struktur kuinoid pada cincin B pada flavonoida (Venkataraman, 1962).
Adanya gugus fenol pada flavonoida akan memberikan reaksi positif
antara flavonoida dengan pereaksi untuk fenol, seperti H2SO4 pekat. Reaksi ini
tidak spesifik dan harus diikuti dengan reaksi warna yang lain (Venkataraman,
1962; Harborne, 1987).
Flavonoida akan mengalami reduksi jika direaksikan dengan serbuk
magnesium dalam asam klorida dan menghasilkan warna kuning sampai merah
untuk golongan flavon (Venkataraman, 1962).
Berdasarkan data dari reaksi warna yang diperoleh (Tabel IX), maka dapat
disimpulkan bahwa isolat flavonoida mengarah pada golongan flavon
(Venkataraman, 1962).
Tabel IX. Reaksi warna isolat flavonoida herba pegagan embun
Uji Warna
Isolat
flavonoida
Flavon
(Venkataraman,
1962)
NaOH
Kuning
H2SO4 p
Kuning
Mg-HCl p
Kuning
Kuning
Kuning - jingga
Kuning-merah
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
43
H. Identifikasi Spektrum Isolat Flavonoida dengan Spektroskopi Ultraviolet
Analisis selanjutnya dilakukan pada data spektroskopi ultraviolet untuk
memastikan golongan flavonoida dan struktur parsialnya. Isolat flavonoida dalam
metanol yang diukur menghasilkan dua puncak serapan karena pada struktur
flavonoida terdapat dua komponen penyerap, yaitu komponen penyerap benzoil
dan komponen penyerap sinamoil.
Komponen penyerap sinamoil merupakan puncak serapan untuk pita I,
sedangkan komponen penyerap benzoil merupakan puncak serapan untuk pita II.
Pita I mempunyai panjang gelombang yang lebih besar karena ikatan rangkap
terkonjugasinya lebih banyak dibanding pita II. Penambahan ikatan rangkap
terkonjugasi ini menyebabkan makin kecil energi yang diperlukan untuk
tereksitasi sehingga akan menyerap sinar UV pada panjang gelombang yang lebih
besar.
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
44
Tabel X. Data spektrum dan pergeseran yang terjadi setelah diberi pereaksi –
pereaksi kimia
Pereaksi
yang
ditambahkan
Puncak
Serapan
(nm)
Pita
I
Isolat
Metanol
Pita
II
345
260
NaOH
395
270
NaOH
(5 menit)
AlCl3
395
270
360
265
Isolat
Metanol
AlCl3 + HCl
350
265
Isolat
Metanol
NaOAc
385
265
Isolat
Metanol
Isolat
Metanol
Isolat
Metanol
H3BO3 +
NaOAc
365
260
Pergeseran
Puncak
Serapan
(nm)
Pita Pita
I
II
Prakiraan Struktur
(Mabry dkk, 1970)
Golongan Flavon
Golongan Flavonol
dengan 3-OH
tersubstitusi
+50* + 10 Adanya gugus OH pd
atom C nomer 4’
+50* + 10 Tidak terjadi
dekomposisi
+15* + 5 Mengindikasikan ada
ortodihidroksi di B
Tidak menunjukkan
adanya 3-hidroksi di
cincin B (jika
dibandingkan dengan
0
AlCl3)
10**
JIka dibandingkan
dengan metanol pada
pita I. maka tidak
menampakkan
adanya 5 dan 3 OH
+40* + 5 Adanya gugus OH
pada atom C nomor 7
+20*
0
Posisi orto dihidroksi
di cincin B (3’ dan 4’
atau 4’ dan 5’)
Tidak adanya posisi
orto dihidroksi pada
cincin A
Ket: * : dibandingkan dengan serapan isolat metanol
** : dibandingkan dengan isolat flavonoida dalam metanol diberi AlCl3
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
45
Hasil pengukuran isolat flavonoida dalam metanol memperoleh puncak
dengan serapan 345 nm pada pita I dan 260 nm pada pita II. Hal ini menunjukkan
bahwa isolat flavonoida hasil isolasi mengarah pada golongan flavon dan flavonol
dengan 3-OH tersubstitusi (Markham, 1988)(Tabel X).
260 270
345
395
MeOH
MeOH + NaOH
Gambar 9. Spektrum UV isolat flavonoida dalam MeOH dan NaOH
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
46
Gambar 10. Spektrum UV Hiperin dalam MeOH dan NaOMe (Mabry,dkk. 1970)
Tabel XI. Perbandingan data spektrum isolat Flavonoida dengan Hiperin dalam
MeOH dan NaOMe
Senyawa
Pita I
Pita II
Isolat Flavonoida
395
270
Hiperin (Mabry,dkk. 1970)
409
272
Pada penambahan NaOH dalam larutan ini didapat puncak serapan 395 nm
pada pita I dan 270 nm pada pita II. Pada pergeseran ini tidak terjadi dekomposisi,
hal ini tidak menunjukkan adanya gugus yang peka terhadap basa (Tabel X).
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
47
OH
OH
HO
O
+
3 NaOH
- 3 Na +
- 3 H2O
O
O-
O-
O
O-
O
O
O
O
O
O-
Gambar 11. Reaksi antara Flavon dengan NaOH
AlCl3 dan AlCl3/HCl menyebabkan pembentukan kompleks tahan asam
antara gugus hidroksil dan keton yang bertetangga dan membentuk kompleks tak
tahan asam dengan gugus o-dihidroksil, pereaksi ini dapat digunakan untuk
mendeteksi kedua gugus tersebut. Pada penambahan AlCl3 ke dalam isolat
flavonoida dalam metanol didapatkan puncak serapan 360 nm pada pita I dan 265
nm pada pita II. Pergeseran ini mengindikasikan adanya ortodihidroksi pada
cincin B (Tabel X).
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
48
260
265
345
360
MeOH
MeOH + AlCl3
Gambar 12. Spektrum UV isolat flavonoida dalam MeOH dan AlCl3
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
49
265
350 360
AlCl3
AlCl3 + HCl
Gambar 13. Spektrum UV isolat flavonoida dalam AlCl3 dan HCl
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
50
Gambar 14. Spektrum UV Hiperin dalam MeOH dan AlCl3/ HCl
(Mabry,dkk. 1970)
Tabel XII. Perbandingan data spektrum isolat Flavonoida dengan Hiperin dalam
MeOH dan AlCl3/ HCl
Senyawa
Pita I
Pita II
Isolat Flavonoida
350
265
Hiperin (Mabry,dkk. 1970)
405
268
Adanya gugus 5-OH dan 3-OH dalam spektrum akan memperlihatkan
pergeseran batokromik relatif terhadap metanol dengan penambahan pereaksi
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
51
AlCl3/HCl. Dari analisis yang diperoleh tidak mengindikasikan adanya 5-OH dan
3-OH (Tabel X).
Cl
O
OH
O
OH
OH
O
OH
O
AlCl 3
O
Al
HCl encer
O
OH
OH
OH
O
O
Gambar 15. Reaksi antara Flavon dengan AlCl3/HCl (Mabry dkk, 1970)
Penambahan pereaksi NaOAc bertujuan untuk mendeteksi adanya 7-OH
bebas dari golongan flavon dan flavonol. Keberadaan 7-OH bebas akan
menyebabkan pergeseran batokromik sebesar 5 – 20 nm pada pita II (Mabry dkk,
1970). Pada penambahan NaOAc ke dalam isolat flavonoida dalam metanol
diperoleh pergeseran batokromik sebesar 5 nm pada pita II. Hal ini
mengindikasikan adanya: 7-OH pada golongan flavon atau 7-OH pada golongan
flavonol (Tabel X).
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
52
260
265
345
385
MeOH
MeOH + NaOAc
Gambar 16. Spektrum UV isolat flavonoida dalam MeOH dan NaOAc
OH
OH
OH
O
O
+
CH3 - C
ONa
- Na +
- CH3COOH
O
OH
OH
OH
OH
-O
O
O
O
O
O-
Gambar 17. Reaksi antara Flavon dengan NaOAc
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
53
Penambahan pereaksi NaOAc/ H3BO3 untuk mendeteksi adanya gugus
ortodihidroksi pada cincin B dan gugus ortodihidroksi pada cincin A dari
golongan flavon dan flavonol. Adanya gugus ortodihidroksi pada cincin B
ditunjukkan dengan pergeseran batokromik sebesar 12 – 30 nm pada pita I,
sedangkan
adanya gugus ortodihiroksi pada cincin A ditunjukkan dengan
pergeseran batokromik kira-kira sebesar 5 – 10 nm pada pita I (Mabry dkk, 1970).
Pada penambahan NaOAc/ H3BO3 ke dalam isolat flavonoida dalam metanol
diperoleh pergeseran batokromik sebesar 20 nm pada pita I. Hal ini memberikan
kemungkinan adanya gugus ortodihidroksi pada cincin B dan tidak menunjukkan
adanya gugus ortodihidroksi pada cincin A (Tabel X).
260
345
365
MeOH
MeOH + NaOAc/ H3BO3
Gambar 18. Spektrum UV isolat flavonoida dalam MeOH dan NaOAc/ H3BO3
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
54
Gambar 19. Spektrum UV Hiperin dalam MeOH dan NaOAc/ H3BO3
(Mabry,dkk. 1970)
Tabel XIII. Perbandingan data spektrum isolat Flavonoida dengan Hiperin dalam
MeOH dan NaOAc/ H3BO3
Senyawa
Pita I
Pita II
Isolat Flavonoida
365
260
Hiperin (Mabry,dkk. 1970)
377
262
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
55
OH
OH
O
HO
O
-
+
CH 3 C
ONa
- Na
- CH 3C OOH
O
HO
O
OH
B-
OH
O
OHO
O
HO
OH
O
OH
B
+
- H 2O
OH
O
O
Gambar 20. Reaksi antara Flavon dengan NaOAc/ H3BO3
Berdasarkan analisis warna bercak dan Rf (Tabel VIII), analisis reaksi
warna (Tabel IX), dan analisis spektroskopi ultraviolet (Tabel X) maka isolat
flavonoida tersebut kemungkinan golongan flavon dengan kemungkinan struktur
parsial 7,3’,4’ trihidroksi flavon atau 7, 4’,5’ trihidroksi flavon.
OH
OH
OH
HO
O
O
7,3’,4’ trihidroksi flavon
HO
O
OH
O
7,4’,5’ trihidroksi flavon
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
BAB V
KESIMPULAN DAN SARAN
A. Kesimpulan
Penelitian yang dilakukan yaitu isolasi dan prakiraan struktur
parsial herba pegagan embun (Hydrocotyle sibthorpioides Lmk.) secara
kromatografi, reaksi warna, dan spektroskopi ultraviolet maka isolat A diduga
memiliki golongan flavon, dengan kemungkinan struktur parsial 7,3’,4’
trihidroksi flavon atau 7, 4’,5’ trihidroksi flavon.
OH
OH
OH
HO
HO
O
O
OH
O
O
7,3’,4’ trihidroksi flavon
7,4’,5’ trihidroksi flavon
B. Saran
Perlu dilakukan penentuan golongan flavonoida dan prakiraan struktur
parsial terhadap bercak biru yang nampak pada KLT.
56
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
57
DAFTAR PUSTAKA
Anonim, 1985, Cara Pembuatan Simplisia, 4-6, Departemen Kesehatan RI,
Jakarta.
Anonim, 2004, Calincing untuk darah tinggi, http://www.suaramerdeka.com%20%20semata-mata%20fakta!htm, diakses, 27 April 2006.
Anonim,2005, Semanggi Gunung,
http://www.iptek.net.id/ind/pd_tanobat/view.php?id=58-15k. diakses, 26
April 2006.
Anonim, 2007, Noble rhubarb,
http://en.wikipedia.org/wiki/Noble_rhubarb, diakses 2 Mei 2007.
Anonim,1986a, Sediaan Galenik, 1-5, 0-16, 25-28, Departemen Kesehatan RI,
Jakarta.
Backer, C.A. dan Backhuizen Van de Brink Jr., R.C., 1963, Flora of Java,
Volume I, 3-9, 25-26, N.V.P. Noordhoff, Groningen, The Nederlands.
Backer, C.A. dan Backhuizen Van de Brink Jr., R.C., 1963, Flora of Java,
Volume II, 171-172, N.V.P. Noordhoff, Groningen, The Nederlands.
Bruneton, J., 1999, Pharmacognosy Phytochemistry Medicinal Plants, Edisi II,
310-326, Intercept. Ltd, New York.
Creswell, C. J., Runquist, O.A., Campbell, M.M., 1982, Spectrum Analysis of
Organic Compound, diterjemahkan oleh Kosasih Padmawinata dan Iwang
Soediro, Edisi III, 46-59, Penerbit ITB, Bandung.
Harborne, J.B., 1987, Phytochemical Methods, diterjemahkan oleh Kosasih
Padmawinata dan Iwang Soediro, Edisi II, 2-28, 34-37, 47-49,69-103,
Penerbit ITB, Bandung.
Hostettmann, K., Hostettmann, M., Marston, A., 1995, Cara Kromatografi
Preparatif, diterjemahkan oleh Kosasih Padmawinata, 33-36, Penerbit
ITB, Bandung.
Kaufman, Peter B., dkk., 1999, Natural Products from Plants, 22-23, CRC Press
LLC, United States of America.
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
58
Mabry, T.J., Markham, K.R., Thomas, M.B., 1970, The Systematical
Identification of Flavonoida Compound, 35 – 55, Springer Verlag, New
York – Heidelberg – Berlin.
Markham K.R., 1988, Techniques of Flavonoida Identification, diterjemahkan
oleh Kosasih Padmawinata, 15-27, 32-53, Penerbit ITB, Bandung.
Mulya, M., 1995, Analisis Instrumental, Penerbit Airlangga University Press,
Surabaya.
Mursyidi A., 1990, Analisis Metabolit Sekunder, Cetakan I, 171-187, Penerbit
PAU Bioteknologi UGM, Yogyakarta.
Pelletier, S. W., Chokshi, H. P., Desai, H. K., 1986, Journal of Natural Products,
Volume 49, 892, 897, The University of Georgia Athens, Georgia.
Robinson, T., 1995, The Constituen of Higher Plants, diterjemahkan oleh Kosasih
Padmawinata, Edisi 6, 191-213, Penerbit ITB, Bandung.
Sastrohamidjojo, H., 1991, Spektroskopi, Cetakan II, 22-23, Penerbit Liberty,
Yogyakarta.
Sastrohamidjojo, H. , 2005, Kromatografi, Cetakan III, 4, Penerbit Liberty,
Yogyakarta.
Silverstein, R.M., Basser,C.G., Morril, I.C.,1974, Spectrometric Identification of
Organic Compounds, Edisi IV, 305-308, Penerbit Erlangga, Jakarta.
Stahl, E., 1985, Drug Analysis by Chromatography and Microscopy,
diterjemahkan oleh Kosasih Padmawinata, edisi VII, 3-6, Penerbit ITB,
Bandung.
Venkataraman, K., 1962, Methods for Determining the Structure of Flavonoida
Compounds, in Geissman, T.A. (Ed.), 70-75, The Chemistry of
Flavonoida Compound.
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
LAMPIRAN
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
61
A
R
A
B
B
Lampiran 2. Kromatogram pemeriksaan kandungan flavonoida dengan
kromatografi lapis tipis
Keterangan :
Sampel
: Fraksi BAW (4:1:5 v/v, fase atas) ekstrak metanol-air
herba pegagan embun
Fase diam
: Selulosa
Fase gerak
: BAW (4:1:5 v/v, fase atas)
R
: pembanding rutin, Rf 0,67
Bercak A
: Bercak Rf 0,86
Bercak B
: Bercak Rf 0,76
Jarak pengembang : 8 cm
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
62
Lampiran 3. Alat kromatografi kolom vakum
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
63
Lampiran 4. Pegagan Embun (Hydrocotyle sibthorpioides Lmk.)
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
64
Lampiran 5. Reaksi warna isolat flavonoida herba pegagan embun
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
BIOGRAFI PENULIS
Anita Devi Ariesnawati merupakan anak kedua dari
pasangan Sigit Wahono dan Sri Hartanti. Lahir di
Klaten, Jawa Tengah pada tanggal 9 April 1985.
Pendidikan awal dimulai di Taman Kanak-kanak
Maria Assumpta Klaten pada tahun 1990-1991,
kemudian melanjutkan di Sekolah Dasar Maria
Assumpta
Klaten
pada
tahun
1991-1997.
Dilanjutkan ke jenjang pendidikan Sekolah Lanjutan Tingkat Pertama Negeri 2
Klaten pada tahun 1997-2000. Kemudian naik ke jenjang Sekolah Menengah
Umum Negeri 1 Klaten pada tahun 2000-2003. Selanjutnya pada tahun 2003
melanjutkan pendidikan ke jenjang Perguruan Tinggi di Fakultas Farmasi Sanata
Dharma Yogyakarta dan menyelesaikan masa studi pada tahun 2007. Selama
kuliah, penulis pernah menjadi asisten dosen pada mata kuliah praktikum
Farmakognosi Fitokimia I.
Download