Suku Banyak Dan Teorema Faktor 1 Setelah menyaksikan tayangan ini anda dapat Menentukan faktor, akar-akar serta jumlah dan hasil kali akar-akar persamaan sukubanyak 2 Teorema Faktor Jika f(x) adalah sukubanyak; (x – k) merupakan faktor dari P(x) jika dan hanya jika P(k) = 0 3 Artinya: 1.Jika (x – k) merupakan faktor, maka nilai P(k) = 0 sebaliknya, 2. jika P(k) = 0 maka (x – k) merupakan faktor 4 Contoh 1: Tunjukan (x + 1) faktor dari x3 + 4x2 + 2x – 1 Jawab: (x + 1) faktornya, berarti P(-1) = 0 P(-1) = (-1)3 + 4(-1)2 + 2(-1) – 1 = -1 + 4 – 2 – 1 = 0 Jadi, (x + 1) adalah faktornya. 5 Cara lain untuk menunjukan (x + 1) adalah faktor dari x3 + 4x2 + 2x – 1 adalah dengan pembagian horner: 1 4 2 -1 koefisien Suku banyak -1 -1 -3 1 + P(-1) = 0 3 -1 0 artinya dikali (-1) berarti (x + 1) faktornya 6 Contoh 2: Tentukan faktor-faktor dari P(x) = 2x3 – x2 – 7x + 6 Jawab: Misalkan faktornya (x – k), maka nilai k yang mungkin adalah pembagi bulat dari 6, yaitu 7 pembagi bulat dari 6 ada 8 yaitu: ±1, ±2, ±3, dan ±6. Nilai-nilai k itu kita substitusikan ke P(x), misalnya k = 1 diperoleh: P(1) = 2.13 – 1.12 – 7.1 + 6 =2–1–7+6 =0 8 Oleh karena P(1) = 0, maka (x – 1) adalah salah satu faktor dari P(x) = 2x3 – x2 -7x + 6 Untuk mencari faktor yang lain, kita tentukan hasil bagi P(x) oleh (x – 1) dengan pembagian horner: 9 Koefisien sukubanyak P(x) = 2x3 – x2 – 7x + 6 adalah 2 -1 -7 6 k=1 2 1 -6 + 2 1 -6 0 Koefisien hasil bagi Hasil baginya: H(x) = 2x2 + x - 6 10 Karena hasil baginya adalah H(x) = 2x2 + x – 6 = (2x – 3)(x + 2) dengan demikian 2x3 – x – 7x + 6 = (x – 1)(2x2 + x – 6) 2x3 – x – 7x + 6 = (x – 1)(2x – 3)(x + 2) Jadi faktor-faktornya adalah (x – 1), (2x – 3 ) dan (x + 2) 11 Contoh 3: Diketahui (x – 2) adalah faktor P(x) = 2x3 + x2 + ax - 6. Salah satu faktor yang lainnya adalah…. a. x + 3 b. x – 3 c. x – 1 d. 2x – 3 e. 2x + 3 12 Jawab: Kita tentukan terlebih dahulu koefisien x2 yaitu a = ? Jika (x – 2) faktornya P(x) maka P(2) = 0 2.23 + 22 + 2a - 6 = 0 16 + 4 + 2a - 6 = 0 2a + 14 = 0 2a = -14 a = -7 13 P(x) = 2x3 + x2 - 7x - 6 berarti koefisien P(x) adalah 2 1 -7 -6 4 10 6 + k=2 2 5 3 0 Koefisien hasil bagi Hasil baginya: H(x) = 2x2 + 5x + 3 = (2x + 3)(x + 1) Jadi faktor yang lain adalah 2x + 3 14 Contoh 4: Sukubanyak f(x) = x3 - ax2 + bx – 2 mempunyai faktor (x – 1). Jika dibagi oleh (x + 2) bersisa -36, maka nilai a + b adalah…. a. 5 b. 6 c. 7 d.8 e.9 15 Jawab: Sukubanyak f(x) = x3 - ax2 + bx – 2 (x – 1) faktor f(x) → f(1) = 0 1–a +b–2=0 -a + b = 1….(1) dibagi (x + 2) bersisa -36, f(-2) = -36 (-2)3 – a(-2)2 + b(-2) – 2 = -36 16 (-2)3 – a(-2)2 + b(-2) – 2 = -36 - 8 – 4a – 2b – 2 = -36 - 4a – 2b = -36 + 10 -4a – 2b = -26 2a + b = 13….(2) 17 Persamaan (1): -a + b = 1 Persamaan (2): 2a + b = 13 -3a = -12 a =4 b=1+4=5 Jadi nilai a + b = 4 + 5 = 9 18 Akar-akar Rasional Persamaan Sukubanyak Salah satu penggunaan teorema faktor adalah mencari akar-akar sebuah persamaan sukubanyak, karena ada hubungan antara faktor dengan akar-akar persamaan sukubanyak 19 Jika P(x) adalah sukubanyak; (x – k) merupakan faktor dari P(x) jika dan hanya jika k akar dari persamaan P(k) = 0 k disebut akar atau nilai nol dari persamaan sukubanyak: P(x) = 0 20 Teorema Akar-akar Rasional Jika P(x) =anxn + an-1xn-1 + …+ a1x + ao dan (x – k) merupakan faktor dari P(x) maka faktor bulat dari a 0 k faktor bulat dari a n 21 Contoh 1: Tunjukan -3 adalah salah satu akar dari x3 – 7x + 6. Kemudian tentukan akar-akar yang lain. Jawab: Untuk menunjukan -3 akar dari P(x), cukup kita tunjukan bahwa P(-3) = 0 22 P(x) = x3 – 7x + 6. P(-3) = (-3)3 – 7(-3) + 6 = -27 + 21 + 6 =0 Oleh karena P(-3) = 0, maka -3 adalah akar dari Persamaan P(x) = x3 – 7x + 6 = 0 23 Untuk menentukan akar-akar yang lain, kita tentukan terlebih dahulu hasil bagi P(x) = x3 – 7x + 6 dengan x + 3 dengan pembagian Horner sebagai berikut 24 P(x) = x3 – 7x + 6 berarti koefisien P(x) adalah 1 0 -7 6 -3 9 -6 + k = -3 1 -3 2 0 Koefisien hasil bagi Hasil baginya: H(x) = x2 – 3x + 2 =(x – 1)(x – 2) 25 Hasil baginya: H(x) = x2 – 3x + 2 = (x – 1)(x – 2) sehingga persamaan sukubanyak tsb dapat ditulis menjadi (x + 3)(x – 1)(x – 2) = 0. Jadi akar-akar yang lain adalah x = 1 dan x = 2 26 Contoh 2: Banyaknya akar-akar rasional dari persamaan x4 – 3x2 + 2 = 0 adalah…. a. 4 b. 3 c. 2 d.1 e.o 27 Jawab: Karena persamaan sukubanyak berderajat 4, maka akar-akar rasionalnya paling banyak ada 4 yaitu faktor-faktor bulat dari 2. Faktor-faktor bulat dari 2 adalah 1, -1, 2 dan -2 28 Dari 4 kemungkinan yang akan menjadi akar-akar rasional persamaan sukubanyak tsb, kita coba nilai 1 Koefisien x4 – 3x2 + 6 = 0 adalah 1, 0, -3, 0, dan 6 29 1 k=1 1 0 1 1 -3 0 2 1 -2 -2 + -2 -2 0 Ternyata P(1) = 0, berarti 1 adalah akar rasionalnya, Selanjutnya kita coba -1. Koefisien hasil bagi: 1,1,-2, dan -2 30 1 k = -1 1 1 -2 -1 0 0 -2 -2 2 + 0 Ternyata P(-1) = 0, berarti -1 adalah akar rasionalnya, Sehingga: (x – 1)(x + 1)(x2 – 2) = 0 31 (x – 1)(x + 1)(x2 – 2) = 0 (x2 – 2) difaktorkan lagi menjadi (x - √2)(x + √2) = 0 Berarti akar yang lain: √2 dan -√2, tapi bukan bilangan rasional. Jadi akar-akar rasionalnya hanya ada 2 yaitu 1 dan -1. 32 Jumlah dan Hasil Kali Akar-akar Persamaan Sukubanyak 33 Jika akar-akar Persamaan Sukubanyak: ax3 + bx2 + cx + d = 0 adalah x1, x2, dan x3 maka b x3 = a x1 + x2 + c x1.x2 + x1.x3 + x2.x3 = a d x1.x2.x3 = a 34 Contoh 1: Jumlah akar-akar persamaan x3 – 3x2 + 2 = 0 adalah…. Jawab: a = 1, b = -3, c = 0, d = 2 b x1 + x2 + x3 = a -3 = 1 =3 35 Contoh 2: Hasilkali akar-akar persamaan 2x3 – x2 + 5x – 8 = 0 adalah…. Jawab: a = 2, b = -1, c = 5, d = -8 d x1.x2.x3 = = a -8 2 =4 36 Contoh 3: Salah satu akar persamaan x3 + px2 – 3x – 10 = 0 adalah -2 Jumlah akar-akar persamaan tersebut adalah…. 37 Jawab: -2 adalah akar persamaan x3 + px2 – 3x - 10 = 0 → -2 memenuhi persamaan tsb. sehingga: (-2)3 + p(-2)2 – 3(-2) - 10 = 0 -8 + 4p + 6 – 10 = 0 38 -8 + 4p + 6 – 10 = 0 4p – 12 = 0 4p = 12 p = 3 Persamaan tersebut: x3 + 3x2 – 3x – 10 = 0 Jumlah akar-akarnya: b x1 + x2 + x3 = a = 3 1 = -3 39 Contoh 4: Akar-akar persamaan x3 – 4x2 + x – 4 = 0 adalah x1, x2, dan x3. Nilai x12 + x22 + x32 =…. 40 Jawab: x12 + x22 + x32 = (x1 + x2 + x3)2 - 2(x1x2 + x1x3 + x2x3) x3 – 4x2 + x – 4 = 0 x1 + x2 + x3 = -(-4)/1 = 4 x1x2 + x1x3 + x2x3 = 1/1 = 1 41 x1 + x2 + x3 = 4 x1x2 + x1x3 + x2x3 = 1 Jadi: x12 + x22 + x32 = (x1 + x2 + x3)2 - 2(x1x2 + x1x3 + x2x3) = 42 – 2.1 = 16 – 2 = 14 42 43