fungsi variabel kompleks

advertisement
FUNGSI VARIABEL KOMPLEKS
Oleh:
Endang Dedy
Sistem Bilangan Kompleks (1)
• Diskusikan!
Perhatikan definisi berikut: ”Bilangan kompleks
z adalah suatu bilangan yang didefinisikan
dengan z=x+iy, x, y R dan i
1 ”.Coba anda
analisis definisi tersebut,apa yang dapat anda
katakan? Jelaskan yang mendasari jawaban
anda!
Sistem Bilangan Kompleks (2)
DEFINISI:
Bilangan kompleks adalah pasangan terurut dari dua
bilangan real x dan y yang dinyatakan dengan
lambang z=(x,y). Himpunan bilangan kompleks
didefinisikan sebagai
C
z : z (x, y) : x, y R
a. Pada bilangan kompleks z=(x,y), x=Re(z) dan
y=Im(z)
b. Bilangan kompleks z disebut bilangan imajiner
murni, bila Re(z)=0
c. jika Re(z)=0 dan Im(z)=1, maka z disebut satuan
imajiner yang dilambangkan dengan i=(1,0).
Sistem Bilangan Kompleks (3)
DEFINISI:
Diberikan bilangan kompleks zn=(xn,yn), n=1,2.
Operasi pada himpunan bilangan kompleks
didefinisikan dengan
(a) z1 = z2 jika dan hanya jika x1 = x2 dan y1 = y2
(b) z1 + z2 = (x1+x2,y1+y2)
(c) z1 - z2 = z1+(-z2)=(x1-x2,y1-y2)
(d) kz1 = (kx1,ky1), k konstanta real
(e) z1z2 = (x1x2 – y1y2,x1y2+x2y1)
Sistem Bilangan Kompleks (4)
Coba Anda buktikan teorema berikut: ”Sistem
bilangan kompleks (C,+,.) merupakan suatu
lapangan (field).
Sebelum membicarakan bahwa sistem
bilangan kompleks merupakan perluasan dari
sistem bilangan real, coba buktikan terlebih
dahulu teorema berikut: “Diberikan himpunan
C 0 z C : z (x,0), x R .
Jika f : R C 0 suatu fungsi yang didefinisikan
dengan f(x,y)=(x,0), maka f fungsi bijektif.
Sistem Bilangan Kompleks (6)
Berdasarkan kesimpulan di atas, coba Anda
tuliskan definisi operasi pada himpunan
bilangan kompleks C.
DEFINISI(Operasi Konjuget):
Diberikan bilangan kompleks z x iy; x, y R .
Bilangan kompleks sekawan (konjuget) dari z
didefinisikan dengan z x iy
.
Sistem Bilangan Kompleks (7)
Coba anda buktikan teorema berikut:
Diberikan z1, z 2 C. Operasi konjuget pada sistem bilangan
kompleks adalah
________
__
__
(a) z1 z2 z1 z2
(e) z z
_
(b) z1 z2 z1 z2
____
__ __
(c) z1z2 z1 z2
_______
__ __
(d) z1 / z2 z1 / z2 , z2 0
(f) z z Re( z )
2
Im( z )
_
(g) z z 2 Re( z )
_
(h) z z 2i Im( z )
2
Geometri bilangan kompleks (2)
Y Sumbu imajiner
.
(x,y)=x+iy=z
z
arg z
arg z
Sumbu real
X
Geometri bilangan kompleks (3)
Segmen oz menyatakan bilangan kompleks
z=x+iy
Panjang segmen oz menyatakan modulus dari z
2
2
x y
dan dilambangkan dengan z , dan z
Untuk sebarang nilai utama argumen z
didefinisikan sebagai nilai tunggal argumen z
yang memenuhi
hubungan
__
( oz , sumbu real positif) argumen z arg z
Nilai tunggal argumen z tersebut dilambangkan
dengan Arg z.
Geometri bilangan kompleks (4)
Buktikan sifat-sifat modulus dari suatu bilangan
kompleks berikut ini.
Jika z , w C , maka berlaku
_
(a)
z
(b)
z
w
2
(c )
z
(d )
zw
z
z
z
(e)
z
w
w z
(f)
z
(g)
z
w
( h)
z
w
z
2
zw
w
w
,w
z
0
w
_
zz
z
z
w
w
Akar Bilangan Kompleks (1)
Coba Anda buktika teorea De Moivre :” Jika
z C dengan z r cos i sin maka
n
n
z r cos n i sin n untuk setiap n Z
.
DEFINISI (Akar):
Diberikan z , w C . Akar pangkat n dari w ditulis
1
w n didefinisikan sebagai bilangan kompleks z
sehingga berlaku
zn
w, n
N , dan n
2.
Akar Bilangan Kompleks (2)
a. Hitunglah i1/3
b. Berdasarkan penyelesaikan yang anda
kerjakan, simpulkan bagimana cara
menyelesaikan akar bilangan kompleks.
Nyatakan kesimpulan tersebut dalam bentuk
teorema, kemudian buktikan !
FUNGSI KOMPLEKS [1]
DEFINISI (Fungsi bernilai tunggal):
Diberikan himpunan A C dan B C . Fungsi kompleks
bernilai tunggal f : A B adalah suatu aturan yang
memasangkan setiap z A dengan tepat satu w B
yang dinotasikan dengan w = f(z).
Berdasarkan definisi diatas, tuliskan domain dan range
fungsi f, kemudian berikan contoh fungsi bernilai
tunggal.
Sekarang bandingkan apakah definisi berikut
bertentangan dengan definisi fungsi bernilai tunggal?
Berika penjelasan secukupnya.
FUNGSI KOMPLEKS [2]
DEFINISI ( Fungsi Bernilai Banyak ):
Diberikan himpunan A C dan B C. Fungsi
kompleks bernilai banyak f:A B adalah suatu
aturan yang memasangkan setiap z A dengan
paling sedikit satu w B dan terdapat z A yang
dipasangkan dengan paling sedikit dua w B.
Diberikan himpunan A C dan B C. Fungsi f dan g
didefinisikan dengan w = f(z),z A dan s=g(z), z B.
Tulisakan operasi dari fungsi f dan g padaD=A B.
FUNGSI KOMPLEKS [3]
Diberikan f : Df Rf dan g : Dg Rg adalah fungsi
kompleks. Tuliskan definisi fungsi komposisi dari f
dan g. Kemudian definisikan domain dan range
fungsi komposisi g o f.
Diskusikan!
Diberikan fungsi f(z) = 3z+i dan g(z) = z2+z+1–i
a. Tentukan (f + g)(z)
b. Selidiki apakah fungsi g o f terdefinisi dan
tuliskan aturan fungsinya.
FUNGSI KOMPLEKS [4]
Diberikan A C dan B C. Fungsi f dan g
didefinisikan dengan w = f(z) , z A dan s=g(z) ,
z B. Tuliskan Operasi dari fungsi f dan g pada
D=A B
Diberikan f : Df Rf dan g : Dg Rg adalah fungsi
kompleks. Syarat apakah yang harus dipenuhi agar
fungsi komposisi f dan g terdefinisi. Kemudian
tuliskan persamaan fungsi komposisi f dan g,
domain dan range gof
Diskuskan!
Diberikan fungsi f(z) = 3z+i dan g(z) = z2+z+1–i
a. Tentukan ( f + g ) (z)
b. Selidiki apakah fungsi g o f terdefinisi dan
tuliskan aturan fungsinya.
FUNGSI EKSPONEN
z
Fungsi yang berbentuk f ( z ) e , z C disebut fungsi
eksponen.
DEFINISI:
Untuk bilangan kompleks z = x + iy didefinisikan
ez = ex(cos y + i sin y).
Gunakan definisi di atas untuk membuktikan teorema
berikut: Jika z,w C, maka
(a) ez 0
(d) e z e z
(b) ez+w =ez.ew
(c) e z e z
2 i
z
e
(e) e z w w
e
(f) Jika z=x+iy , maka e z
e x dan Arg(ez)=y
FUNGSI TRIGONOMETRI [1]
DEFINISI: Untuk bilangan kompleks z didefinisikan
( a ) cos z
eiz
e
iz
2
eiz
e
( b ) sin z
2i
sin z
(c) tan z
cos z
cos z
(d ) cot z
sin z
1
(e) sec z
cos z
1
( f ) csc z
sin z
iz
FUNGSI TRIGONOMETRI [2]
Berdasarkan definisi di atas buktikan Teorema berikut:
Jika z,w C, maka berlaku
(a) sin z
0 jika dan hanya jika z
(b) cos z
0 jika dan hanya jika z
(c) sin( z )
(d ) cos( z )
sin z
cos z
(e) sin 2 z cos2 z 1
k ,k
2
Z
k ,k
Z
FUNGSI TRIGONOMETRI [3]
( f ) sin( z w) sin z cos w cos z sin w
( g ) cos(z w) cos z cos w  sin z sin w
(h) sin z sin x cosh y i cos x sinh y, z x iy
(i )
cos z
( j)
sin z
(k )
cos z
cos x cosh y i sin x sinh y, z
2
sin 2 x sinh 2 y, z
2
cos2 x sinh 2 y, z
x iy
x iy
x iy
FUNGSI HIPERBOLIK [1]
DEFINISI :
Untuk variabel kompleks z didefinisikan fungsi
hiperbolik
( a ) sinh z
1
2
e
z
e
z
( b ) cosh z
1
2
ez
e
z
( c ) tanh z
sinh z
cosh z
FUNGSI HIPERBOLIK [2]
DEFINISI :
Untuk variabel kompleks z didefinisikan fungsi
hiperbolik
cosh z
(d ) coth z
sinh z
1
(e) sec z
cosh z
1
( f ) csh z
sinh z
FUNGSI HIPERBOLIK [3]
Berdasarkan definisi di atas, buktikan Teorema berikut:
Jika z,w C, maka berlaku sifat-sifat
(a ) cosh2 z sinh 2 z
(b) 1 tanh 2 z
1
sec h 2 z
(c) coth2 z 1 csch 2 z
(d ) sinh( z )
(e) cosh( z )
sinh z
cosh z
( f ) tanh( z )
tanh z
FUNGSI HIPERBOLIK [4]
( g ) sinh( z w) sinh z cosh w cosh z sinh w
(h) cosh(z w) cosh z cosh w sinh z sinh w
(i )
sinh z
sinh x cos y i cosh x sin y , z
x iy
( j)
cosh z
cosh x cos y i sinh x sin y , z
x iy
(k )
(l )
sinh z
cosh z
2
sinh 2 x
sin 2 y , z
x
iy
2
cosh 2 x
sin 2 y , z
x
iy
Konsep Dasar Dalam Topologi
di Bidang Kompleks [1]
DEFINISI :
Diberikan zo C, r R,dengan r>0.
(a) N(zo,r)={z C: z – zo < r} disebut lingkungan r
dari zo
(b) N*(zo,r)={z C:0< z – zo < r} disebut lingkungan
r dari zo tanpa zo
Konsep Dasar Dalam Topologi
di Bidang Kompleks [2]
DEFINISI :
Diberikan himpunan A C.
a. Titik p C disebut titik dalam himpunan A, jika
terdapat bilangan r>0, sehingga berlaku N(p,r) A .
b. Himpunan titik dalam A didefinisikan dengan
A0 = {p C: p titik dalam himpunan A}.
c. Titik p C disebut titik luar himpunan A, jika terdapat
bilangan r>0, sehingga berlaku N(p,r) AC .
d. A disebut himpunan terbuka jika berlaku A0=A, yaitu
setiap z A merupakan titik dalam himpunan A .
Konsep Dasar Dalam Topologi
di Bidang Kompleks [3]
DEFINISI :
Diberikan himpunan A C.
a. Titik p C disebut titik limit himpunan A, jika untuk
setiap bilangan r>0 berlaku N(p,r) A – {p}
.
b. Himpunan titik limit A didefinisikan dengan
A’ = { p C: p titik limit himpunan A }
c. A disebut himpunan tertutup, jika berlaku A’ A.
d. Titik p C disebut titik terasing (terpencil) himpunan
A, jika dan p bukan titik limit A, yaitu terdapat
bilangan r>0 sehingga berlaku N(p,r) A= .
Konsep Dasar Dalam Topologi
di Bidang Kompleks [4]
DEFINISI:
Diberikan himpunan A C.
a. Titik p C disebut titik batas himpunan A, jika untuk
setiap bilangan r>0 berlaku N(p,r) A
dan
N(p,r) Ac
.
b. Himpunan titik batas A didefinisikan dengan
(A) = {p: p titik batas himpunan A}
c. Interior himpunan A didefinisikan dengan
Int(A) = {z: z titik dalam A}
d. Eksterior himpunan A didefinisikan dengan
Eks(A) ={z: z titik luar A}
e. Penutup himpunan A didefinisikan dengan
A A A A
( A)
Konsep Dasar Dalam Topologi
di Bidang Kompleks [5]
Definisi :
Diberikan himpunan A C
a. Himpunan A dikatakan terhubung (connected), jika
setiap z1,z2 A dapat dihubungkan oleh suatu
lengkungan kontinu C yang seluruhnya terkandung
di A
b. Himpunan A dikatakan daerah (domain) di C, jika A
adalah suatu himpunan terbuka dan terhubung di C.
Region adalah suatu daerah dengan atau tanpa titik
batasnya.
Catatan:
Daerah seringkali disebut region terbuka sedangkan
suatu daerah beserta titik batasnya disebut region
tertutup.
Limit Fungsi Kompleks [1]
DEFINISI :
Diberikan suatu fungsi f yang terdefinisi pada daerah
D C dan z0 D’.
a. zlimz f ( z ) Ljika dan hanya jika untuk setiap
0
bilangan
>0 terdapat bilangan >0 sehingga jika
0< z-zo < , z D berlaku f(z)-L <
b. zlimz f ( z ) L jika dan hanya jika untuk setiap
lingkungan N(L, ) terdapat lingkungan terhapuskan
N*(z0, ) sehingga jika z N*(z0, ) D berlaku
f(z) N(L, ).
0
Limit Fungsi Kompleks [2]
Buktikan bahwa:
iz
a. lim
z 1 2
i
2
2
lim
(
2
x
iy
)
b. z 2i
4i
TEOREMA :
Diberikan fungsi kompleks f terdefinisi pada daerah
D C dengan zo D’ dan L,M C.
a. jika zlimz f ( z ) L dan lim f ( z ) M , maka L = M
z z
b. zlimz f ( z ) L jika dan hanya jika terdapat bilangan
k>0 dan bilangan >0 sehingga berlaku
f ( z ) k untuk setiap z N * ( z o , ) D
o
o
o
Limit Fungsi Kompleks [3]
TEOREMA:
Diberikan fungsi kompleks f dan g yang terdefinisi
pada daerah D=Df Dg C dengan zo D’. Jika
lim f ( z ) L dan lim g ( z ) M , maka
z z0
z z0
a. zlimz [ f ( z ) g ( z )] L M
0
b. lim kf ( z )
z
kL, k
z0
c. zlimz [ f ( z ). g ( z )] LM
0
f ( z) L
d. lim g ( z ) M , M 0
z z0
C
Limit Fungsi Kompleks [4]
TEOREMA :
1. Diberikan fungsi kompleks f yang terdefinisi pada
daerah D C dengan zo D’.
a. zlimz f ( z ) 0 jika dan hanya jika zlimz f ( z ) 0
b. jika lim f ( z) L, L 0 maka lim f ( z) L
0
0
z
z0
z
zo
2. Diberikan fungsi f, g, dan h didefinisikan pada
daerah D=Df Dg C dan zo D’. Jika f ( z ) g( z ) h( z )
untuk setiap z N*(zo, ) D, zlimz f ( z ) L dan
lim h( z ) L, maka lim g( z ) L
0
z
z0
z
z0
Limit Fungsi Kompleks [5]
TEOREMA :
1. Diberikan f(z)=u(x,y)+iv(x,y) terdefinisi pada daerah
D C dan zo=a+ib D’.
lim f ( z ) A iB jika dan hanya jika
lim u ( x, y ) A
z z0
( x , y ) ( a ,b )
dan ( x, y )lim(a,b) v( x, y ) B
2. Diberikan f(z)=u(x,y)+iv(x,y) terdefinisi pada
daerah D C dan zo=a+ib D’.
Jika lim f ( z ) L, maka lim f ( z ) selalu ada dengan
z z0
nilai L untuk z
suatu titik limit S.
z z0
z o sepanjang kurva S D dan zo
Limit Fungsi Kompleks [6]
Diskusikan !
2 xy
1. Diketahui f(z)= 2 2
x y
ix2
. Selidiki apakah lim f ( z ) ada.
z 0
y 1
x2 y 2
2. Buktikan bahwa lim( 2 4
z 0 x
y
z2 1
Selidikilah apakah lim
ada?
z i x
y 1
xyi
x
2
y
2
) 0
Kekontinuan Fungsi Kompleks [1]
DEFINISI :
a. Diberikan fungsi kompleks f terdefinisi pada
region D C yang memuat zo dengan zo suatu
titik limit dari D. Fungsi f dikatakan kontinu di zo
jika lim f ( z ) f ( z0 )
z z0
b. Diberikan fungsi f terdefinisi pada region D C
yang memuat z0 . Fungsi f dikatakan kontinu di
zo jika untuk setiap bilangan >0 terdapat
bilangan >0 sehingga jika z z0 , z D
berlaku f ( z ) f ( z0 )
c. Fungsi f dikatakan kontinu pada region D C jika
f kontinu di setiap titik pada D
Kekontinuan Fungsi Kompleks [2]
Diskusikan bukti teorema berikut:
a. Diberikan f(z) = u(x,y) + iv(x,y) terdefinisi pada
region D C yang memuat zo= a + ib. Fungsi f
kontinu di zo jika dan hanya jika u(x,y) dan v(x,y)
kontinu di (a,b).
b. Diberikan fungsi f dan g terdefinisi pada region
D C dan zo D dan k suatu konstanta kompleks.
Jika f dan g kontinu di zo, maka fungsi f + g, kf,
dan fg semuanya kontinu di zo. Sedangkan fungsi
f/g kontinu di zo asalkan g(zo) 0.
Kekontinuan Fungsi Kompleks [3]
c. Jika fungsi kompleks f kontinu di zo dan fungsi g
kontinu f(zo), maka fungsi komposisi g o f kontinu
di zo.
d. Fungsi polinom f kontinu pada seluruh bidang
kompleks.
h( z )
e. Fungsi rasional f ( z )
(h dan g fungsi
g( z )
polinom) kontinu pada C – {z C: g(z) = 0}
Turunan Fungsi Kompleks [1]
DEFINISI :
a. Diberikan fungsi f terdefinisi pada region D C
dan zo D. Turunan fungsi f di zo didefinisikan
dengan
f ( z0 z) f ( z0 )
f ( z ) f ( z0 )
'
f ( z0 ) lim
lim
z z0
z
z z0
z 0
jika limit ini ada.
b. Diberikan fungsi f terdefinisi pada region D C.
Turunan fungsi f pada D didefinisikan dengan
f ' ( z)
lim
z 0
f (z
z) f ( z)
f ( w) f ( z )
lim
w z
z
w z
jika limit ini ada.
Turunan Fungsi Kompleks [2]
Diskusikan bukti teorema berikut:
Diberikan fungsi f terdefinisi pada region D C
dan zo D. Jika f ’(zo) ada, maka f kontinu di zo.
2
Perlihatkan bahwa f ( z ) z kontinu di seluruh
bidang kompleks, tetapi f hanya dapat diturunkan di
z = 0.
Diberikan fungsi f dan g dapat diturunkan pada
region D C, tuliskan turunan fungsi f + g, f – g,
kf (k konstanta ) dan fg pada D.
Turunan Fungsi Kompleks [3]
Buktikan teorema berikut:
Diberikan fungsi f yang dapat ditunkan pada C.
a. Jika f(z) = k untuk setiap z C dengan k suatu
konstanta, maka f ’(z) = 0
b. Jika f(z) = z untuk setiap z C, maka f ’(z) = 1
c. Jika f(z) = zn untuk setiap z C, n N, maka
f ’(z) = nzn-1
d. Jika f(z) = aozn + a1zn-1 + …+ an-1z + an untuk
setiap z C, n N, maka
f ’(z) = aonzn-1 + a1(n-1)zn-2 + …+ an-1
e. Jika f(z) = zn untuk setiap z C, n Z, maka
f ’(z) = nzn-1
Persamaan Cauchy Reimann [1]
Buktikan teorema berikut:
a. Diberikan terdefinisi pada region D C dan
'
zo=xo+iyo D. Jika f ( zo ) ada, maka
f ' ( zo )
u
v
( xo , yo ) i ( xo , yo )
x
x
v
u
( xo , yo ) i ( xo , yo )
y
y
sehingga persamaan Cauchy Reimann berlaku
yaitu
u
v
u
v
( xo ,y o )
( xo ,y o ) dan ( xo ,y o )
( xo ,y o )
x
y
y
x
Persamaan Cauchy Reimann [2]
b. Diberikan f ( z ) u( x, y ) iv( x , y ) terdefinisi
pada region D C dan zo=xo+iyo D. Jika
(1) fungsi u(x,y), v(x,y), ux(x,y), uy(x,y), vx(x,y),dan
vy(x,y) semuanya kontinu di titik zo= (xo,yo)
(2) Memenuhi persamaan Cauchy Reimann
ux(xo,yo) = vy(xo,yo) dan uy(xo,yo) = - vx(xo,yo)
maka f’(zo) ada dan
f ’(zo) = ux(xo,yo)+i vx(xo,yo) = vy(xo,yo)-i uy(xo,yo)
Persamaan Cauchy Reimann [3]
Diskusikan !
1. Diberikan fungsi f dengan aturan
1
x sin , ( x, y) (0,0)
x
0
, ( x, y ) (0,0)
2
f ( z)
Perlihatkan bahwa f ’(0) ada tetapi tak kontinu di (0,0).
Persamaan Cauchy Reimann [4]
2. Diberikan fungsi f dengan aturan
f(z)
z2
z
0
,z
0
,z
0
Tunjukkan bahwa persamaan C–R dipenuhi di
z = 0, tetapi f ’(0) tidak ada.
Persamaan Cauchy Reimann [5]
3. Selidiki dimanakah fungsi berikut dapat
diturunkan, kemudian tentukan fungsi
turunannya.
a. f(z) = x2 – iy2
b. f(z) =
c. f(z) =
z
z
2
Sekian
Terima Kasih
Download