PERANCANGAN PROSES PRODUKSI PROBIOTIK ISOLAT LOKAL Lactobacillus sp. PENGHASIL OMEGA-6 (ω-6) DAN PENURUN KOLESTEROL Lanjar Sumarno F326010141 SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2012 PERNYATAAN MENGENAI DISERTASI DAN SUMBER INFORMASI Dengan ini saya menyatakan bahwa disertasi saya yang berjudul Perancangan Proses Produksi Probiotik Isolat Lokal Lactobacillus sp. Penghasil Omega-6 (Ω-6) dan Penurun Kolesterol adalah karya saya sendiri dengan arahan komisi pembimbing dan belum diajukan dalam bentuk apapun kepada perguruan tinggi manapun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam daftar pustaka di bagian akhir disertasi ini. Bogor, Januari 2012 Lanjar Sumarno F326010141 ABSTRACT LANJAR SUMARNO. F326010141. Production Process Design of Local Isolate Lactobacillus sp. as an Omega-6 (ω-6) Probiotic Producing and Cholesterol Lowering. Supervised by DJUMALI MANGUNWIDJAJA, ANAS MIFTAH FAUZI, NASTITI SISWI INDRASTI, KHASWAR SYAMSU, BAMBANG PRASETYA. Health food products in Indonesia is growing rapidly nowadays. This condition is supported by increasing public knowledge about the benefits of it. This condition encourage the study of searching the potential strains for probiotic production from local sources, badeg pace. Isolation of Lactobacillus sp. from badeg pace was based on its low of pH value that is commonly used as a reason of Lactobacillus isolation. Aims of this study were to design production process of local isolates of probiotic Lactobacillus sp. as omega 6 (ω-6) producing and cholesterol lowering and to perform opportunity analysis that was continued by process creation and integration of fermentor 75 L as the basis for financial analysis. The result of process design showed that market of probiotic is very potential. The selected process was batch fermentation system that used L. plantarum JR64. The results of creation process on laboratory scale showed that the best bioconvertion condition was resulted on glucose concentration of 20 g/l, meanwhile the integration process on 75 L scale used a complex media resulted Y x/s 62.1 percent and Y p/s 22.2 percent. The best design and formulation of product was produced by using 15 g of probiotic component, 50 g of butter, and 15 g of icing sugar. Characteristic of L. plantarum JR64 that produces omega-6 (ω-6) had the ability of cholesterol lowering by 19.5 percent. The designed process was feasible at 2,500 kg/batch of production capacity using corn extract as raw material. Investment capital that as required for the designed process were IDR.7,640,244,620. Probiotic product contained omega-6 price was stated at IDR.14,000/kg and the IRR was 20.74 percent. Keywords : local isolates, Lactobacillus plantarum JR64, production process design, omega-6, cholesterol lowering. RINGKASAN LANJAR SUMARNO. F326010141. Perancangan Proses Produksi Probiotik Isolat Lokal Lactobacillus sp. Penghasil Omega-6 (Ω-6) dan Penurun Kolesterol. Di bawah bimbingan DJUMALI MANGUNWIDJAJA, ANAS MIFTAH FAUZI, NASTITI SISWI INDRASTI, KHASWAR SYAMSU, BAMBANG PRASETYA. Produk-produk makanan kesehatan di Indonesia saat ini mengalami perkembangan cukup cepat. Hal ini antara lain didukung dengan semakin meningkatnya pengetahuan masyarakat tentang manfaat makanan kesehatan. Selanjutnya, masyarakat Indonesia mulai mengalami perubahan gaya hidup dengan memasukkan makanan kesehatan dalam menu makanannya. Salah satu jenis produk makanan kesehatan yang dikenal luas di Indonesia adalah berbagai macam produk probiotik. Probiotik telah didefinisikan dalam beberapa pengertian sesuai dengan keunggulan yang dimilikinya, diantaranya probiotik diartikan sebagai sediaan sel mikroba atau komponen dari sel mikroba yang memiliki pengaruh menguntungkan pada kesehatan dan kehidupan inangnya. Penelitian Sirilun et al., (2010) mengungkapkan adanya kemampuan Lactobacillus plantarum PH02 untuk menurunkan kolesterol hingga 25,41 %. Sugiyama et al., (1997) menyatakan bahwa adanya pengaruh omega-6 terhadap penurunan kolesterol serum darah tikus. Spektrum penggunaan bakteri asam laktat yang begitu luas tersebut mendorong untuk dilakukan perancangan proses produksi probiotik dengan menggunakan isolat lokal. Perancangan disusun dengan mengadopsi pada perancangan proses Seider et al., (1999) yang mencakup pendefinisian dan penyelesaian masalah dengan menggunakan prinsip metode ilmiah dan seni, informasi teknis dan imajinasi untuk menentukan proses atau sistem baru yang memenuhi fungsi yang diinginkan dengan nilai ekonomis dan efisiensi yang tinggi. Salah satu potensi sumber daya lokal yang dikaji bersumber dari keyakinan masyarakat Ponorogo akan manfaat minuman tuak mengkudu bagi kesehatan. Kajian diawali dengan melakukan survey terhadap 10 orang penjaja tuak mengkudu atau dikenal dengan nama badeg pace untuk selanjutnya dilakukan pengujian laboratorium. Dugaan sementara dengan mengetahui tingkat keasamannya yang tinggi sangat memungkinkan Lactobacillus sp. dapat tumbuh dengan baik. Penelitian ini bertujuan untuk melakukan perancangan proses produksi probiotik menggunakan isolat lokal Lactobacillus sp. sebagai penghasil Omega-6 (ω-6) dan penurun kolesterol. Ruang lingkup perancangan proses meliputi analisis peluang dan permasalahan dilanjutkan kreasi proses dengan melakukan percobaan fermentasi dengan media standar pada skala laboratorium. Hasil terbaik pada fermentasi skala laboratorium dilakukan pengembangan proses pada skala pilot plant 75 L sebagai dasar perhitungan analisis finansial. Penelitian ini dilaksanakan di Laboratorium Balai Pengkajian Bioteknologi, BPPT, Kawasan Puspiptek, Tangerang. Kultur bakteri digunakan Lactobacillus sp. isolat dari tuak mengkudu asal Ponorogo, Jawa Timur, Lactobacillus bulgaricus (FNCC41, UGM), bakteri patogen Escherichia coli ATCC 25922 dan Staphylococcus aureus ATCC 25923. Bahan kimia yang digunakan adalah MRS (De Mann, Rogosa Oxoid CM 0361), TSB (Tryptone Soya Broth) Oxoid CM 0129, CMC (Himedia), Cat gram (Merck), Mueller Hinton Agar (Oxoid CM 0337), unsalted Butter (Orchid), bile salt (Oxoid), Icing Sugar, NaOH 0,2 N, Selenium tablet, H2SO4 pekat, HCl 0,05 N Proses fermentasi dilakukan pada skala laboratorium 250 ml dengan menggunakan glukosa sebagai sumber karbon terdiri atas tiga taraf konsentrasi (20 g/l, 30 g/l, 40 g/l). Komposisi media dengan kandungan unsur mikro diantaranya : 5 g/l Sodium asetat, 2 g/l Amonium asetat, 2 g/l Na2HPO4, 1 g/l Tween 80, 0,1 g/l MgSO4.7H2O dan 0,05 g/l MnSO4.5H, selanjutnya media ditambah air hingga 1.000 ml untuk setiap volume satu liter. Hasil isolasi menunjukkan bahwa isolat dari buah mengkudu matang didapatkan dua isolat Lactobacillus sp. JR17 dan Lactobacillus sp. JR10, dari tuak mengkudu diperoleh tiga buah isolat Lactobacillus sp. JR19, Lactobacillus sp. JR64 dan Lactobacillus sp. JR92 dan satu isolat JR03 bukan Lactobacillus sp. Kelima isolat tersebut kemudian diuji secara in-vitro yang meliputi kemampuan tumbuh pada pH rendah dan berbagai konsentrasi garam empedu serta uji aktivitas anti bakteri patogen. Hasil pengujian terbaik yang mampu tumbuh pada pH 2,5 dan konsentrasi garam empedu 10 % adalah Lactobacillus sp. JR64 dengan daya hambat terhadap bakteri patogen sebesar 3,9 mm terhadap Escherichia coli ATCC 25922 dan 4,0 mm Staphylococcus aureus ATCC 25923. Galur Lactobacillus sp. JR64 yang diperoleh selanjutnya dilakukan identifikasi dengan menggunakan PCR yang diperkirakan akan berada pada daerah 16S rRNA. Penentuan urutan basa (sekuensing) hasil PCR dilakukan dengan menggunakan primer 765R dan 1141R. Hasil pembacaan urutan basa fragmen DNA sampel Lactobacillus sp. JR64 menggunakan ABI 3130 Genetic Analyzer diperoleh 945 bp. Berdasarkan hasil pembacaan pohon filogenetik diperoleh informasi bahwa Lactobacillus sp. JR64 merupakan jenis bakteri Lactobacillus plantarum JR64 yang memiliki kesamaan dengan Lactobacillus plantarum UK-3. Hasil perancangan diperoleh data bahwa potensi pasar probiotik cukup luas dan sangat mendukung program pemerinatah untuk peningkatan gizi masyarakat. Adapun jalur proses dipilih fermentasi sistem batch menggunakan galur Lactobacillus plantarum JR64 yang dari uji in-vitro menunjukkan potensi sebagai probiotik. Hasil perancangan kreasi proses pada skala laboratorium 250 ml diperoleh biokonversi substrat terbaik pada konsentrasi glukosa 20 g/l dibandingkan pada konsentrasi glukosa 30 g/l dan 40 g/l yaitu dengan nilai Y x/s : 17,03 % dan Y p/s : 74,72 % . Sedangkan pada pengembangan proses teknologi produksi pada skala pilot plant 75 liter dengan menggunakan media standar glukosa 20 g/l diperoleh biokonversi substrat (yield) sebesar Y x/s : 51,6 % dan Y p/s : 40,1 % dengan laju pertumbuhan maksimum sebesar 0,149 Jam-1. Penggunaan media komplek dapat menghasilkan Y x/s : 62,1 % dan Y p/s : 22,2 % dengan laju pertumbuhan maksimum sebesar 0,148 Jam-1. Pada integrasi proses dipilih menggunakan medium komplek yaitu campuran ektrak jagung dan ekstrak mengkudu. Tambahan komponen mikro sama seperti pada percobaan skala laboratorium. Desain dan formulasi terbaik untuk viabilitas sel Lactobacillus plantarum JR64 direkomendasikan terbuat dari komponen probiotik 15 g dan butter 50 g serta icing sugar 15 g karena selama penyimpanan 28 hari pada suhu refrigeran jumlah sel masih memenuhi persyaratan sebagai probiotik 8,92 x 108 Cfu/ml. Karakteristik galur bakteri asam laktat Lactobacillus plantarum JR64 yang menghasilkan omega-6 memiliki kemampuan menurunkan LDL kolesterol sebesar 19,5% setelah dilakukan pengujian secara in-vivo selama 35 hari dengan menggunakan media tikus putih galur Wistar jantan. Diperoleh kelayakan finansial dari integrasi seluruh tahapan proses skala pilot plant dengan bahan baku fermentasi ekstrak jagung pada kapasitas produksi 2.500 kg/batch dengan waktu operasi 48 jam selama 300 hari kerja. Modal investasi yang diperlukan sebesar Rp. 7.640.244.620,-. Untuk harga jual probiotik yang mengandung omega-6 sebesar Rp. 14.000,-/kg ternyata memberikan IRR 20,74%, NPV Rp. 1.666.053.869,-, dan rasio B/C 1,22 serta PBP selama 4,44 tahun. Kata Kunci : isolat lokal, Lactobacillus plantarum JR64, perancangan proses produksi, omega-6, penurun kolesterol. © Hak cipta milik Institut Pertanian Bogor, Tahun 2012 Hak Cipta dilindungi Undang-Undang 1. Dilarang mengutip atau seluruh karya tulis ini tanpa mencantumkan atau menyebutkan sumber. a. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyususnan laporan, penulisan kritik atau tinjauan suatu masalah. b. Pengutipan tidak merugikan kepentingan yang wajar IPB. 2. Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis dalam bentuk apapun tanpa izin IPB. PERANCANGAN PROSES PRODUKSI PROBIOTIK ISOLAT LOKAL Lactobacillus sp. PENGHASIL OMEGA-6 (ω-6) DAN PENURUN KOLESTEROL Lanjar Sumarno F326010141 Penulisan disertasi ini sebagai salah satu syarat untuk memperolah gelar Doktor pada Program Studi Teknologi Industri Pertanian SEKOLAH PASCA SARJANA INSTITUT PERTANIAN BOGOR BOGOR 2012 ii Ujian Tertutup : Penguji Luar Komisi Pada Ujian Tertutup : 1. Dr.Ir. Mulyorini Rahayuningsih, MSi (Dosen Pengajar Departemen Teknologi Industri Pertanian, Institut Pertanian Bogor) 2. Dr.Ir. Sukardi, MM (Dosen Pengajar Departemen Teknologi Industri Pertanian, Institut Pertanian Bogor) Ujian Terbuka Pada : Penguji Luar Komisi Pada Ujian Terbuka : 1. Dr.Ir. Liesbetini Hartoto, MS (Dosen Pengajar Departemen Teknologi Industri Pertanian, Institut Pertanian Bogor ) 2. Dr.Hadiat, MA (Direktur Kesehatan dan Gizi Masyarakat, BAPPENAS) iv KATA PENGANTAR Dengan mengucapkan rasa syukur kepada Allah SWT karena atas izinNya disertasi yang berjudul : Perancangan Proses Produksi Probiotik Isolat Lokal Lactobacillus sp. Penghasil Omega-6 (Ω-6) dan Penurun Kolesterol dapat diselesaikan. Penulisan disertasi ini dilakukan untuk memenuhi salah satu syarat dalam menyelesaikan program Doktor di Sekolah Pascasarjana, pada Departemen Teknologi Industri Pertanian, IPB. Penelitian ini juga diharapkan untuk mencari terobosan ilmiah yang dapat memberikan kontribusi terhadap perkembangan IPTEK di Indonesia. Sebagai rasa terima kasih atas bantuan dalam penulisan disertasi ini, penulis mengucapkan banyak terima kasih kepada : 1. Prof.Dr.Ir. Djumali Mangunwidjaja, DEA, selaku ketua komisi pembimbing. 2. Prof.Dr.Ir. Anas Miftah Fauzi, M.Eng, Prof. Dr.Ir. Nastiti Siswi Indrasti, Prof.Dr.Ir. Khaswar Syamsu, M.Sc, dan Prof.(R).Dr.Ir. Bambang Prasetya, M.Sc, selaku anggota pembimbing. 3. Dr.Ir.Machfud,MS selaku Ketua Departemen Teknologi Industri Pertanian, Sekolah Pascasarjana IPB. 4. Semua pihak, yang secara langsung maupun tidak langsung telah membantu dalam penulisan disertasi ini. Besar harapan, mudah-mudahan disertasi ini dapat memberikan hasil yang berguna bagi masyarakat pada umumnya. Terima kasih, Wassalam. Bogor, Januari 2012 Penulis Lanjar Sumarno v RIWAYAT HIDUP Penulis dilahirkan di Boyolali, Jawa Tengah pada tanggal 17 Oktober 1964, sebagai anak pertama dari pasangan Sumarno dan Suyamti. Menikah dengan Siti Khotijah dan penulis dikaruniai dua orang anak yakni Ichsan Avianto (23) dan Irmadina Zhahrina (16). Penulis menempuh pendidikan dasar hingga menengah di Simo Boyolali. Setelah lulus dari SMA Al-Islam, Surakarta pada tahun 1984, penulis melanjutkan pendidikan di Teknik Kimia Undip, Semarang. Penulis lulus dari Teknik Kimia tahun 1990 dan bekerja di industri polimer untuk serat poliester sampai tahun 1991. Pada tahun 1992 penulis mulai bekerja sebagai peneliti di Badan Pengkajian dan Penerapan Teknologi. Beberapa karya tulis ilmiah telah dipublikasikan di berbagai jurnal dan berbagai media cetak untuk tulisan semi populer. Pada tahun 1997 penulis melanjutkan sekolah S-2 pada program Teknologi Industri Pertanian IPB dan lulus pada tahun 2001, setelah lulus penulis langsung melanjutkan kembali pada Program Doktor Teknologi Industri Pertanian (TIP), Sekolah Pascasarjana, Institut Pertanian Bogor. Bogor, Januari 2012 Lanjar Sumarno F326010061 vi DAFTAR ISI DAFTAR TABEL ... ………………………………............................................. ix DAFTAR GAMBAR ..………………………....…............................................. x DAFTAR LAMPIRAN ……... ………………………......................................... xiii BAB I. PENDAHULUAN 1.1. Latar Belakang....................……........………..……….......………….... 1 1.2. Tujuan Penelitian............................…………………………………...... 3 1.3. Manfaat Hasil Penelitian....................………………………………….. 4 1.4. Ruang Lingkup Penelitian.........………………………………………... 4 BAB II. TINJAUAN PUSTAKA 2.1. Perancangan Proses...........................……...………………………….... 5 2.2. Probiotik.........................................................………………………….. 9 2.3. Bakteri Asam Laktat......…………………………………….………..... 12 2.4. Manipulasi Substrat Karbon.................................................................... 13 2.4.1. Jagung (Zea mays L)........…………………………………………......... 14 2.4.2. Sari Buah Mengkudu.... ……………………………………………...... 16 2.5. Asam Lemak Esensial............................ ...…………………………...... 16 2.6. Struktur dan Metabolisme Kolesterol dalam Tubuh.......……………..... 18 2.6.1. Hiperkolesterolemia......…………..…………………………………..... 19 2.6.2. Lipoprotein.......................………………………………….................... 20 2.6.3. Metabolisme Trigliserida...……………………..…………………….... 21 2.7. Pertumbuhan Mikrobial............ ……………………………………....... 22 2.8. Analisis Kelayakan Finansial................................................................... 23 vii BAB III. METODOLOGI PENELITIAN 3.1. Kerangka Pemikiran ………………………….....................…………. 26 3.2. Bahan dan Alat ………………………………………………............. 28 3.3. Tahapan Penelitian …………………………........................................ 29 3.3.1. Penelitian Tahap 1 : Analisa peluang dan permasalahan ...................... 31 3.3.2. Penelitian Tahap 2 : Kreasi proses ........................................................ 33 3.3.3. Penelitian Tahap 3 : Pengembangan proses .......................................... 34 3.3.4. Penelitian Tahap 4 : Kelayakan Finansial Perancangan Teknologi Proses Produksi Probiotik Basis Data hasil Percobaan Skala Pilot Plant....................................................................................................... 37 BAB IV. HASIL DAN PEMBAHASAN 4.1. Analisis Peluang.................................................................................... 40 4.2. Analisa Permasalahan............................................................................ 42 4.2.1. Pemanfaatan Isolat Lokal...................................................................... 43 4.2.2. Karakterisasi Potensi Isolat Lokal.......................................................... 43 4.2.3. Identifikasi Lactobacillus sp. dengan Molekuler.................................. 48 4.2.4. Pemilihan Bahan Baku.......................................................................... 51 4.2.5. Pemilihan Jalur Proses.................................................. ........................ 52 4.3. Kreasi Teknologi Proses Produksi........................................................ 53 4.3.1. Profil Fermentasi Batch Skala Laboratorium....................................... 53 4.3.2. Laju Pertumbuhan Spesifik Maksimum (µ) Skala Laboratorium......... 57 4.3.3. Efisiensi Fermentasi (Yp/s dan Yx/s) Skala Laboratorium................... 59 4.4. Pengembangan Proses Produksi Probiotik Skala Pilot Plant................ 62 4.4.1. Pengujian Sistem Fementasi Batch Pada Skala Pilot Plant.................. 64 viii 4.4.2. Laju Pertumbuhan Spesifik Maksimum (µ max) Percobaan Skala 67 Pilot Plant.............................................................................................. 4.4.3. Efisiensi Fermentasi (Yp/s dan Yx/s) Skala Pilot Plant........................ 68 4.5. Desain dan Formulasi Produk Krem Probiotik.................................... 70 4.6. Karakterisasi Produk Dengan Uji In-Vivo............................................ 73 4.6.1. Aktivitas Asimilasi Kolesterol.............................................................. 73 4.6.2. Uji In-Vivo Media Tikus....................................................................... 73 4.7. Analisis Kelayakan Perancangan Proses............................................... 84 4.7.1. Simulasi Model Perancangan Proses..................................................... 84 4.7.2. Analisis Kelayakan Finansial................................................................ 88 BAB V. KESIMPULAN DAN SARAN 5.1. Kesimpulan............................................................................................ 91 5.2. Saran....................................................................................................... 92 DAFTAR PUSTAKA......................................................................................... 93 ix DAFTAR TABEL Tabel 1. Kandungan Vitamin Jagung................................................................ 15 Tabel 2. Komposisi Kimia Jagung..................................................................... 15 Tabel 3. Pengelompokkan Asam Lemak Tak Jenuh......................................... 17 Tabel 4. Kadar Kolesterol Total Normal Tikus................................................. 18 Tabel 5. Pengelompokkan Hiperkolesterolemia................................................ 19 Tabel 6. Kadar LDL Normal Pada Manusia dan Hewan................................... 20 Tabel 7. Data Hasil Isolasi dan Uji Bakteri Asam Laktat.................................. 43 Tabel 8. Data Efisiensi Fermentasi Media Glukosa dan Media Komplek Skala Pilot Plant................................. ...................................... Tabel 9. 69 Hasil Analisa Asam Laktat, Asam Linoleat, Gula Reduksi dan Protein................................................................................................. 72 Tabel 10. Hasil Perhitungan Neraca Bahan dan Energi Produksi Probiotik..... 87 Tabel 11. Hasil Analisis Kelayakan Finansial Produk Probiotik....................... 89 Tabel 12. Perbandingan Harga Produk Probiotik yang Dirancang dengan Harga Produk Makanan Kesehatan Probiotik yang ada Dipasaran..... Tabel 13. 89 Analisis Sensitivitas Kelayakan Finansial Produksi Probiotik yang Mengandung Omega-6........................................................................ 90 xi DAFTAR GAMBAR Gambar 1. Aliran Informasi dalam Rancang Bangun Proses. .......................... 6 Gambar 2. Tahapan Perancangan Proses Kimia................................................ 8 Gambar 3. Level pengembangan probiotik ....................................................... 11 Gambar 4. Tanaman jagung dan buah jagung .................................................. 14 Gambar 5. Tahapan Perancangan Proses Produksi Probiotik Penghasil Omega-6 dan Penurun Kolesterol.................................................... Gambar 6. 30 Perancangan Proses Produksi Probiotik Penghasil Omega-6 dan Penurun Kolesterol............................................................................ 39 Gambar 7. Hasil Pengujian Anti Mikroba Lactobacillus sp. ............................ 44 Gambar 8. Hasil Pengujian Anti Mikroba Lactobacillus sp. .......................... 45 Gambar 9. Kemampuan Tumbuh Isolat Lactobacillus sp. Pada Media Garam Empedu 10 %.................................................................................... Gambar 10. 46 Kemampuan Tumbuh Isolat Lactobacillus sp. Pada Media pH Rendah............................................................................................... 47 Gambar 11. Hasil Amplifikasi Gen 16S rRNA..................................................... 49 Gambar 12. Pohon Filogenetik Isolat Lactobacillus sp. JR64.............................. 50 Gambar 13. Kurva Hubungan Antara Waktu Fermentasi dengan Konsumsi Glukosa, Pembentukan Sel, Asam Laktat dan Asam Linoleat pada Media Glukosa GL-20....................................................................... Gambar 14. 54 Kurva Hubungan Antara Waktu Fermentasi dengan Konsumsi Glukosa, Pembentukan Sel, Asam Laktat dan Asam Linoleat pada Media Glukosa GL-30,...................................................................... 55 xi Gambar 15. Kurva Hubungan Antara Waktu Fermentasi dengan Konsumsi Glukosa, Pembentukan Sel, Asam Laktat dan Asam Linoleat pada Media Glukosa GL-40....................................................... Gambar 16. Kurva Hubungan antara Waktu Fermentasi dengan Ln Xavg / (1Xavg) pada Media Glukosa 20 (GL-20)................................. Gambar17. 58 Kurva Hubungan Antara Waktu Fermentasi dngan Ln Xavg / (1 –Xavg) Pada Media Glukosa 40 (GL-40)...................................... Gambar 19. 57 Kurva Hubungan Antara Waktu Fermentasi dengan Ln Xavg / (1 -Xavg) Pada Media Glukosa 30 (GL-30).................................... Gambar 18. 56 58 Kurva Hubungan Antara Jumlah Penggunaan Substrat (So-S) dan Jumlah Asam Linoleat yang Terbentuk (Pt-Po) pada Media GL-20 Tiap Satuan Waktu.............................................................. Gambar 20. 60 Kurva Hubungan Antara Jumlah Penggunaan Substrat (So-S) dan Junlah Sel yang Terbentuk (Xt-Xo) pada Media GL-20 Tiap Satuan Waktu.................................................................................. Gambar 21. Alternatif Perancangan Teknologi Proses Produksi dengan Bahan Baku Glukosa...................................................................... Gambar 22. Alternatif 62 Perancangan Teknologi Proses Produksi dengan Bahan Baku Ekstrak Jagung dan Ekstrak Mengkudu.................... Gambar 23. 61 63 Kurva Hubungan Antara Waktu Fermentasi dengan Konsumsi Glukosa, Jumlah Sel, Asam Laktat dan Asam Linoleat pada Media Glukosa 20 g/l pada Skala 75 L.......................................... Gambar 24. 65 Kurva Hubungan Antara Waktu fermentasi dengan Konsumsi Ekstrak Jagung, Jumlah Sel, Asam Laktat dan Asam Linoleat pada Media Komplek Skala 75 L................................................... 66 xii Gambar 25. Kurva Hubungan antara Waktu Fermentasi dengan Ln Xavg / (1Xavg) pada Media Glukosa-20 Skala Pilot Plant........................... Gambar 26. 67 Kurva Hubungan antara Waktu Fermentasi dengan Ln Xavg / (1 –Xavg) Pada Media Komplek Skala Pilot Plant............................. 68 Gambar 27. Hasil Formulasi Krem Probiotik.................................................... 70 Gambar 28. Jumlah L. Plantarum JR64 Formula Krem Selama Penyimpanan. 71 Gambar 29. Perubahan pH Formula Krem hari ke 0 dan 28 hari...................... 72 Gambar 30. Berat Pakan dan Tempat Pakan Tikus Serta Cara Minum Ad libitum............................................................................................. 74 Gambar 31. Perubahan Berat Badan Tikus Selama Perlakuan.......................... 75 Gambar 32. Rata-rata Jumlah Konsumsi Pakan Selama Perlakuan................... 76 Gambar 33. Perubahan Kadar Kolesterol Total Darah Hari ke 0 dan 35 Hari... 77 Gambar 34. Perubahan Kadar Trigliserida Darah Hari ke 0 dan 35 Hari.......... 78 Gambar 35. Perubahan Kadar HDL Kolesterol Darah Hari ke 0 dan 35 Hari... 79 Gambar 36. Perubahan Kadar LDL Kolesterol Darah Hari ke 0 dan 35 Hari... 80 Gambar 37. Kadar Lemak pada Pakan Kontrol Negatif (feed -) dan Kontrol Positif (feed +) Serta Kadar Lemak Feses Hari ke 35.................... 81 Gambar 38. Perubahan Jumlah Mikroba Total hari ke 0 dan 35 hari........... 83 Gambar 39. Perubahan Jumlah Bakteri Asam Laktat hari ke 0 dan 35 hari..... 84 Gambar 40. Diagram Alir Produksi Probiotik dari Isolat Lokal Lactobacillus plantarum JR64 Penghasil Omega-6 dan Penurun Kolesterol....... 86 xiii DAFTAR LAMPIRAN Lampiran 1. Prosedur Identifikasi Molekuler Lactobacillus sp. .................. 100 Lampiran 2. Penentuan Kadar Asam Linoleat Metode HPLC ....................... 104 Lampiran 3. Analisa Kadar Glukosa dan Asam Laktat Metode HPLC ......... 106 Lampiran 4. Peremajaan dan Pembuatan Starter ........................................... 109 Lampiran 5. Prosedur Analisis dan Pengujian Sample Fermentasi ............... 109 Lampiran 6. Pembuatan Krem Probiotik ....................................................... 111 Lampiran 7. Pengujian Asimilasi Kolesterol ................................................. 112 Lampiran 8. Berbagai Perlakuan Terhadap Hewan Coba Tikus Putih .......... 113 Lampiran 9. Metoda Pengukuran Kadar Kolesterol Total, Trigliserida, HDL dan LDL ........................................................................... Lampiran 10. Hasil Pengujian Kemampuan Tumbuh Lactobacillus sp. Pada Berbagai Konsentrasi Garam Empedu....................................... Lampiran 11. 116 Hasil Pengujian Kemampuan Tumbuh Lactobacillus sp. Pada pH Rendah. .............................................................................. Lampiran 12. 114 116 Hasil Penentuan Urutan Basa (Sekuensing) Fragmen 16S rDNA dan Kedekatan (Homology) Isolat Genus Lactobacillus Lampiran 13. sp. JR64 yang Dibandingkan dengan Gen Spesies Lainnya. .... 116 Hasil 117 BLAST Urutan Fragmen 16S rDNA Isolat Lactobacillus sp. JR64 Terhadap Data Base 16S rDNA. ......... Lampiran 14. Lampiran 15. Lampiran 16. Lactobacillus plantarum strain UK-3 16S Ribosomol RNA Gene, Partial Sequence. ............................................................. Kurva Hubungan Berat Sel Kering dengan Jumlah Sel (Log cfu/ml) Pada Fermentasi Skala Laboratorium. ........................ 118 119 Kurva Hubungan Berat sel Kering dengan Jumlah Sel (Log cfu/ml) pada Fermentasi Skala Pilot Plant 75 Liter. ................. 119 Lampiran 17. Data Hasil Pengukuran Berat Badan Tikus ............................... 120 Lampiran 18. Data Hasil Pengukuran Konsumsi Pakan .................................. 121 Lampiran 19. Data Hasil Pengukuran Kolesterol Total Serum Darah Tikus ... 122 Lampiran 20. Data Hasil Pengukuran Trigliserida Serum Darah Tikus .......... 123 xiii Lampiran 21. Data Hasil Pengukuran HDL Serum Darah Tikus .................... 124 Lampiran 22. Data Hasil Pengukuran LDL Serum Darah Tikus ..................... 125 Lampiran 23. Rancangan Peralatan Produksi Probiotik Lactobacillus plantarum JR64 Penghasil Omega-6 dan Penurun Kolesterol .. Lampiran 24. Keluaran Sistem Simulasi Analisis Kelayakan Investasi Probiotik dan Omega-6 pada Kondisi Awal ............................. Lampiran 25. 126 127 Keluaran Sistem Simulasi Analisis Kelayakan Investasi Probiotik dan Omega-6 pada Kondisi Terjadi Kenaikan Harga Jagung dan Mengkudu 100 Persen ............................................ Lampiran 26. 128 Keluaran Sistem Simulasi Analisis Kelayakan Investasi Probiotik dam Omega-6 Pada Kondisi Penurunan Produksi 30 Persen ........................................................................................ Lampiran 27. 129 Keluaran Sistem Simulasi Analisis Kelayakan Investasi Probiotik dan Omega-6 pada Kondisi Penurunan Harga Probiotik .................................................................................... 130 Lampiran 28. Analisis Kelayakan Investasi ..................................................... 131 Lampiran 29. Asumsi Data Perhitungan Neraca Masa dan harga peralatan ... 132 Lampiran 30. Daftar Harga Bahan Baku dan Asumsi Perhitungan Kelayakan.................................................................................. 133 Lampiran 31. Data Hasil Perhitungan Modal Kerja......................................... 134 Lampiran 32. Data Rincian Perhitungan Modal Kerja ................................... 135 Lampiran 33. Data Hasil Perhitungan Biaya Peralatan. ................................... 136 Lampiran 34. Data Hasil Perhitungan Penyusutan Pealatan ............................ 137 Lampiran 35. Rencana Pembayaran Cicilan Modal Investasi dan Modal 138 Kerja ......................................................................................... Lampiran 36. Struktur Pembiayaan Investasi Peralatan Produksi ................... 138 Lampiran 37. Dokumentasi Proses Pengujian Skala Pilot Plant 75 L ............. 139 BAB I PENDAHULUAN 1.1. Latar Belakang Produk makanan kesehatan di Indonesia berkembang dengan cepat pada saat ini. Hal ini antara lain didukung dengan semakin meningkatnya pengetahuan masyarakat tentang manfaat makanan kesehatan. Selanjutnya masyarakat Indonesia mulai mengalami perubahan gaya hidup dengan memasukkan makanan kesehatan dalam menu makanannya. Salah satu jenis produk makanan kesehatan yang dikenal luas di Indonesia adalah berbagai macam produk makanan probiotik. Makanan kesehatan probiotik merupakan produk yang dihasilkan dengan memanfaatkan aktivitas bakteri. Kelompok bakteri asam laktat (BAL) merupakan salah satu kultur probiotik yang banyak digunakan. Sebagian besar galur BAL tidak patogen, bahkan beberapa galur telah mendapatkan status Generally Recognized As Safe (GRAS) dari Food and Drug Agency (FDA). Bakteri asam laktat mampu tumbuh di jalur intestin dan dapat menekan pertumbuhan bakteri patogen enterik. Sifat inilah yang dimanfaatkan untuk menjaga kesehatan tubuh dan potensi ini yang menjadi pertimbangan bakteri asam laktat digunakan sebagai probiotik. Probiotik merupakan mikroba hidup yang mempunyai pengaruh menguntungkan bagi kesehatan tubuh inang dengan memperbaiki keseimbangan mikroflora usus. Akan tetapi, tidak semua bakteri asam laktat bersifat probiotik. Untuk menjadikan bakteri asam laktat sebagai probiotik diperlukan beberapa persyaratan diantaranya : merupakan penghuni tetap jalur pencernaan manusia, tetap hidup walaupun melewati jalur pencernaan, resisten terhadap asam lambung, resisten terhadap beberapa antibiotik, resisten terhadap lisosim, dapat tumbuh pada intestin dan memiliki kemampuan menempel pada sel epitel intestin manusia, mampu menghasilkan komponen anti mikrobia lain disamping asam (bakteriosin, diasetil) yang efektif menghambat bakteri lain yang tidak dikehendaki khususnya bakteri patogen (Daniel et al., 2006). 2 Pemanfaatan aktivitas probiotik dalam kaitan dengan pengendalian penyakit pada manusia dan ternak oleh aktivitas probiotik telah dilakukan sejak lama. Menurut Fuller (1986), secara garis besar terdapat tiga model kerja probiotik yaitu: 1. Menekan populasi mikroba melalui kompetisi dengan memproduksi senyawa- senyawa antimikroba atau melalui kompetisi nutrisi dan tempat pelekatan di dinding intestinum. 2. Mengubah metabolisme mikrobial dengan meningkatkan atau menurunkan aktivitas enzim. 3. Menstimulasi imunitas melalui peningkatan kadar antibodi atau aktivitas makrofag, Sedangkan efektivitas probiotik ditentukan oleh kemampuannya dalam memberikan efek menyehatkan, sifatnya yang tidak patogen, tidak toksik dan juga karena kemampuannya dapat bertahan dan melakukan kegiatan metabolisme dalam usus. Penelitian yang berkaitan dengan usaha penggalian isolat lokal yang berpotensi sebagai kandidat probiotik perlu dilakukan. Hal ini dilakukan untuk mengantisipasi meningkatnya permintaan terhadap makanan kesehatan probiotik dan mengurangi ketergantungan terhadap produk-produk makanan kesehatan probiotik yang dihasilkan produsen luar negeri dan impor. Salah satu sumber isolat lokal potensial adalah berasal dari badeg pace atau tuak mengkudu. Badeg pace adalah minuman tradisional daerah Ponorogo yang berupa sari buah mengkudu yang difermentasi secara spontan dan memiliki khasiat terhadap kesehatan. Badeg pace diduga memiliki potensi sebagai sumber isolat potensial BAL probiotik, yaitu Lactobacillus sp. Dugaan ini didasari atas tingkat keasaman badeg pace yang tinggi, sehingga memungkinkan ditemukannya isolat Lactobacillus sp. tersebut. Isolat Lactobacillus sp. yang diperoleh perlu dilakukan pengujian secara in-vitro dan in-vivo. Pengujian secara in-vivo dilakukan dengan menggunakan hewan uji berupa tikus putih. Tikus merupakan hewan menyusui yang mempunyai peranan penting dalam kehidupan manusia, baik menguntungkan maupun merugikan. Sifat menguntungkan terutama dalam hal penggunaannya sebagai hewan percobaan di laboratorium, misalnya tikus putih (Rattus norvegicus galur albino) atau mencit putih (Mus musculus galur albino). Tikus sebagai hewan omnivora dapat mengkonsumsi semua jenis makanan yang dikonsumsi oleh manusia sehingga diasumsikan memiliki kesamaan saluran pencernaan dan proses metabolismenya. 3 Apabila isolat Lactobacillus sp. hasil isolasi telah memenuhi syarat sebagai probiotik, maka selanjutnya dilakukan desain produk yang dapat diterima oleh konsumen. Produk probiotik dalam bentuk krem biskuit merupakan salah satu alternatif produk karena biskuit banyak diminati masyarakat baik anak-anak maupun orang dewasa sebagai makanan selingan. Disamping itu, produk probiotik dari isolat Lactobacillus sp. dalam bentuk minuman perlu dikembangkan karena pada minuman probiotik yang telah dikenal masyarakat selama ini, menggunakan galur probiotik yang bukan berasal dari isolat lokal. Pada penelitian ini keterbatasan pertumbuhan isolat Lactobacilus sp. sebagai agensia probiotik pada media asal, yaitu sari buah mengkudu, dicoba diatasi melalui kajian perancangan proses produksi dengan cara mengkultivasikan pada media pertumbuhan yang mengandung nutrien yang cukup yang dilanjutkan dengan formulasi produk. I.2. Tujuan Penelitian Penelitian ini bertujuan untuk melakukan perancangan proses produksi probiotik isolat lokal Lactobacillus sp. penghasil omega-6 (ω-6) dan penurun kolesterol. Adapun tujuan penelitian secara spesifik untuk mendapatkan data percobaan sebagai dasar perancangan dijabarkan sebagai berikut : 1. Mendapatkan data hasil pengujian secara in-vitro dan in-vivo pengaruh konsumsi Lactobacillus sp. penghasil omega-6 (ω-6) dan penurun kolesterol. 2. Mendapatkan teknologi proses produksi menggunakan isolat lokal Lactobacillus sp. yang memiliki potensi untuk dikembangkan sebagai agensia probiotik penghasil omega-6 (ω-6) dan penurun kolesterol dengan menggunakan media standar dan media komplek. 3. Mendapatkan data hasil perancangan dan analisis kelayakan finansial proses produksi probiotik menggunakan isolat lokal Lactobacillus sp. penghasil omega-6 (ω-6) penurun kolesterol. dan 4 1.3. Manfaat Hasil Penelitian Secara umum hasil penelitian ini diharapkan adanya penemuan baru yang dapat memberikan kontribusi terhadap pengembangan ilmu pengetahuan dan teknologi. Adapun manfaat khusus dari perancangan proses produksi probiotik ini diharapkan : Menjadi referensi bagi para akademisi dan peneliti dalam mengembangkan teknologi proses produksi probiotik penghasil omega-6 (ω-6) dan penurun kolesterol. Digunakan sebagai model bagi pelaku bisnis untuk mengembangkan agroindustri yang berbasis pada teknologi fermentasi. 1.4. Ruang Lingkup Penelitian Untuk mendapatkan hasil yang jelas dan terarah, maka ruang lingkup perancangan proses ini meliputi : 1. Melakukan analisis peluang dan permasalahan. Analisis potensi pasar dan kebijakan yang mendukung. Pemilihan alternatif proses dan penggunaan bahan baku produksi. Penggunaan isolat dari hasil isolasi dan identifikasi galur mikroba Lactobacillus sp. dari tuak mengkudu dan buah mengkudu matang sebagai kondidat potensial probiotik. 2. Kreasi proses dilakukan dengan cara percobaan skala laboratorium untuk menentukan jalur proses yang akan digunakan sebagai dasar perancangan. Percobaan laboratorium meliputi fermentasi sistem curah menggunakan isolat lokal pada berbagai konsentrasi substrat fermentasi. 3. Pengembangan proses. Integrasi teknologi proses produksi dengan melakukan percobaan pada skala pilot plant 75 L menggunakan media standar dan media komplek. Desain dan formulasi produk dalam bentuk krem. Karakterisasi produk melalui pengujian secara in-vivo pengaruh kemampuan Lactobacillus sp. terhadap penurunan kadar kolesterol. 4. Analisis kelayakan proses. Melakukan analisis kelayakan finansial yang berbasis pada teknologi proses produksi probiotik penghasil omega-6 (ω-6) dan penurun kolesterol. BAB II TINJAUAN PUSTAKA 2.1. Perancangan Proses Perancangan yang disusun oleh Seider et al., (1999) merupakan proses kreatif dan interdisiplin untuk memecahkan masalah yang mencakup pendefinisian dan penyelesaian masalah dengan menggunakan prinsip metode ilmiah dan informasi teknis untuk menentukan struktur, mesin, proses atau sistem baru yang memenuhi fungsi yang diinginkan dengan nilai ekonomis dan efisiensi tinggi. Proses perancangan pada intinya merupakan kegiatan yang berurutan secara sistematis dan terpadu dalam bentuk sintesis yaitu bagaimana suatu masalah yang sulit dan komplek diurai menjadi beberapa masalah yang lebih mudah kemudian dilanjutkan dengan menggabungkan dari masing-masing pemecahannya menjadi pemecahan masalah aslinya. Menurut Edgar dan Himmelblau (2001) aliran informasi dalam rancang bangun proses disajikan pada Gambar 1. Analisis dari rancang bangun pabrik meliputi desain proses, pemilihan dari bahan dan peralatan proses, preliminary plant layout dan penentuan lokasi untuk mengestimasi tenaga kerja, bangunan dan harga tanah dan manufacturing cost analysis. Sedangkan menurut Douglas (1988) membagi rancang bangun keteknikan menjadi 5 tingkat dalam engineering design yang meliputi (1) ratio estimate berdasarkan pada data harga awal dengan prosentase kesalahan + 40%, (2) study estimates berdasarkan pengetahuan tentang alat-alat utama dengan prosentase kesalahan + 25%, (3) preliminary estimate berdasar data yang cukup untuk estimasi pada anggaran dengan prosentase kesalahan + 12%, (4) definitive estimate berdasarkan pada keseluruhan data yang lengkap tetapi belum dilengkapi dengan gambar dan spesifikasi alat dengan prosentase kesalahan + 6%, (5) detailed estimate (contractor’s estimate) berdasarkan gambar teknik yang lengkap, spesifikasi alat, survei lokasi dengan prosentase kesalahan + 3%. Perancangan proses dilakukan karena adanya peluang untuk menghasilkan produk yang menguntungkan dan adanya permasalahan langsung dari masyarakat (Seider et al., 1999). Permasalahan dirumuskan secara spesifik berdasarkan informasi dari kajian pustaka. Informasi yang dimaksud berkaitan dengan bahan baku, skala proses, permintaaan pasar, harga jual produk dan lain-lain. Invensi dalam perancangan proses dimulai dengan membuat pernyataan masalah sederhana, kemudian dilanjutkan pembentukan tim perancang, pengumpulan informasi, kreasi proses untuk menyelesaikan masalah spesifik. 6 Tujuan dan spesifikasi dari pengguna Diagram alir Sintesis Flowsheeting: • Penyelesaian neraca massa dan energi Penelitian, literatur • Estimasi parameter • Data smoothing dan rekonsiliasi • Sizing dan Costing Data base Optimasi Diagram alir optimal Harga alat dan perhitungan modal Rate of return, NPV, Net B/C Perhitungan estimasi sifat fisik dan kimia Kondisi operasi dan rancang bangun optimal Gambar 1. Aliran informasi dalam rancang bangun proses. Edgar & Himmelblau (2001) Kreasi proses dilakukan setelah permasalahan dirumuskan dan kajian pustaka dilaksanakan seperti pada Gambar 2. Pada Gambar 2 ditunjukkan kreasi proses dilakukan melalui pengumpulan data sekunder hasil penelitian dan melakukan percobaan laboratorium serta sintesis proses. Kreasi proses diakhiri dengan analisis keuntungan pasar. Proses dihentikan ketika harga produk melebihi harga bahan baku. Pengembangan proses dilakukan terhadap proses yang memberikan keuntungan. Tim perancang membuat diagram alir proses yang rinci disertai dengan neraca massa, neraca energi dan daftar peralatan. Inti dari perancangan proses adalah menemukan pilihanpilihan proses yang layak dikembangkan sehingga pemilihan proses merupakan titik awal yang cukup menentukan Mangunwidjaja dan Suryani (1994). Perancangan proses berhubungan erat dengan kegiatan sintesis yang merupakan kegiatan yang berurutan dan terpadu. Dalam sintesis dilakukan pemilihan proses dengan mengikuti kaidah umum seperti 7 mempertimbangkan biaya yang rendah, aman, memenuhi persyaratan lingkungan dan mudah mengoperasikannya. Dua teknik dalam sintesis proses adalah teknik heuristic dan algoritma. Teknik algoritma adalah analisis sederhana untuk menganalisis masalah komplek dengan cara pengamatan susunan terstruktur, sedangkan teknik heuristic adalah teknik pemilihan proses berdasarkan logika dan informasi dasar (Rudd dan Watson, 1968). Sintesis proses secara heuristic merupakan pengambilan keputusan bedasarkan teori dan penyelesaian yang dapat dipercaya: rule of thumb, spekulasi, dan subyektif (Seider et al., 1999). Teknik heuristic dalam sintesis proses adalah proses penjabaran sejumlah langkah praktis untuk mencapai tujuan kegiatan. Beberapa teknik heuristic dalam sintesis proses dikembangkan oleh Rudd dan Watson (1968), Douglas (1988) dan Seider et al., 1999). Sintesis proses menurut Rudd dan Watson (1968) meliputi: (1) pemilihan jalur reaksi proses, (2) alokasi bahan atau pereaksi, (3) pertimbangan teknik pemisahan atau proses hilir, (4) pemilihan operasi pemisahan dan, (5) integrasi atau pemaduan rancangan satu sampai empat. Sedangkan menurut Douglas (1988) sintesis proses meliputi: (1) teknik reaksi/proses, (2) analisis input-output, (3) pengalokasian output dan, (4) operasi pemisahan dan jaringan penukar panas. Sintesis proses menurut Seider et al., (1999) meliputi: (1) penghilangan/memperkecil perbedaan, (2) distribusi bahan, (3) teknik pemisahan, (4) eliminasi dan (5) integrasi. Untuk mendapatkan hasil perancangan yang terbaik maka langkah awal perlu dilakukan perhitungan neraca massa dan neraca energi. Neraca massa adalah dasar dari sebuah process design (rancang bangun proses). Neraca massa yang dibuat untuk seluruh proses akan menentukan jumlah dari bahan baku yang diperlukan dan hasil (produk) yang diperoleh. Kapasitas pabrik biasanya ditentukan berdasarkan permintaan pasar atau kapasitas minimum yang menguntungkan. Dari neraca massa yang sudah dibuat dapat dibuat neraca energi untuk menentukan energi yang harus disediakan dari sebuah sistem utilitas. Selanjutnya dapat dibuat flow sheeting dari peralatan yang dipilih dan dilakukan proses perhitungan dan pemilihan alat. Langkah selanjutnya adalah rancang bangun pipa dan instrumentasi sehingga dapat dibuat Process Engineering Flow Diagram (PEFD). Analisa ekonomi dan penentuan harga dilakukan supaya mendapatkan gambaran kelayakan desain. 8 ANALISIS PELUANG DAN PERMASALAHAN RANCANGAN PROSES KREASI PROSES Pengumpulan data base untuk kreasi proses (Data sekunder hasil penelitian) Melakukan Percobaan Sintesis Proses Tidak Apakah ada keuntungan kasar? Tolak Sintesis Detail Proses (Metoda Algoritma) PENGEMBANGAN PROSES Ya Pembuatan Diagram Alir Kajian Pengendalian Proses Integrasi Proses (Process Engineering Flow Diagram) Sintesis struktur pengendalian, Analisis pengendalian, Simulasi dinamik. Simulasi Menyusun Detail Data Base Percobaan Pilot Plant Tidak Apakah Proses Menjanjikan Tolak Ya Detail desain, ukuran peralatan, estimasi biaya modal, analisis keuntungan. Tidak Apakah Proses Menguntungkan Tolak Ya Final Desain Konstruksi Startup Gambar 2. Tahapan Perancangan Proses Kimia (Seider et al.,1999) Operasi 9 2.2. Probiotik Probiotik telah didefinisikan dalam beberapa pengertian sesuai dengan keunggulan yang dimilikinya, diantaranya probiotik diartikan sebagai sediaan sel mikroba atau komponen dari sel mikroba yang memiliki pengaruh menguntungkan pada kesehatan dan kehidupan inangnya (Salminen et al., 1999). Sejumlah penelitian mengungkapkan beberapa pengaruh positif bagi kesehatan dari probiotik dan asam linoleat. Kelompok peneliti telah menemukan adanya sel probiotik Bifidobacteria memiliki sifat antimutagenik, sedangkan Nagao et al., (2000) menyatakan adanya pengaruh Lactobacillus casei terhadap sistem imunitas tubuh. Penelitian pengaruh terhadap perubahan penurunan kolesterol serum darah telah dilakukan oleh Sugiyama et al., 1997 yang menyatakan bahwa adanya pengaruh omega-6 terhadap penurunan kolesterol serum darah tikus. Penurunan kolesterol terjadi melalui penghambatan aktivitas enzim 3-hidroksi-3-metilglutaril koenzim A reduktase, degradasi kolesterol menjadi senyawa koprostanol dan dekonjugasi garam empedu. Bakteri asam laktat juga dapat memperbaiki keseimbangan flora usus jika dikonsumsi dalam keadaan hidup dan jumlah memadai (Fuller, 1986). Penelitian Sirilun et al., (2010) mengungkapkan adanya kemampuan Lactobacillus plantarum untuk menurunkan kolesterol hingga 25,41 %, sedangkan Guo et al., (2011) menemukan potensi Lactobacillus plantarum dalam menghilangkan kolesterol dalam darah. Upaya mereduksi kolesterol dalam darah juga dilakukan oleh El-shafie et al., (2009) dengan menggunakan galur tunggal Lactobacillus plantarum yang terbukti dapat menurunkan kolesterol dalam darah. Tanpa keberadaan bakteri probiotik manusia tidak akan memiliki keseimbangan mikroflora di dalam saluaran cerna. Dengan menambahkan probiotik yang merupakan kumpulan mikroorganisme yang mampu menguraikan bahan-bahan organik kompleks pada pakan menjadi bahan organik sederhana, sehingga mudah diserap oleh saluran pencernaan ke dalam tubuh sebagai bahan sari-sari makanan untuk membangun tubuh dengan sempurna. Probiotik merupakan produk campuran antara berbagai mikroorganisme lain yang dapat mendegradasi serat maupun protein dan lipid (Haryanto, 2002). Penelitian tentang produk probiotik kebanyakan memanfaatkan isolat klinis bakteri dengan asumsi isolat klinis dapat bertahan pada kondisi di dalam saluran pencernaan manusia. Menurut Chou dan Weimer (1999), stres terhadap probiotik dimulai dari lambung yaitu bakteri ini harus mampu bertahan terhadap pH yang sangat rendah (sekitar 3,0). Waktu yang dibutuhkan mulai masuk sampai keluar lambung adalah 90 menit. Setelah 10 probiotik berhasil melalui lambung, bakteri ini akan memasuki saluran usus bagian atas dimana garam empedu disekresikan. Setelah perjalanan melalui lingkungan yang sulit, probiotik harus mampu mengkolonisasi saluran usus bagian bawah. Beberapa hasil penelitian menunjukkan bahwa Lactobacillus sp. sebagai bibit probiotik mempunyai kemampuan menurunkan kolesterol darah dan dapat menyerang kolesterol di dalam saluran pencernaan hewan percobaan. Salah satu mekanisme penurunan kolesterol tersebut adalah bakteri asam laktat dapat mendegradasi kolesterol menjadi koprostanol yaitu sebuah sterol yang tidak dapat diserap oleh usus. Kemudian koprostanol dan sisa kolesterol dikeluarkan bersama-sama tinja hewan atau manusia. Dengan demikian jumlah kolesterol yang diserap tubuh menjadi rendah. Galur bakteri asam laktat diduga mampu menempel di dinding usus tikus, berkembang biak dan melakukan peran yang menguntungkan kesehatan lewat dekonjugasi garam empedu. Galur bakteri asam laktat juga memproduksi enzim yang disebut bile salt hydrolase (BSH). Dekonjugasi garam empedu akan meningkatkan asam empedu terkonjugasi yang tidak mudah diserap dari usus halus dibanding asam empedu konjugasi. Asam empedu dekonjugasi akan terbuang lewat tinja, sehingga jumlah asam empedu yang kembali ke hati akan berkurang. Untuk menyeimbangkan jumlah asam empedu tubuh akan mengambil kolesterol tubuh sebagai prekursor. Proses itu pada gilirannya akan menurunkan kadar kolesterol darah secara keseluruhan. Makanan dan minuman kesehatan yang memanfaatkan aktivitas probiotik adalah produk kesehatan yang mengandung BAL yang dapat bertahan hidup dalam keasaman lambung dan menghambat mikroba patogen. Minuman probiotik harus mempunyai pH yang rendah maksimal 4,5 dengan kandungan total asam minimal 0,85 % dan jumlah bakteri asam laktat minimal 108 sel/ml (Speck, 1978). Beberapa keuntungan yang dapat diperoleh dengan mengkonsumsi makanan kesehatan probiotik adalah sebagai berikut : Melawan pertumbuhan mikroflora usus yang tidak menguntungkan. Mengontrol infeksi usus yang disebabkan oleh bakteri patogen. Mengurangi kadar kolesterol darah dan gangguan jantung (Ray, 1996; Sanders, 2000) Mempengaruhi respon imun (Ray, 1996; Sanders, 2000) Bersifat antimutagenik dan antikarsinogenik (Salminen et al., 1999; Sanders, 2000) Menurunkan tekanan darah penderita hipertensi (Sanders, 2000) Mengurangi kanker/tumor usus besar dan organ-organ pencernaan lainnya (Ray, 1996). 11 Kriteria-kriteria yang perlu dipertimbangkan untuk mendapatkan produk probiotik dengan pengaruh positif yang optimal bagi inangnya, antara lain : Spesies bakteri probiotik sebaiknya merupakan flora normal usus dengan demikian bakteri mudah menyesuaikan diri dengan lingkungan usus. Memiliki kemampuan untuk menempel dan mengklonisasi sel usus. Memiliki aktivitas antagonistic terhadap mikroba patogen. Toleran terhadap asam dan garam empedu. Memiliki kemampuan untuk bertahan selama proses pengolahan dan selama waktu penyimpanan. Terbukti memiliki pengaruh yang menguntungkan terhadap kesehatan. Produk probiotik diharapkan memiliki jumlah sel hidup yang besar (107-109 Cfu/ml). Para kelompok peneliti membagi level pengembangan probiotik menjadi enam tingkatan. Menurut Saarela et al, (2000) seperti pada Gambar 3 ditunjukkan bahwa semakin tinggi level pengembangan probiotik maka produk pangan yang dihasilkan memiliki manfaat yang lebih besar terhadap kesehatan sebagai pangan kesehatan, sedangkan pada level pengembangan yang bersifat dasar-dasar probiotik maka produk yang dihasilkan masih sebatas sebagai produk pangan yang berfungsi sebagai pemenuhan nutrisi. 6 5 4 3 2 1 Memberikan efek terhadap kesehatan Meningkatkan daya tahan tubuh Aktivitas antagonistik mikroba patogen Resistensi pH rendah dan viabilitas sel pada garam empedu Viabilitas sel dan aktivitas sel selama produksi dan penyimpanan Karakteristik sifat strain, spesies dan genus Gambar 3. Level pengembangan probiotik 12 2.3. Bakteri Asam Laktat Istilah bakteri asam laktat (BAL) merujuk pada kelompok mikroorganisme yang memiliki kemampuan tinggi dalam memproduksi asam laktat hasil fermentasi sumber karbohidrat seperti susu, daging, buah dan sayuran (Ray, 1996). BAL termasuk aciduric dan achidophilic, beberapa spesies dapat tumbuh pada kondisi yang sangat jauh berbeda dan produksi asam laktat akan menurunkan pH sehingga menekan pertumbuhan bakteri lain, sehingga mereka mampu bertahan hidup pada berbagai habitat. Bakteri asam laktat (BAL) terutama genus Lactobacillus mempunyai peranan yang penting dalam fermentasi bahan makanan. Bakteri ini mampu memfermentasi karbohidrat dengan menghasilkan asam laktat dan kehadirannya dapat memberikan efek anti mikroba khususnya terhadap bakteri patogen dalam saluran pencernaan sehingga mampu menyeimbangkan mikroflora usus. Sifat tahan asam dan viabilitas yang tinggi dalam produk fermentasi menjadi faktor menguntungkan sehingga BAL dijadikan sebagai agensia probiotik dalam minuman kesehatan. Pemanfaatan bakteri sebagai probiotik harus memenuhi syarat antara lain jumlahnya mencapai 108 sel/ml, kadar asam laktat minimal 0,85 % dan pH produk maksimum 4,0. Lactobacillus merupakan bakteri bentuk batang, gram positif, tidak berspora, dan katalase negatif. Lactobacillus plantarum yang digunakan sebagai starter pada produk susu kedelai dan susu sapi termasuk bakteri asam laktat homofermentatif yang memecah glukosa, sebagian besar menjadi asam laktat (90%). Selain itu juga menghasilkan sebagian kecil asam sitrat, diasetil dan asetoin yang semuanya akan berpengaruh terhadap pembentukan flavor Yakult (Speck, 1978). Pertumbuhan maksimal dan rata-rata fermentasi optimum dari BAL tergantung pada faktor lingkungan yang meliputi nutrisi, suhu inkubasi, potensial oksidasi dan reduksi serta pH (Ray, 1996). Lactobacillus plantarum termasuk kelompok bakteri homofermentatif yang mempunyai suhu optimum 30-370 C untuk pertumbuhannya. Peranan BAL sebagai bakteri probiotik sangat ditentukan oleh sifatnya yang tetap dalam keadaan hidup sejak dikonsumsi hingga mencapai usus manusia. Bakteri ini harus dapat melekat pada usus, namun tidak semua bakteri asam laktat mempunyai sifat seperti itu. Beberapa strain BAL yang berpotensi sebagai agensia probiotik karena kemampuannya untuk menghambat pertumbuhan mikroba enterik adalah Lactobacillus reuteri, Lactobacillus casei dan Lactobacillus acidhophilus. Bakteri-bakteri ini juga mempunyai kelebihan karena bakteri-bakteri ini juga mampu tumbuh dalam jalur pencernaan. Untuk 13 peningkatan produktivitas bakteri hasil isolasi dapat dicapai dengan mengoptimalkan kondisi pertumbuhan sel dan medium pertumbuhannya. Salah satunya dengan melakukan kultivasi Lactobacillus sp. pada media campuran susu dan sari buah mengkudu. Penggunaan media campuran sebagai media optimasi didasarkan selain karena susu merupakan habitat alami bagi Lactobacillus sp. juga mempunyai kandungan nutrisi yang tinggi bagi pertumbuhan BAL. Fermentasi susu terbukti mampu menghasilkan produk yang optimal dan mengandung mikroba yang memenuhi syarat sebagai probiotik. 2.4. Manipulasi Substrat Karbon Fermentasi mikrobial merupakan proses pembentukan energi, dimana energi diperoleh dari senyawa-senyawa organik yang berfungsi sebagai donor dan aseptor elektron. Kultivasi yang memanfaatkan mikroorganisme biasanya memiliki enzim-enzim yang akan mengubah hasil oksidase substrat tersebut. Beberapa enzim selalu akan terbentuk tanpa tergantung pada komposisi medium dimana mikroorganisme dapat tumbuh. Tetapi ada beberapa enzim lainnya sebagai enzim induksi yang akan terbentuk apabila tersedia substrat atau senyawa yang strukturnya sama dengan substrat dalam medium (substrat induser) pertumbuhannya. Manipulasi metabolik dengan cara memberikan keragaman media kultivasi seperti kombinasi antara amonium sulfat dan urea juga berimplikasi pada biosintesa produk. Melalui manipulasi metabolik diharapkan pula adanya perubahan mekanisme pembentukan energi, perubahan permeabilitas sel terhadap substrat dan produk serta dapat menyebabkan hanya enzim-enzim tertentu yang berfungsi selama kultivasi. Hal ini tidak seperti pada cara mutasi genetik karena perubahan yang terjadi melalui teknik manipulasi metabolik merupakan perubahan fenotipik. Manipulasi metabolik merupakan salah satu cara dalam teknik kultivasi untuk memperoleh hasil yang optimum. Manipulasi metabolik seringkali dilakukan dengan pemberian substrat media yang bervariasi. Pada lintasan primer metabolik dapat ditemui beberapa senyawa antara yang membentuk lintasan samping. Dalam hal ini modifikasi metabolisme mikroorganisme dengan menggunakan peubah variasi substrat medium diharapkan terjadi pembelokan lintasan metabolisme tersebut kearah pembentukan senyawa atau produk melalui lintasan samping. Melalui teknik manipulasi lingkungan dapat pula dihasilkan produk-produk kultivasi yang karakteristik kimianya berbeda, tetapi proses pembentukannya tetap melalui lintasan metabolisme normal. 14 Rachman (1992) menyatakan bahwa medium kultur yang digunakan merupakan faktor yang penting untuk memperoleh inokulum dan hasil kultivasi yang baik. Untuk itu desain medium tidak hanya ditunjukkan untuk memenuhi kebutuhan nutrisi bagi mikroorganisme tetapi juga untuk memenuhi kebutuhan bagi pembentukan produk kultivasi yang maksimum. Pembentukan produk dalam persiapan inokulum bukan tujuan utama sehingga komposisi medium kultur dimungkinkan akan berbeda. Komposisi medium kultivasi yang digunakan dapat berupa medium sederhana atau medium komplek karena keduanya dapat diperoleh secara sintetis atau medium kasar. Medium sintetis sangat menguntungkan dimana untuk setiap komponen dapat dikurangi dihilangkan atau ditambahkan dan pada umumnya tidak membentuk busa karena tidak mengandung protein dan peptida. Kendalanya medium sintetis kurang begitu optimum untuk skala industri. Pada kultivasi skala besar sumber-sumber nutrien harus mampu membentuk produk atau biomassa dengan hasil maksimum untuk setiap gram substrat yang digunakan. Manipulasi metabolik juga diharapkan dapat memacu pembentukan produk kultivasi dengan laju yang maksimum dan dapat menghambat pembentukan produk yang tidak diinginkan. Aspek lain adalah medium kultivasi harus memiliki mutu yang konsisten, murah dan cukup tersedia sepanjang tahun serta tidak menimbulkan masalah aerasi, agitasi, dan pemurnian hasilnya (Rachman, 1992). 2.4.1. Jagung (Zea mays L) Jagung (Zea mays L.) merupakan salah satu tanaman pangan dunia yang terpenting, selain gandum dan padi. Jagung merupakan salah satu tanaman yang mudah tumbuh hampir di seluruh wilayah Indonesia dan cara pembudidayaannya yang tidak terlalu sulit sangat memungkinkan Indonesia menjadi salah satu produsen jagung dunia. Tanaman jagung dapat dilihat dari Gambar 4. Gambar 4. Tanaman jagung dan buah jagung Sumber: Anonim.http://id.wikipedia.org/wiki/Jagung 15 Jagung merupakan tanaman semusim. Satu siklus hidupnya diselesaikan dalam 80150 hari. Tinggi tanaman jagung sangat bervariasi, meskipun tanaman jagung umumnya berketinggian antara 1-3 meter dan ada varietas yang dapat mencapai tinggi 6 m. Biji jagung kaya akan karbohidrat, sebagian besar berada pada endospermium. Kandungan karbohidrat dapat mencapai 80% dari seluruh bahan kering biji. Karbohidrat dalam bentuk pati umumnya berupa campuran amilosa dan amilopektin. Pada jagung sebagian besar atau seluruh patinya merupakan amilopektin. Perbedaan ini tidak banyak berpengaruh pada kandungan gizi, tetapi lebih berarti dalam pengolahan sebagai bahan pangan. Jagung manis tidak mampu memproduksi pati sehingga bijinya terasa lebih manis ketika masih muda. Komponen penyusun jagung: trigliserida, glikolipid, fosfolipid, vitamin berupa tiamin, niasin, riboflavin, piridoksim. Kandungan vitamin jagung dapat dilihat pada Tabel 1. Tabel 1. Kandungan Vitamin Jagung Kandungan Vitamin A Tiamin Riboflavin Niasin Asam Pentotenat Viamin E Jumlah (mg/pound) 1990 2,06 0,6 6,4 3,36 11,21 Sumber: Sulantri (1990) Jagung mengandung lemak dan protein, jagung muda memiliki lemak dan protein lebih kecil dari pada jagung tua. Selain karbohidrat, jagung mengandung serat kasar, gula berupa sukrosa, pentosa; lemak yang terdiri atas lemak jenuh berupa palmitat dan stearat serta asam lemak tak jenuh berupa oleat dan linoleat seperti pada Tabel 2. Tabel 2. Komposisi Kimia Jagung Kandungan Air Protein Minyak/lemak Karbohidrat - Zat tepung - Gula - Pentosa - Serat kasar Abu Zat lain-lain Sumber: Sulantri (1990) Jumlah (persen) 13,5 10 4 61 1,4 6 2,3 1,4 0,4 16 2.4.2. Sari Buah Mengkudu Buah mengkudu pada awalnya berwarna hijau kemudian menjadi kuning, setelah matang warnanya menjadi putih dan transparan serta lunak. Dagingnya banyak mengandung air, mengeluarkan bau yang tidak sedap. Bau ini timbul karena terjadi percampuran antara bau asam kaproat dan bau asam kaprat yang agak tajam. Jenis produk olahan yang berbahan dasar buah mengkudu sangat banyak. Salah satunya adalah produk yang berbentuk cair yang berfungsi sebagai minuman kesehatan. Kandungan bahan dalam 100 gram serbuk buah mengkudu adalah karbohidrat 52,42 %, serat 33,38 %, air 7,12 % dan protein 0,75 %. Kandungan nutrisi dalam 1.200 mg sari buah mengkudu adalah vitamin A 2,75 IU, vitamin C 2,10 mg, kalsium 3,90 mg, besi 0,1 mg, natrium 4,02 mg, kalium 13,38 mg, protein 9 mg, lemak 18 mg, kalori 2,00 mg dan karbohidrat 620 mg serta beberapa mineral penting lainnya (Solomon, 1998 di dalam Waha, 2000). Mengkudu juga mengandung karbohidrat dari buah mengkudu adalah glukosa, oligosakarida, polisakarida, glukosid dan juga heteropolisakarida (gum arab). Dharmawan et al., (1999) menyatakan bahwa jenis buah yang berpotensi sebagai makanan fungsional adalah buah pace (Morinda citrifolia) yang diyakini dapat memperlancar pencernaan. Menurut Djauhariya dan Tirtoboma (2001), senyawa antraquinon yang terkandung dalam buah mengkudu efektif membasmi bakteri E. coli penyebab diare, Salmonella sp. dan Shigella sp. penyebab disentri dan keracunan serta golongan bakteri penyebab infeksi seperti Pseudomonan aeruginosa, Proteus morginii dan Bacillus subtilis. Sari buah mengkudu juga mampu mengatur keseimbangan pH tubuh, sehingga meningkatkan kemampuan tubuh menyerap vitamin, mineral dan protein. Dharmawan et al., (1999) juga melaporkan bahwa ekstrak buah pace dengan pelarut air pada konsentrasi 16 % efektif menghambat pertumbuhan E. coli sebesar 64,3 % dan S. aureus sebesar 29, 5 %. 2.5. Asam Lemak Esensial Asam-asam lemak esensial adalah asam lemak yang sangat diperlukan oleh tubuh dan tidak dibiosintesis oleh tubuh, tetapi hanya dapat diperoleh lewat makanan sama halnya dengan mineral ataupun vitamin. Asam-asam lemak tersebut terbagi berdasarkan ada tidaknya ikatan rangkap antara atom-atom karbon yang terbagi atas asam lemak jenuh artinya asam lemak yang tidak mempunyai ikatan rangkap disebut juga saturated fatty acid 17 (SAFA) dan asam lemak tak jenuh yaitu asam lemak yang mempunyai satu atau lebih ikatan rangkap. Bila hanya terdapat satu ikatan rangkap maka disebut monosaturated fatty acid (MUFA) dan apabila terdapat dua atau lebih ikatan rangkap disebut polysaturated fatty acid (PUFA). Asam lemak tak jenuh terdiri atas 3 kelompok besar yaitu omega 3, omega 6 dan omega 9 seperti disajikan pada Tabel 3. Asam linoleat (18:3ω3). Asam eikosapentaenoat (20:5ω3) dan dokosaeksaenoat (22:6 ω3) mengandung asam lemak omega 3 yang banyak diperoleh dari makanan. Kelompok asam lemak yang kedua yaitu omega 6 yang tediri dari asam linoleat (18:2 ω6) dan asam arakidonat (20:4 ω6), sedangkan omega 9 terdiri dari asam oleat (18:1 ω9). Tabel 3. Pengelompokkan asam lemak tak jenuh Kelompok Kelompok Struktur ω3 Asam dokosahexanoat Asam eikosanpetanoat Asam linolenat 22:6 ω3 20:5 ω3 18:3 ω3 ω6 Asam linoleat Asam Arakidonat Asam oleat 18:2 ω6 20:4 ω6 18:1 ω9 ω9 Asam linoleat dan asam linolenat merupakan asam lemak essensial karena tubuh tidak dapat mensintesis kedua asam lemak tersebut, selain itu dapat digunakan untuk mensintesis prostaglandin yang mempunyai sifat-sifat hormon serta terlibat dalam banyak fungsi tubuh. (Murray et al., 1996). Asam linoleat bukan asam lemak esensial karena tubuh dapat mensintesis asam tersebut dengan cara menyisipkan ikatan rangkap pada posisi Δ9 ke dalam asam lemak jenuh yang bersesuaian (Murray et al., 1996). Menurut Osman et al., (2001) PUFA khususnya ω3 dan ω6 dipertimbangkan sebagai asam lemak essensial dan memperlihatkan untuk dapat menyembuhkan dan mencegah, penyakit kardivaskuler, perkembangan saraf pada bayi, kanker dan kontrol glikemik lemak. Selain itu omega 3 sebagai molekul dasar dalam struktur dan aktifitas pada membran seluruh sel, sehingga komponen pengatur produksi seluler, diketahui sebagai asam eicosanoid (mempunyai 20 karbon) dan fungsi khususnya dalam jaringan saraf, khususnya pada retina mata, mempengaruhi otot jantung, memproduksi substansi mengontrol respon immun. 18 2.6. Struktur dan Metabolisme Kolesterol dalam Tubuh Kolesterol adalah salah satu lipid tubuh yang berada dalam bentuk bebas dan ester dengan asam lemak. Kadar kolesterol normal dalam plasma yang diperoleh dari orang puasa dianggap oleh kebanyakan laboratorium klinik sebesar antara 3,1 dan 5,7 mmol/L (120 sampai 220 mg/gL). Pada orang dewasa muda sehat, nilai rata-rata kolesterol plasma ialah antara 4,4 dan 4,7 mmol/L (Mongmery et al., 1993). Sedangkan pada tikus kadar kolesterol dan fosfolipid dalam LDL dan kolesterol di dalam HDL meningkat sesuai umur, tetapi gerakan asam empedu dan sekresi asam empedu pada kolesterol menurun sesuai umur tikus. Kurang lebih 65% kolesterol dalam plasma subyek normal berpuasa diesterkan. Plasma darah penderita normal akan tidak mempunyai kilomikron tersisa sesudah masa puasa dan hanya ada sedikit very low density lipoprotein (VLDL). Oleh karena itu lipoprotein utama ialah low density lipoprotein (LDL) dan high density lipoprotein (HDL). Kurang lebih 70% kolesterol total terdapat pada LDL dalam plasma puasa normal, sedangkan di dalam cairan empedu jumlah kolesterol sekitar 390 mg/100ml. Laki-laki mempunyai relatif lebih banyak LDL, sedangkan wanita pramenopause mempunyai relatif banyak HDL, sehingga laki-laki cenderung mempunyai kadar kolesterol plasma lebih tinggi dari pramenopause. Girindra (1998) menyatakan bahwa semua jaringan tubuh mempunyai kemampuan untuk mensintesis kolesterol tetapi yang paling aktif adalah hati. Wirahadikusuma (1985) menyatakan bahwa biosintesis kolesterol berada dalam jaringan hati, kulit, kelenjar anak ginjal, kelenjar kelamin, jaringan lemak, otot, urat nadi dan otak dewasa. Pada tikus normal memiliki kadar kolesterol total bervariasi. Kadar kolesterol total normal dari berbagai hasil penelitian yang telah dilakukan disajikan dalam Tabel 4. Tabel 4. Kadar Kolesterol Total Normal Tikus. No. 1. 2. 3. Kolesterol total (mg/dl) 40 – 130 50 – 60 65 – 75 Sumber: Purwanti (2004) 19 2.6.1. Hiperkolesterolemia Kolesterol di dalam tubuh diproduksi dalam jumlah yang diperlukan. Kadar kolesterol yang melebihi batas normal disebut sebagai hiperkolesterolemia. Hiperkolesterolemia dapat dibagi menjadi 3 berdasarkan kadar kolesterol low density lipoprotein (LDL) dalam darah seperti yang tercantum pada Tabel 5. Tabel 5. Pengelompokan Hiperkolesterolemia. Kategori Normal Hiperkolesterol rendah Hiperkolesterol sedang Hiperkolesterol tinggi Kolesterol (mg/dl) < 200 200 – 289 240 - 289 > 290 LDL (mg/dl) < 130 130 – 159 169 – 209 > 210 Sumber : Grundy (1991) Hiperkolesterolemia dapat dibuat pada beberapa spesies hewan yaitu dengan menambahkan lemak dan kolesterol dalam makanan yang disebut dengan induksi eksogen. Biosintesis kolesterol secara endogen prosesnya sangat lambat untuk memperoleh peningkatan kadar kolesterol. Pada tikus pemberian diet kolesterol saja tidak dapat meningkatkan kadar kolesterol plasmanya. Banyak penelitian yang telah dilakukan untuk membuat tikus dewasa hiperkolesterolemia yaitu dengan cara menambahkan lemak dan kolesterol dalam makanannya. Selain itu pada air minumnya perlu ditambahkan propil tiourasil (PTU) yang merupakan suatu zat antitiroid untuk meningkatkan kolesterol darah secara endogen. Penghambatan ekskresi hormon tiroid ke dalam empedu dapat meningkatkan kadar kolesterol darah dengan cara menekan pembentukan reseptor low density lipo-protein (LDL) di hati, yang menyebabkan pengeluaran kolesterol dari sirkulasi meningkat (Ganong, 1998). Mekanisme pencegahan dan penurunan kolesterol di dalam saluran cerna hewan percobaan adalah sebagai berikut. 1. Bakteri asam laktat dapat mendegradasi kolesterol menjadi “coprostanol” yaitu sebuah sterol yang tidak diserap oleh usus. Selanjutnya “coprostanol” dan sisa kolesterol dikeluarkan bersama-sama tinja hewan atau manusia. Sebuah penelitian menunjukkan bahwa penurunan kolesterol oleh galur bakteri Lactobacillus secara anaerobik dapat mencapai sekitar 27-38%. 2. Galur bakteri asam laktat memproduksi enzim yang disebut bile salt hydrolase (BSH). Dekonjugasi garam empedu akan meningkatkan asam empedu terkonjugasi yang 20 tidak mudah diserap dari usus halus dibanding asam empedu konjugasi. Asam empedu konjugasi akan terbuang lewat tinja, sehingga jumlah asam empedu yang kembali ke hati berkurang. Untuk mengimbangi asam empedu tubuh akan mengambil kolesterol tubuh sebagai prekusor. Proses itu akan menurunkan kadar kolesterol darah secara keseluruhan (Anonim. http://anandamarga.or.id/imdex.php). 2.6.2. Lipoprotein Kolesterol dalam darah diedarkan dalam bentuk lipoprotein. Lipoprotein dibagi menjadi 5 fraksi berdasarkan ultrasentifugasi. Kelima fraksi tersebut adalah kilomokron, very low density lipoprotein (VLDL), intermediet density lipoprotein (IDL), high density lipoprotein (HDL) kolesterol dan low density lipoprotein (LDL) kolesterol (Murray et al., 1996). Kolesterol dominan terdapat dalam LDL dan HDL kolesterol. HDL terlibat dalam pengangkutan kolesterol ke jaringan dan pengangkutan balik kolesterol, sehingga diharapkan kadar HDL yang tinggi dalam darah. Povey (1994) menyatakan bahwa HDL kolesterol bersifat menguntungkan. HDL kolesterol berfungsi mengumpulkan kelebihan kolesterol dari arteri dan membawanya kembali ke hati, untuk diproses ulang atau diubah menjadi empedu. Wirahadikusumah (1985) menyatakan bahwa jumlah HDL kolesterol yang tinggi akan mempercepat proses pengangkutan kolesterol dari sel tepi yang berarti mengurangi kemungkinan terjadinya penimbunan kolesterol pada dinding pembuluh darah. LDL kolesterol bersifat merugikan karena fungsi utamanya untuk mengumpulkan dan mengalirkan kolesterol dari seluruh tubuh ke dalam sel. Konsentrasi LDL Kolesterol normal pada beberapa hewan dan manusia dapat dilihat pada Tabel 6. Tabel 6. Kadar LDL normal pada manusia dan hewan. Kelompok Manusia Mencit Tikus Marmut Kelinci Monyet Kera besar Domba Sumber: Grundy (1991) LDL (mg/dl) 79-90 20 24 28 17 42 46 24 21 2.6.3. Metabolisme Trigliserida Trigliserida merupakan ester dari gliserol dan asam lemak. Lemak ini dibawa dalam aliran darah oleh very low density lipoprotein (VLDL). Seperti halnya kolesterol, trigliserida dibuat di dalam hati atau berasal dari lemak dalam makanan. Trigliserida merupakan suatu sumber energi penting untuk tubuh, tetapi jika berlebihan dapat meningkatkan kecenderungan pembentukan bekuan dalam darah. Kadar trigliserida yang meningkat (trigliseridemia) cenderung akan mengalami peningkatan Penyakit Jantung Koroner (Povey, 1994). Disamping digunakan sebagai sumber energi, trigliserida dapat dikonversi menjadi kolesterol, fosfolipid dan bentuk lipid lainnya (Heslet, 1991). Jaringan adiposa secara khusus merupakan tempat sintesis, penyimpanan dan hidrolisis trigliserida. Kadar trigliserida normal pada orang dewasa adalah antara 30-170 mg/100 ml. Nilai yang melebihi 250 mg/100 ml dianggap berindikasi hipertrigliseridemia. Heslet (1991) menyatakan trigliseridemia dapat disebabkan oleh karbohidrat dalam makanan yang dikonsumsi. Dalimartha (2001) menyatakan bahwa konsumsi bahan makanan seperti alkohol, makanan manis, santan dan karbohidrat secara berlebihan akan meningkatkan kadar trigliserida. Hipertrigliseridemia sering diikuti dengan penurunan HDL Kolesterol dan meningkatnya kandungan very low density lipoprotein (VLDL) dan Low Density Lipoprotein (LDL) Kolesterol. Masalah kolesterol akhir-akhir ini banyak dibicarakan karena ada hubungannya dengan penyakit arterosklerosis dan penyakit kardiovaskuler pada manusia. Banyak penelitian menunjukkan bahwa seseorang dengan diet rendah lemak resiko penyakit jantung koroner (PJK) lebih rendah dibandingkan dengan diet lemak tinggi, khususnya lemak jenuh dan kolesterol. Korelasi positif antara kadar kolesterol plasma dan resiko PJK diakibatkan oleh efek arterosklerosis karena adanya peningkatan kadar kolesterol plasma. Faktor utama resiko penyakit jantung koroner adalah umur, jenis kelamin, rokok, hipertensi, diabetes yang meningkatkan LDL kolesterol (≥ 4,1 mmol/L atau 160 mg/dL) dan menurunkan HDL kolesterol (<0,9 mmol/L atau 35 mg/dL). PJK sangat berhubungan dengan adanya arterosklerosis, yang menggambarkan kemunduran beberapa fenomena meliputi interaksi antar lipid plasma, lipoprotein, monosit, platelet dan endotelium dan otot polos pada dinding arteri yang berangsur-angsur menyempitkan arteri koroner setelah terjadinya trombosit dan koroner. Resiko PJK konstan pada kadar kolesterol 200 mg/dL tapi diatas nilai tersebut akan meningkatkan resiko PJK seiring dengan naiknya kadar kolesterol plasma. Selain PJK, arterosklerosis juga merupakan penyebab naiknya kadar kolesterol 22 plasma dan merupakan faktor utama resiko penyakit jantung yang meliputi suatu kombinasi tepat dan intima (endotelium) dan media (otot polos) yang melapisi pembuluh darah yang menghasilkan dalam mempersempit arteri dan membatasi aliran darah. 2.7. Pertumbuhan Mikrobial Kinetika fermentasi berhubungan dengan laju dan sintesis sel dan atau pembentukan produk dan pengaruh lingkungan. Mikroba tumbuh dalam spektrum yang luas dalam lingkungan fisik maupun kimia, pertumbuhan dan aktivitas biologis merupakan respon terhadap lingkungannya. Dengan mempelajari kinetika fermentasi akan didapatkan gambaran perubahan yang terjadi, yaitu pertumbuhan biomassa dan pembentukan produk oleh mikroba. Di dalam fermentasi mencakup tiga hal penting yang saling berhubungan yaitu kinetika pertumbuhan biomassa, kinetika penggunaan substrat dan kinetika produksi metabolit (Wang et al., 1979). Pada fermentasi curah setelah dilakukan inokulasi tidak dilakukan lagi penambahan media ke dalam fermentor, kecuali pemberian oksigen (proses aerob), antibuih dan asam/basa untuk mengatur pH bila diperlukan, sehingga semakin lama waktu kultivasi, laju pertumbuhan spesifik (μ) mikroba semakin menurun sampai akhirnya berhenti. Penurunan dan berhentinya pertumbuhan disebabkan nutrien berkurang dan terjadi akumulasi metabolit yang mempengaruhi laju pertumbuhannya, sehingga pada kultivasi curah jumlah sel pada fase stasioner merupakan jumlah sel maksimum dan faktor pembatas utama dari luar terhadap pertumbuhan mikroba adalah konsentrasi nutrien dan konsentrasi metabolitmetabolit yang dapat membatasi pertumbuhan. Kinetika merupakan hal yang sangat penting dikaji untuk menetapkan model matematik di dalam industri kultivasi. Model matematik yang dihasilkan dari studi kinetika akan berguna untuk membantu memecahkan persoalan yang mengangkut proses dalam industri fermentasi. Pertumbuhan sel dan pembentukan produk oleh mikroorganisme merupakan proses biokonversi dengan unsur makro dan mikro sebagai sumber nutrien yang digunakan selama kultivasi sehingga akan terjadi biokonversi menjadi biomassa dan metabolit. Setiap tahap biokonversi tersebut dapat dikuantitatifkan dengan suatu koefisien hasil (yield) yang dinyatakan sebagai biomassa yang terbentuk per unit substrat dan produk yang terbentuk per unit substrat yang dinotasikan sebagai Yx/s dan Yp/s. Penentuan nilai Yp/s dapat dihitung dengan metoda linierisasi persamaan dengan cara membuat garis regresi antara jumlah penggunaan substrat (So-S) dengan jumlah 23 produk yang dihasilkan (P-Po) pada tiap satuan waktu. Menurut Wang et al., (1979) nilai rendemen konsumsi substrat untuk pembentukan produk dihitung dengan rumus empiris (P– Po)=Yp/s (So–S). Cara yang biasa digunakan dalam menghitung hasil adalah dengan mengukur biomassa atau produk yang dihasilkan dan substrat yang dikonsumsi selama periode waktu tertentu. Rendemen penggunaan substrat untuk penggandaan biomassa Yx/s merupakan rasio antara perbedaan jumlah biomassa pada saat t dengan jumlah biomassa pada saat t = 0 dengan selisih antara jumlah substrat pada awal kultivasi dengan sisa substrat pada waktu t. Nilai Yx/s dapat ditentukan dengan cara menghubungkan antara jumlah penggunaan substrat (So-S) dan jumlah biomassa yang terbentuk (X-Xo). Kemiringan garis regresi dari persamaan garis (X–Xo) = Yx/s (So–S) merupakan nilai Yx/s. 2.8. Analisis Kelayakan Finansial Analisis finansial dilakukan untuk mengetahui tingkat kelayakan ekonomis teknologi proses produksi hasil percobaan. Beberapa kriteria kelayakan finansial yang digunakan dalam menentukan kelayakan teknologi proses produksi yaitu NPV (Net Present Value), IRR (Internal Rate of Return), Net B/C (Net Benefit Cost Ratio), PBP (Pay Back Period) dan BEP (Break Even Point). Net Present Value (NPV) Nilai Sekarang Bersih (NPV) adalah selisih antara Present Value (Nilai Sekarang) dari investasi dengan nilai sekarang dari penerimaan-penerimaan kas bersih (aliran kas operasional maupun aliran kas terminal) di masa yang akan datang. Untuk menghitung nilai sekarang perlu ditentukan tingkat bunga yang sesuai. Rumus yang digunakan untuk menentukan nilai NSB adalah : NSB = NS Penerimaan – NS Biaya Di mana : NSB = Nilai Sekarang Bersih NS = Nilai Sekarang Kriteria Penilaian : Jika NSB > 0, investasi dinyatakan layak Jika NSB < 0, investasi dinyatakan tidak layak 24 Internal Rate of Return (IRR) Laju pengembalian atau Internal Rate of Return (IRR), dari suatu investasi dapat didefinisikan sebagai tingkat suku bunga yang akan menyebabkan nilai ekivalen biaya/investasi sama dengan nilai ekivalen penerimaan. Menghitung IRR pada dasarnya adalah menentukan (i) sedemikian rupa sehingga persamaan berikut berlaku : 1. Nilai Sekarang Bersih = 0 2. Nilai Sekarang Penerimaan – Nilai Sekarang Biaya = 0 Nilai Sekarang Penerimaan =1 Nilai Sekarang Biaya 3. Nilai ALP dapat dicari dengan cara coba-coba dengan menggunakan rumus : ⎡ − ⎛ NSB + + ⎜ ALP = r + ⎢(r − r ) x ⎜ + − ⎝ NSB − NSB ⎣ + ⎞⎤ ⎟⎟⎥ ⎠⎦ Di mana : ALP = tingkat bunga yang dicari harganya (%) r= Tingkat bunga yang membuat NPV negatif (%) r+ = Tingkat bunga yang membuat NPV positif (%) + = Nilai Sekarang Bersih positif (Rp.) NSB NSB= Nilai Sekarang Bersih negatif (Rp.) Rasio Manfaat Biaya (RMB) atau Benefit Cost Ratio(B/C) Net B/C merupakan perbandingan antara nilai total sekarang dan pendapatan bersih pada periode saat pendapatan bersih bernilai positif dengan nilai total sekarang pendapatan bersih pada periode saat pendapatan bersih negatif. Jika nilai Net B/C lebih besar dari satu maka teknologi proses produksi atau industri dinyatakan layak. Rumus perhitungan B/C adalah sebagai berikut : Rasio Manfaat Biaya (RMB) atau Benefit Cost Ratio merupakan perbandingan antara nilai ekivalen manfaat dengan nilai ekivalen biaya yang dirumuskan sebagai berikut : RMB = Nilai Sekarang Manfaat Nilai Sekarang Biaya Kriteria untuk menerima atau menolak suatu teknologi proses produksi / proyek adalah : proyek dinyatakan layak bila RMB > 1 dan ditolak bila sebaliknya. 25 Waktu Pengembalian Modal PBP (Pay Back Periode ) adalah waktu yang diperlukan untuk mengembalikan sejumlah dana yang telah diinvestasikan (Thuesen dan Fabricky, 1993). Satuan dalam perhitungan PBP yang digunakan adalah dalam tahun atau bulan. Semakin pendek PBP, semakin kecil resiko yang dihadapi investor. Perhitungan BEP merupakan cara yang paling sering digunakan untuk mengetahui tingkat penjualan dan produksi dalam keadaan seimbang (tidak untung maupun rugi). Analisis Sensitivitas Analisa kepekaan bertujuan untuk mengetahui pengaruh berbagai faktor internal terhadap kemampuan proyek mencapai jumlah hasil penjualan dan keuntungan. Faktor eksternal misalnya perkembangan harga produk sejenis di pasar. Dengan analisis di atas akan diketahui sejauh mana proyek akan tetap layak jika terjadi perubahan-perubahan pada faktor-faktor tersebut. Dalam analisa sensitivitas setiap kemungkinan harus dicoba, yang berarti bahwa, tiap kali harus diadakan analisa kembali. Ini perlu sekali karena analisa proyek didasarkan pada proyeksi-proyeksi yang banyak mengandung ketidakpastian tentang apa yang akan terjadi dimasa yang akan datang (Kadariah et al., 1976). Faktor yang mempengaruhi adalah adanya perubahan harga, keterlambatan pelaksanaan, kenaikan biaya dan adanya kesalahan dalam perkiraan hasil (Gittinger, 1986). BAB III METODOLOGI PENELITIAN 3.1. Kerangka Pemikiran Probiotik merupakan mikroorganisme hidup yang sangat penting untuk kesehatan dan memiliki hubungan yang simbiotik dengan manusia. Bakteri probiotik dalam usus akan membantu memecah makanan, menghasilkan vitamin dan mencegah pertumbuhan bakteri patogen penyebab penyakit. Spektrum penggunaan probiotik yang begitu luas mendorong untuk dilakukan penggalian galur potensial yang berasal dari sumber daya lokal. Salah satu potensi yang dikaji bersumber dari keyakinan masyarakat Ponorogo akan manfaat minuman tuak mengkudu bagi kesehatan. Kajian diawali dengan melakukan survey terhadap 10 orang penjaja jamu gendong yang secara rutin menjual tuak mengkudu atau dikenal dengan nama badeg pace. Pada umumnya tuak mengkudu dibuat dengan pengepresan mengkudu matang. Hasil cairan ekstrak ditambah gula aren yang selanjutnya didiamkan selama satu malam untuk mendapatkan aroma kas dan rasa yang sangat masam. Proses terjadinya fermentasi spontan ini menguntungkan bakteri asam laktat yang mampu tumbuh pada lingkungan yang relatif asam. Menurunnya pH selama proses fermentasi spontan akan menyeleksi secara alamiah bakteri-bakteri lain yang tidak mampu tumbuh pada lingkungan pH rendah. Untuk mengetahui lebih spesifik bakteri yang tumbuh pada tuak mengkudu perlu dilakukan isolasi dilanjutkan pengujian katalase negatif dan pewarnaan gram positif terhadap kemungkinan yang tumbuh berupa bakteri asam laktat jenis Lactobacillus sp. Dari data yang diperoleh dapat digunakan sebagai informasi awal untuk pengujian in-vitro sebagai kondidat probiotik. Pengujian in-vitro meliputi pengujian kemampuan hidup pada pH rendah dan pengujian antagonistik terhadap bakteri patogen serta pengujian kemampuan tumbuh pada media yang mengandung garam empedu. Setelah diperoleh isolat yang potensial sebagai kondidat probiotik, maka perlu dilakukan identifikasi mikroba. Identifikasi ini bertujuan untuk mengetahui spesies isolat yang diperoleh dan mempelajari sifat-sifat mikroba serta merunut hubungan genetik terdekat. Identifikasi dapat dilakukan secara molekuler dengan menggunakan PCR yang diperkirakan akan berada pada daerah 16S rRNA yang umum untuk mengidentifikasi bakteri. Metode ini memiliki akurasi yang lebih baik dibandingkan dengan metode morfokologi dan identifikasi secara biokimia. Hasil identifikasi secara molekuler dapat membantu mempermudah menyelesaikan permasalahan perancangan teknologi proses produksi probiotik penghasil omega-6 dan penurun kolesterol. 27 Perancangan proses dikembangkan dengan tahapan : 1) melakukan analisis peluang dan permasalahan, 2) melakukan kreasi proses atau sintesis proses dan 3) pengembangan proses produksi probiotik, serta 4) analisis kelayakan finansial. Analisis peluang dan permasalahan dilakukan dengan cara menganalisis peluang pasar produksi probiotik, pemilihan proses produksi dan permasalahan penggunaan bahan baku. Berbagai jenis probiotik komersial yang saat ini banyak beredar di pasaran selalu dikaitkan dengan hasil metabolisme yang berupa kandungan lemak rendah yang tercantum dalam label produk. Penelitian ini diharapkan mampu mengungkap hal yang baru dimana bakteri yang ditemukan dapat menghasilkan omega-6 konsentrasi tinggi berupa asam linoleat yang memiliki fungsi untuk menurunkan kolesterol. Apabila manusia sering mengkonsumsi lemak dengan kandungan asam lemak jenuh yang tinggi, maka dapat menyebabkan kadar kolesterol darah mengalami peningkatan, sedangkan semakin tinggi kandungan asam lemak tak jenuh berarti kualitas minyak tersebut semakin baik karena omega-6 (asam linoleat) ternyata mampu mereduksi kolesterol. Kreasi proses dilakukan melalui percobaan skala laboratorium dengan menggunakan substrat standar glukosa, sehingga didapatkan rangkaian proses yang secara teknis paling sesuai. Dari data penelitian fermentasi skala laboratorium dengan media standar dapat digunakan sebagai data untuk pengembangan proses pada skala pilot plant 75 L dan analisa finansial terhadap rancangan yang dikembangkan. Desain produk dalam bentuk krem yang diharapkan mempunyai fungsi yang lebih luas perlu dibuat dalam formulasi media yang mampu menghasilkan viabilitas sel yang tinggi, sedangkan untuk melihat fungsi sebagai probiotik maka perlu dilakukan karakteristik produk dengan melakukan pengujian lanjutan secara in-vivo menggunakan hewan percobaan. Pengujian secara in-vivo diharapkan mampu menggali potensi kondidat probiotik sebagai penurunan kolesterol. Integrasi proses dilakukan bertujuan untuk mengintegrasikan seluruh tahapan proses produksi probiotik sehingga dihasilkan flowsheet yang utuh. Dengan bantuan perangkat lunak Hysis 3.2 dapat disimulasi diagram alir proses produksi probiotik yang utuh, sehingga diperoleh gambaran lengkap proses produksi probiotik dalam bentuk Process Engineering Flow Diagram (PEFD). Perancangan proses produksi dengan menyusun PEFD dilakukan dalam rangka aplikasi teknologi produksi probiotik penghasil omega-6 dan penurun kolesterol dengan menggunakan data-data fermentasi skala pilot plan 75 liter diperkirakan mampu memberikan keuntungan yang maksimal sehingga sangat menarik bagi pelaku bisnis untuk membangun industri probiotik penghasil omega-6 dan penurun kolesterol. 28 3.2. Bahan dan Alat Kultur bakteri yang digunakan Lactobacillus sp. isolat dari tuak mengkudu dan buah mengkudu matang asal Ponorogo, Jawa Timur, Lactobacillus bulgaricus (FNCC41, UGM), bakteri patogen Escherichia coli ATCC 25922 dan Staphylococcus aureus ATCC 25923. Bahan kimia yang digunakan adalah MRS (De Mann, Rogosa Oxoid CM 0361), TSB (Tryptone Soya Broth) Oxoid CM 0129, CMC (Himedia), Cat gram (Merck), Mueller Hinton Agar (Oxoid CM 0337), unsalted Butter (Orchid), bile salt (Oxoid), Icing Sugar, NaOH 0,2 N, Selenium tablet, H2SO4 pekat, HCl 0,05 N, asam borat, CaCO3 (Merck), HCl dan indikator BTB dan phenoptalein 1%, akuades, alkohol 70%, kapas, dan alumunium foil. Susu jagung, susu sapi, laktosa monohidrat Hewan uji sebanyak 30 ekor tikus putih galur Wistar jantan dalam 6 kelompok. Bobot badan rata-rata 200-250 g dengan konsumsi pakan 5 g/100 g BB (Fox, J. G. et al., 1984), pakan standar tikus, pakan kolesterol, propil tiourasil, reagent KIT kolesterol total, trigliserida, HDL Kolesterol, EDTA, CMC Na, kertas saring dan aquades. Alat yang digunakan meliputi alat pengepres, blender, kain saring, kertas saring, botol steril, erlenmeyer, labu ukur, tabung reaksi, tabung destruksi, gelas ukur, tabung Eppendorf, cawan petri, pipet ukur, pipet tetes, mikropipet, jarum ose, dugrasky, bunsen, inkubator, laminar air flow, autoklaf, lemari pendingin, vortex, colony counter, haemocytometer, mikroskop, pH meter, spektrofotometer UV, hot plate stirer, destilator Kjeldahl, buret, statif, timbangan analitik, kandang tikus; autoklaf, oven, dan sentrifus sonde lambung. Lokasi dan Waktu Penelitian Penelitian ini dilaksanakan di Laboratorium Balai Pengkajian Bioteknologi, BPPT, Kawasan Puspiptek, Tangerang pada bulan Desember 2006 – Desember 2011. 29 3.3. Tahapan Penelitian Garis besar tahapan penelitian perancangan proses produksi probiotik dari isolat baru Lactobacillus sp. penghasil omega-6 (ω-6) dan penurun kolesterol seperti pada ANALISIS PELUANG DAN PERMASALAHAN diagram alir Gambar 5. Analisis Peluang (Penelusuran data sekunder untuk mengkaji peluang pasar & kebijakan yang mendukung) Analisis Permasalahan Penelusuran data sekunder untuk pemilihan proses produksi. Kajian potensi penggunaan bahan baku yang efisien dan efektif. Kajian pemanfaatan isolat lokal yang potensial. KREASI PROSES Pengumpulan Data base untuk Kreasi Proses Melakukan Percobaan Percobaan dilakukan pada skala laboratorium sebagai penegasan hasil kreasi awal. Percobaan dengan substrat standar (glukosa) Sintesis Proses Melakukan sintesis dari data-data hasil percobaan skala laboratorium. Konfirmasi dengan hasil penelitian lain. Tidak Tolak Apakah ada keuntungan kasar? Ya Lanjutan 30 Lanjutan Pembuatan Diagram Alir dan Integrasi Proses PENGEMBANGAN PROSES (Process Engineering Flow Diagram) Pengujian Fermentasi Batch Skala Pilot Plant Substrat terbaik Glukosa percobaan skala laboratorium Substrat Komplek Karakterisasi Produk (Uji In-vivo) Konsentrasi Sel Konsentrasi Sel + Kaldu Desain & Formulasi Produk Pembuatan Detail Diagram Alir (Proses fermentasi & formulasi) Tidak Apakah Proses Menjanjikan? Tolak Ya KELAYAKAN PERANCANGAN PROSES Penentuan Kapasitas Produksi Perhitungan Neraca Massa Disain Peralatan Perhitungan : • Biaya investasi • Biaya modal kerja • IRR, NPV, Net B/C, PBP • Cash flow Kelayakan Finansial Proses Tidak Terpenuhi Ya Gambar 5. Perancangan proses produksi probiotik penghasil omega-6 (ω-6) dan penurun kolesterol. Rancangan Lanjutan 31 3.3.1. Penelitian Tahap 1: Analisis Peluang dan Permasalahan. Analisis Peluang Analisis peluang dilakukan dengan mengumpulkan data sekunder. Potensi pasar dikaji dari data sekunder atau data statistik perdagangan jumlah probiotik yang beredar di pasaran, sedangkan peluang pengembangan industri probiotik dikaji dari kebijakan pemerintah yang mendukung. Analisis Permasalahan Pengembangan industri probiotik penghasil omega-6 dan penurun kolesterol dilakukan dengan memanfaatkan isolat lokal dan bahan baku alternatif non laktosa. Solusi dari permasalahan tersebut dilakukan dengan mengisolasi bakteri asam laktat dari badeg pace dan buah mengkudu matang untuk memperoleh isolat lokal Lactobacillus sp. yang potensial sebagai probiotik. Isolat yang diperoleh selanjutnya dilakukan pengujian secara invitro dan identifikasi secara molekuler. Secara garis besar cara kerja isolasi, uji in-vitro dan identifikasi molekuler sebagai berikut : Isolasi Lactobacillus sp. Metode isolasi yang digunakan mengacu pada metode yang digunakan oleh Mincer et al., (2005). Isolasi dilakukan dari badeg pace dan buah mengkudu matang dengan menggunakan metode pengenceran dilanjutkan dengan plating secara pour plate menggunakan media MRS agar pada pH 6,2 yang ditambah CaCO3. Inkubasi media dilakukan pada suhu 37oC selama 48 jam. Isolat Lactobacillus sp. adalah isolat yang membentuk koloni dengan zona jernih, sel berbentuk batang, uji katalase negatif dan hasil pewarnaan gram positif. Isolat yang diperoleh selanjutnya dilakukan uji in-vitro, sedangkan isolat belum digunakan disimpan dalam campuran gliserol 20 % dan susu skim 10 % pada suhu –20 oC. 32 Uji in-vitro uji ketahanan Lactobacillus sp. pada pH rendah. Metode dikembangkan dari modifikasi Zavaglia et al., (1998). Satu ose isolat Lactobacillus sp. diinokulasikan ke dalam 5 ml media MRS broth, inkubasi pada suhu 37 oC selama 24 jam. Kemudian 1 % inokulum dimasukkan ke dalam 5 ml MRS cair yang diatur pHnya dengan variasi pH 3,5; pH 3,0; pH 2,5; dan pH 2,0. Pengaturan pH digunakan HCl. Inkubasi dilakukan pada suhu 37 oC selama 24 jam. Penghitungan jumlah bakteri dalam inokulum pada awal dan akhir inkubasi dilakukan dengan metode plating menggunakan media MRS agar. Uji in-vitro kemampuan tumbuh Lactobacillus sp. pada garam empedu. Metode dikembangkan dari modifikasi Zavaglia et al., (1998). Satu ose isolat Lactobacillus sp. diinokulasikan ke dalam 5 ml media MRS broth, inkubasi pada suhu 37 oC selama 24 jam. Kemudian 1 % inokulum dimasukkan ke dalam media MRS cair dengan penambahan garam empedu dengan variasi konsentrasi 0,5 %; 1,0 %; 5,0 %; dan 10,0 %. Setelah diinkubasi selama 1 hari pada suhu 37 oC dilakukan pengukuran Optical Density (OD) pada panjang gelombang 660 nm. Uji in-vitro seleksi Lactobacillus sp. yang bersifat antimikroba. Uji antimikroba dilakukan dengan metoda difusi sumur. Satu ose isolat Lactobacillus sp. diinokulasikan ke dalam 5 ml media MRS broth, inkubasi pada suhu 37 oC selama 48 jam. Satu ose bakteri penguji Escherichia coli ATCC 25922 dan Staphylococcus aureus ATCC 25923 masing-masing diinokulasikan ke dalam 5 ml media Tryptone Soya Broth, inkubasi pada suhu 29 oC selama 24 jam. Sebanyak 0,1 % inokulum bakteri penguji dimasukkan ke dalam medium Mueller Hinton agar steril suhu 45 oC, kemudian dituang ke dalam cawan petri steril dan dibiarkan sampai padat. Kemudian dibuat lubang-lubang sumur (diameter 8 mm), lalu ke dalam masing-masing lubang dimasukkan 0,05 ml inokulum Lactobacillus sp., diinkubasi pada suhu 37oC selama 2 hari. Kemudian diukur area bening (zone panghambatan) yang terjadi. 33 Identifikasi molekuler Lactobacillus sp. Tahapan kerja identifikasi molekuler Lactobacillus sp. secara umum dimulai dari ekstraksi genom DNA, kemudian amplifikasi PCR. Setelah itu, identifikasi molekuler dilanjutkan dengan elektroforesis produk PCR dan purifikasi gel produk PCR. Setelah purifikasi gel produk PCR, diteruskan dengan amplifikasi PCR cycle sekuensing dan selanjutnya sekuensing dan yang terakhir adalah tahapan analisis blast. Cara kerja identifikasi molekuler secara lengkap disajikan pada Lampiran 1. 3.3.2. Penelitian Tahap 2 : Kreasi Proses Pengumpulan data sekunder Pengumpulan data sekunder dilakukan melalui penelusuran publikasi untuk mendapatkan data proses hasil dari penelitian yang telah dilakukan. Data-data hasil penelusuran pustaka seperti konsentrasi substrat, suhu fermentasi, kecepatan pengadukan, dan galur untuk fermentasi selanjutnya digunakan sebagai referensi didalam melakukan kreasi proses pada percobaan skala laboratorium 250 ml. Percobaan proses fermentasi galur Lactobacillus sp. pada skala laboratorium 250 ml. Proses fermentasi menggunakan isolat Lactobacillus sp. yang diperoleh dilakukan dengan tahapan peremajaan isolat (Fardiaz, 1989), pembuatan starter Lactobacillus sp. (modifikasi Sulandari dkk., (2001) dan proses fermentasinya. Prosedur peremajaan isolat dan pembuatan starter Lactobacillus sp. disajikan pada Lampiran 4. Proses fermentasi dilakukan pada skala laboratorium 250 ml dengan menggunakan substrat glukosa sebagai sumber karbon terdiri atas tiga taraf konsentrasi (20 g/l, 30 g/l, 40 g/l). Komposisi media fermentasi dengan kandungan unsur mikro diantaranya : 5 g/l Sodium asetat, 2 g/l Amonium asetat, 2 g/l Na2HPO4, 1 g/l Tween 80, 0,1 g/l MgSO4.7H2O dan 0,05 g/l MnSO4.5H, selanjutnya media ditambah air hingga 1.000 ml untuk setiap volume satu liter. Setelah dilakukan inokulasi maka kemudian diinkubasi selama 48 jam pada suhu 370C. Selama fermentasi dihitung jumlah sel bakteri dan penimbangan bobot sel kering, kadar asam laktat, gula reduksi, protein dan asam linoleat pada jam ke-0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, dan jam ke 48. 34 Prosedur kerja yang digunakan untuk pengukuran kadar asam linoleat seperti pada Lampiran 2, sedangkan prosedur kerja pengukuran gula reduksi (Miller, 1959) dan asam laktat seperti pada Lampiran 3. Prosedur kerja pengukuran kadar protein metode Kjelhdal (Sudarmadji et al., 1996) yang selanjutnya dikonversi menjadi kadar nitrogen, perhitungan jumlah sel bakteri secara SPC (Fardiaz, 1989) yang dikonversi menjadi bobot sel (g/l) dan pengukuran kadar asam laktat (AOAC, 1970) serta pengukuran pH (Fardiaz, 1989) seperti pada Lampiran 5. Sintesis proses fermentasi galur Lactobacillus sp. pada skala laboratorium 250 ml. Sintesis proses dilakukan dengan cara mengkonfirmasi hasil penelitian yang pernah dilakukan oleh peneliti lain yang mempunyai kemiripan. Hasil dari sintesis proses diharapkan dapat menentukan proses fermentasi yang terbaik dari hasil percobaan skala laboratorium 250 ml. 3.3.3. Penelitian Tahap 3 : Pengembangan Proses Pembuatan diagram alir dan integrasi proses Pembuatan diagram alir disusun berdasarkan hasil tahapan proses dari percobaan skala laboratorium 250 ml untuk kemudian dilakukan integrasi proses dari tahapan awal hingga akhir. Hasil dari integrasi proses yang merupakan hasil percobaan terbaik selanjutnya di uji pada skala pilot plant 75 L. Pengujian proses fermentasi curah dengan substrat glukosa skala pilot plant 75 L. Proses fermentasi menggunakan isolat Lactobacillus sp. yang diperoleh dilakukan dengan tahapan peremajaan isolat (Fardiaz, 1989), pembuatan starter Lactobacillus sp. (modifikasi Sulandari dkk., (2001) dan proses fermentasinya. Prosedur peremajaan isolat dan pembuatan starter Lactobacillus sp. disajikan pada Lampiran 4. Proses fermentasi dilakukan pada skala pilot plant 75 L dengan menggunakan substrat glukosa sebagai sumber karbon. Konsentrasi dipilih dari hasil percobaan skala laboratorium 250 ml yaitu 20 g/l, 30 g/l, 40 g/l. Komposisi media fermentasi dengan kandungan unsur mikro diantaranya : 5 g/l Sodium asetat, 2 g/l Amonium asetat, 2 g/l Na2HPO4, 1 g/l Tween 80, 0,1 g/l MgSO4.7H2O dan 0,05 g/l MnSO4.5H, selanjutnya 35 media ditambah air hingga 1.000 ml untuk setiap volume satu liter. Setelah dilakukan inokulasi maka kemudian diinkubasi selama 48 jam pada suhu 370C. Selama fermentasi dihitung jumlah sel bakteri dan penimbangan bobot sel kering, kadar asam laktat, gula reduksi, protein dan asam linoleat pada jam ke-0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, dan jam ke 48. Pengujian proses fermentasi curah dengan media ekstrak jagung pada skala pilot plant 75 L. Proses fermentasi menggunakan isolat Lactobacillus sp. yang diperoleh dilakukan dengan tahapan peremajaan isolat (Fardiaz, 1989), pembuatan starter Lactobacillus sp. (modifikasi Sulandari dkk., (2001) dan proses fermentasinya. Prosedur peremajaan isolat dan pembuatan starter Lactobacillus sp. disajikan pada Lampiran 4. Pada proses fermentasi diperlukan ekstrak jagung dan ekstrak mengkudu serta susu segar. Susu segar dipasteurisasi pada suhu 121ºC selama 5 menit dan suhu diturunkan sampai mencapai 37 – 40ºC yang merupakan suhu optimum untuk pertumbuhan starter. Kemudian campuran ekstrak jagung dan ekstrak mengkudu, lalu diinokulasi dengan starter 5% dari volume media dan diinkubasi pada suhu 37 ºC selama 48 jam. Selama inkubasi dihitung jumlah sel bakteri/ bobot sel kering, kadar asam laktat, gula reduksi, protein dan asam linoleat pada jam ke-0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, dan jam ke 48. Pada percobaan dengan menggunakan medium kompleks perbandingan ekstrak jagung dengan ekstrak mengkudu 8 : 2 sebagai medium. Selanjutnya medium ditambahkan susu murni dengan perbandingan 8 : 2. Komposisi media dengan kandungan unsur mikro diantaranya : 5 g/l Sodium asetat, 2 g/l Amonium asetat, 2 g/l Na2HPO4, 1 g/l Tween 80, 0,1 g/l MgSO4.7H2O dan 0,05 g/l MnSO4.5H, selanjutnya media ditambah air hingga 1.000 ml untuk setiap volume satu liter. Dari hasil perhitungan sel bakteri asam laktat, kadar asam laktat, gula reduksi, protein dan asam linoleat, selanjutnya ditentukan periode yang paling baik untuk dilanjutkan pada proses pembuatan formulasi krem. Data-data yang diamati selama fermentasi adalah menghitung jumlah sel Lactobacillus sp. dengan cara standar plate count (SPC), mengukur pH, kadar asam laktat, kadar asam linoleat, gula reduksi, kadar nitrogen dari media kultivasi selama inkubasi 48 jam dengan suhu 370C. Prosedur kerja yang digunakan untuk pengukuran kadar asam linoleat seperti pada Lampiran 2, sedangkan prosedur kerja pengukuran gula reduksi (Miller, 1959) dan asam 36 laktat seperti pada Lampiran 3. Prosedur kerja pengukuran kadar protein metode Kjelhdal (Sudarmadji et al., 1996) yang selanjutnya dikonversi menjadi kadar nitrogen, perhitungan jumlah sel bakteri secara SPC (Fardiaz, 1989) yang dikonversi menjadi bobot sel (g/l) dan pengukuran kadar total asam (AOAC, 1970) serta pengukuran pH (Fardiaz, 1989) seperti pada Lampiran 5. Desain dan formulasi produk probiotik krem Desain dan formulasi produk probiotik krim dilakukan dengan tahapan pembuatan krim probiotik (modifikasi Susilorini, 2006) Prosedur kerja desain dan formulasi produk probiotik krem disajikan pada Lampiran 6. Karakterisasi produk dengan pengujian in-vivo Lactobacillus sp. Uji aktifitas asimilasi kolesterol Pengujian asimilasi kolesterol dengan metode yang digunakan oleh Usman dan Hasono (1999). Adapun prosedur kerja secara lengkap dapat dilihat pada Lampiran 7. Pengujian in-vivo Lactobacillus sp. terhadap penurunan kolesterol Tahap adaptasi Tikus jantan putih galur Wistar yang digunakan sebanyak 20 ekor masing-masing ditempatkan pada kandang. Untuk menghindari agar tikus tidak stres maka selama 7 hari tikus hanya diberikan pakan standar dan air minum secara ad libitum. Diharapkan setelah 7 hari tikus jantan putih galur Wistar telah menyesuaikan kondisi fisiologis, nutrisi dan lingkungan maka selanjutnya tikus diberikan perlakuan sesuai rancangan. Tahap perlakuan pengujian penurun kolesterol Pada tahap perlakuan pengujian penurun kolesterol sebanyak 30 ekor tikus dikelompokkan menjadi 6 kelompok perlakuan seperti pada Lampiran 8. Pakan standar, pakan kolesterol, larutan PTU dan sampel probiotik diberikan setiap hari secara oral selama masa perlakuan. Penimbangan sisa-sisa pakan dilakukan setiap hari, sedangkan pengambilan darah tikus dan penimbangan bobot badan dilakukan setiap 7 hari selama 35 37 hari perlakuan. Prosedur penyiapan asupan konsentrat sel probiotik dan kaldu fermentasi seperti yang ditunjukkan pada Lampiran 8. Pengamatan terhadap hasil pengujian in vivo Lactobacillus sp. untuk penurunan kolesterol dilakukan terhadap kadar kolesterol total, trigliserida, HDL dan LDL. Dilakukan juga analisa proksimat penentuan kadar lemak dalam feses tikus Winstar yang digunakan. Prosedur pengujian tersebut disajikan pada Lampiran 9. 3.3.4. Penelitian Tahap 4 : Kelayakan finansial perancangan teknologi proses produksi probiotik basis data hasil percobaan skala pilot plant Pada tahap perancangan proses produksi probiotik menggunakan data fermentasi Lactobacillus sp. pada skala 75 L dengan membandingkan substrat standar (Glukosa) dan substrat kompleks (ekstrak jagung). Penentuan medium fermentasi terbaik dihitung secara garis besar berdasarkan keuntungan yang diperoleh. Dengan data skala pilot 75 liter yang diperkirakan memberikan keuntungan selanjutnya dilakukan analisis kelayakan finansial secara detail berdasarkan : data bahan baku media fermentasi skala 75 L, data kinetika biokonversi untuk menghitung neraca masa,. data penggunaan peralatan alur proses (PEFD). dan data tenaga kerja. Kajian terhadap kelayakan finansial meliputi NPV, IRR, Net B/C ratio, PBP dan BEP. Analisis sensitivitas dilakukan dengan asumsi terjadi (1) kenaikan harga bahan baku yaitu jagung dan mengkudu; (2) penurunan kapasitas proses produksi akibat keterbatasan ketersediaan bahan baku berupa mengkudu, jagung dan susu; dan (3) penurunan harga produk probiotik yang dapat disebabkan semakin banyaknya produk sejenis dengan harga yang lebih murah. BAB IV HASIL DAN PEMBAHASAN Hasil dari perancangan teknologi proses produksi probiotik penghasil omega-6 dan penurun kolesterol dikembangkan dengan melakukan modifikasi perancangan proses Seider et al., (1999) dan skema perancangan proses oleh Douglas (1988) dengan hasil seperti yang disajikan dalam Gambar 6 di bawah ini. ANALISIS PELUANG DAN PERMASALAHAN Analisis Peluang (Aspek Kebijakan Pemerintah dan Potensi Pasar) Analisis Permasalahan Pemanfaatan isolat lokal. Karakterisasi dan identifikasi isolat potensial. Aspek penggunaan bahan baku standar dan bahan baku subsitusi. Pemilihan jalur proses produksi. KREASI PROSES RANCANGAN PROSES Penyiapan Bahan Baku Glukosa Starter (Perbanyakan Sel) Fermentasi Batch pada Substrat Glukosa Skala Laboratorium Konsentrasi 20 g/l 30 g/l 40 g/l Glukosa Konsentrasi Substrat Glukosa Terpilih ( 20 g/l) Tidak Apakah ada keuntungan kasar? Ya Lanjutan Tolak 39 Lanjutan Pembuatan Diagram Alir (Fermentasi & Formulasi Produk) Integrasi Proses PENGEMBANGAN PROSES (Process Engineering Flow Diagram) Pengujian Fermentasi Batch Skala Pilot Plant Substrat Glukosa 20 g/l Substrat Komplek Karakterisasi Produk (Uji In Vivo) Konsentrasi Sel Konsentrasi Sel + Kaldu Kreasi Formulasi Produk Tidak Apakah Proses Menjanjikan Tolak Ya KELAYAKAN PERANCANGAN PROSES Penentuan Kapasitas Produksi Perhitungan Neraca Massa Disain Peralatan Perhitungan : • Biaya investasi • Biaya modal kerja • IRR, NPV, Net B/C, PBP • Cash flow Kelayakan Finansial Proses Tidak Terpenuhi Ya Gambar 6. Perancangan proses produksi probiotik penghasil omega-6 (ω-6) dan penurun kolesterol. Rancangan Lanjutan 40 4.1. Analisis Peluang Kebijakan pemerintah dalam rangka pembangunan dan perbaikan gizi masyarakat disusun dengan mengacu pada Undang-Undang No. 17 tahun 2007 tentang Rencana Pembangunan Jangka Panjang Nasional tahun 2005-2025. Program pemerintah yang tertuang dalam dokumen perencanaan BAPPENAS menegaskan bahwa “Pembangunan dan perbaikan gizi dilaksanakan secara lintas sektor meliputi produksi, pengolahan, distribusi, hingga konsumsi pangan dengan kandungan gizi yang cukup, seimbang, serta terjamin keamanannya”. Ketahananan pangan merupakan salah satu prioritas dalam Rencana Pembangunan Nasional Jangka Menengah Tahun 2010-2014 yang ditetapkan melalui Peraturan Presiden Republik Indonesia No. 5 Tahun 2010. Instruksi Presiden No. 3 Tahun 2010 menginstruksikan perlunya disusun rencana aksi pangan dan gizi nasional dan rencana aksi pangan dan gizi di tingkat provinsi yang dalam proses penyusunannya melibatkan kabupaten dan kota (Anonim, 2011). Rencana aksi pangan dan gizi disusun dalam program berorientasi aksi yang terstruktur dan terintegratif dalam lima pilar rencana aksi yaitu perbaikan gizi masyarakat, peningkatan aksesibilitas pangan, peningkatan pengawasan mutu dan keamanan pangan, peningkatan perilaku hidup bersih dan sehat, serta penguatan kelembagaan pangan dan gizi. Kebijakan pemerintah yang memprioritaskan program peningkatan gizi masyarakat telah memberikan peluang pengembangan industri probiotik penghasil omega-6 dan penurun kolesterol karena produk yang dikembangan memiliki kandungan nutrisi yang cukup dan makanan yang mampu memberikan efek kesehatan. Hal ini selaras dengan program pemerintah tentang formulasi peningkatan kandungan nutrisi pada produk pangan (scaling-up nutrition-SUN). SUN Movement merupakan upaya global dari berbagai negara dalam rangka memperkuat komitmen dan rencana aksi percepatan perbaikan gizi masyarakat. Efek kesehatan dari probiotik penghasil omega-6 dan penurun kolesterol dapat memberikan kontribusi terhadap penurunan penyebab kematian akibat penyakit tidak menular seperti hipertensi yang mencapai 31,9 % dan prevalensi akibat jantung koroner 7,2 %. Kedua penyakit tersebut dapat dipicu dari pola konsumsi pangan yang banyak mengandung kolesterol (Anonim, 2007). Pergeseran pola hidup sehat masyarakat dan meningkatnya kesadaran gizi masyarakat juga dapat mendorong laju konsumsi hasil pengolahan susu per tahun sebesar 6,1%. Laju konsumsi ternyata jauh lebih besar dari laju produksinya yang baru mencapai 3,1%. Untuk meningkatkan produksi pengolahan susu nasional, saat ini telah banyak beredar merek (susu dan yoghurt) yang sudah mulai berbasis kedelai, walaupun 41 penjualannya masih belum signifikan. Belum ada indikasi jelas apakah pasar akan merespon positif atau tidak. Namun melihat berkembangnya gaya hidup sehat, produk ini bisa memperoleh pangsa pasar untuk kelas menengah ke atas. Biodrinking yoghurt relatif masih kalah populer dengan minuman kesehatan yang lebih dulu muncul, karena dianggap belum perlu untuk kesehatan dan terlalu mahal serta menyusahkan karena harus disimpan di dalam kulkas. Rencana pengembangan teknologi probiotik penghasil omega-6 dan penurun kolesterol berbahan baku dari ekstrak jagung dan ekstrak mengkudu diharapkan mampu memberikan kontribusi pada pemenuhan pangan yang memiliki kandungan nutrisi cukup. Peluang pasar industri probiotik sangat besar. Data konsumsi probiotik nasional tidak dapat ditemukan secara pasti berapa besar nilai perdagangan dan volume pasar probiotik nasional. Namun jika didasarkan pada beberapa industri yang saat ini telah berjalan konsumsi pangan probiotik cukup besar. Data yang dirilis oleh PT. Yakult Indonesia untuk pabrik di Sukabumi mampu memproduksi 1,8 juta botol Yakult bervolume 65 ml atau setara 117 ton probiotik/ hari. Produksi tersebut belum memasukkan produksi pabrik di lokasi lain dan rencana pengembangannya. Demikian juga untuk pesaing dari Vitacharm untuk volume packing yang sama kapasitas produksinya sekitar 2 juta botol/hari. Kapasitas tersebut baru untuk botol berukuran kecil, karena Vitacharm juga memproduksi minuman yang dikemas ukuran curah. Sedangkan untuk industri yoghurt seperti Yummi Indonesia juga memiliki kapasitas produksi yang cukup besar. Dari contoh industri yang sudah berjalan tersebut dapat memberikan gambaran begitu besarnya peluang industri probiotik nasional. Isolat Lactobacillus sp. yang berasal dari tuak mengkudu memiliki potensi untuk dijadikan agensia probiotik karena kondisi mikrobiologis badeg pace dengan derajat keasaman yang tinggi memungkinkan bakteri hasil isolasi tersebut bersifat probiotik. Tuak mengkudu yaitu sejenis minuman tradisional sari buah mengkudu (Morinda citrifolia) yang difermentasi secara spontan dan memiliki khasiat kesehatan. Tuak mengkudu yang dikenal badeg pace oleh masyarakat Ponorogo secara tradisional telah menjadi minuman secara turun temurun yang diyakini dapat memberikan efek kesehatan. Keberhasilan dalam mengembangkan isolat lokal yang berasal dari Ponorogo memiliki peluang yang cukup besar dalam mendorong kemandirian pemenuhan kebutuhan pangan yang berbasis pada potensi wilayah, sehingga dapat mengurangi ketergantungan pemenuhan dari wilayah lain. 42 4.2. Analisa Permasalahan Permasalahan dalam perancangan teknologi produksi berhubungan erat dengan kegiatan sintesis yang merupakan kegiatan yang berurutan dan terpadu. Dalam sintesis dilakukan pemilihan proses dengan mengikuti kaidah umum seperti mempertimbangkan biaya rendah, aman, memenuhi persyaratan lingkungan dan mudah mengoperasikannya. Inti dari perancangan proses yang ditulis Mangunwidjaja dan Suryani (1994) adalah menemukan pilihan-pilihan proses yang layak dikembangkan sehingga pemilihan proses merupakan titik awal yang cukup menentukan. Perancangan proses dilakukan karena adanya peluang untuk menghasilkan produk yang menguntungkan dan memuaskan serta adanya permasalahan langsung dari masyarakat (Seider et al. 1999). Permasalahan dirumuskan secara spesifik berdasarkan informasi dari kajian pustaka. Informasi yang dimaksud berkaitan dengan ketersedian bahan baku, skala proses produksi, permintaaan pasar, harga jual produk dan lain-lain. Invensi dalam perancangan proses dimulai dengan membuat pernyataan masalah sederhana kemudian dilanjutkan pembentukan tim perancang, pengumpulan informasi, inovasi proses untuk menyelesaikan masalah spesifik. Untuk menentukan teknologi proses produksi probiotik penghasil omega-6 dan penurun kolesterol yang terbaik dilakukan penelitian dari skala laboratorium 250 ml dengan peubah konsentrasi glukosa awal fermentasi 20 g/l dan 30 g/l serta 40 g/l. Isolat yang digunakan berasal dari hasil isolasi badeg pace dan buah mengkudu matang. Untuk melihat peluang dan potensi isolat yang dapat digunakan sebagai agensia probiotik maka terlebih dahulu dilakukan pengujian isolat secara in vitro yang meliputi uji daya antagonistik terhadap bakteri patogen dan uji ketahanan terhadap bile sile serta uji kemampuan tumbuh pada pH rendah yang dilanjutkan dengan mengidentifikasi secara molekuler. Hasil yang terbaik dan diperkirakan dapat memberikan keuntungan kasar penelitian dilanjutkan pada percobaan skala pilot plant 75 liter dengan menggunakan bahan baku yang sama. Pada tahap pengembangan teknologi proses produksi skala pilot plant 75 liter juga dilakukan dengan mensubsitusi bahan baku standar dengan bahan baku yang berasal dari produk pertanian dengan harapan subsitusi tersebut dapat mengurangi harga bahan baku, sehingga dengan produktivitas yang sama akan meningkatkan keuntungan. 43 4.2.1. Pemanfatan Isolat Lokal Potensi sumber daya alam Indonesia yang cukup besar memberikan peluang untuk dilakukan eksplorasi secara maksimal. Dalam upaya pemanfatan sumberdaya hayati lokal maka telah dilakukan isolasi galur Lactobacillus sp. yang bersumber dari badeg pace dan buah mengkudu matang yang diambil dari daerah Ponorogo. Dari hasil isolasi diperoleh enam isolat bakteri. Berdasarkan Bergey’s Manual of Systematic Bacteriology, kelompok bakteri asam laktat yang berbentuk batang yang mempunyai katalase negatif dan hasil pewarnaan gramnya positif merupakan bakteri asam laktat genus Lactobacillus sp. Dari keenam isolat yang merupakan bakteri gram positif, katalase negatif dan berbentuk batang sebanyak lima isolat. Hasil isolasi menunjukkan bahwa Lactobacillus sp. terdapat pada buah mengkudu matang dan tuak mengkudu. Pada Tabel 7 ditunjukkan bahwa dari buah mengkudu matang didapatkan dua isolat Lactobacillus sp. JR17 dan Lactobacillus sp. JR10, dari tuak mengkudu didapatkan tiga buah isolat Lactobacillus sp. JR19, Lactobacillus sp. JR64 dan Lactobacillus sp. JR92 dan satu isolat JR03 bukan Lactobacillus sp. Kelima isolat tersebut kemudian diuji kemampuan antibakterinya dan kemampuan tumbuh pada kondisi pencernaan (pH rendah dan adanya garam empedu). Tabel 7. Data hasil isolasi dan uji bakteri asam laktat. No 1 2 Sumber Buah mengkudu matang Jumlah isolat 2 Tuak mengkudu 4 Kode isolat JR17 Bentuk isolat batang Katalase Gram negatif positif JR10 batang negatif positif JR64 batang negatif positif JR19 batang negatif positif JR92 batang negatif positif JR03 bulat positif negatif 4.2.2. Karakterisasi Potensi Isolat Lokal Uji Aktivitas Antagonistik Bakteri Asam Laktat terhadap Bakteri Patogen Salah satu kriteria yang diharapkan dari bakteri asam laktat yang digunakan untuk probiotik adalah kemampuannya untuk menghambat bakteri patogen sehingga mampu berkompetisi untuk menjaga keseimbangan mikroflora normal dalam saluran pencernaan (Fuller 1986). Dalam penelitian ini digunakan dua bakteri patogen yaitu Escherichia coli ATCC 25922 yang merupakan bakteri gram negatif, sedangkan Staphylococcus aureus 44 ATCC 25923 bakteri gram positif yang tidak membentuk spora. Hasil pengujian aktivitas antagonistik bakteri asam laktat terhadap bakteri patogen ternyata isolat yang berasal dari badeg pace memiliki daya hambat yang tinggi dibandingkan dengan isolate dari buah mengkudu matang. Dalam penelitian ini tidak dilakukan identifikasi jenis senyawa antimikroba yang dihasilkan, akan tetapi dari beberapa penelitian telah membuktikan bahwa bakteri asam laktat dapat menghasilkan beberapa senyawa yang dapat menghambat pertumbuhan mikroba, misalnya, asam laktat, asam asetat, asam-asam organik, hidrogen peroksida, dan senyawa komplek protein spesifik yang disebut bakterosin adalah senyawasenyawa antimikroba yang dihasilkan oleh bakteri asam laktat. Kelima isolat yang terpilih diseleksi kemampuannya menghambat bakteri patogen. Kemampuan penghambatan isolat Lactobacillus sp. JR64 dapat dilihat dari terbentuknya areal bening (zone penghambatan) di sekitar sumuran yang berisi isolat Lactobacillus sp. seperti pada Gambar 7. Diameter hambat terhadap Staphylococcus aureus ATCC 25923 Diameter hambat terhadap Escherichia coli ATCC 25922 Gambar 7. Hasil Pengujian Anti Mikroba Lactobacillus sp. Pada Gambar 8. dapat dilihat bahwa Lactobacillus sp. JR17 dan Lactobacillus sp. JR10 memiliki aktifitas antibakteri yang sangat kecil yaitu 1,0 mm. Lactobacillus sp. JR64 memiliki aktivitas antibakteri yang paling besar 3,9 mm terhadap Escherichia coli ATCC 25922 dan 4,0 mm Staphylococcus aureus ATCC 25923, hampir sama dengan bakteri pembanding (kontrol) 4,0 mm terhadap Escherichia coli ATCC 25922 dan 4,2 mm terhadap Staphylococcus aureus ATCC 25923. Sedangkan kedua isolat yang lainnya Lactobacillus sp. JR19 dan Lactobacillus sp. JR92 memiliki aktifitas penghambatan 2,1 mm dan 3,0 mm terhadap Escherichia coli ATCC 25922, terhadap Staphylococcus aureus ATCC 25923 seluas 2,9 mm dan 4,1 mm. 45 Simbol : E. Coli 25922 : S. aureus 25923 Gambar 8. Hasil pengujian anti mikroba Lactobacillus sp. Uji Kemampuan Tumbuh Pada Media Garam Empedu Untuk dapat bertahan dan tumbuh pada saluran pencernaan, bakteri asam laktat sebagai kultur probiotik harus mampu melewati berbagai kondisi lingkungan yang menekan. Salah satunya adalah pada saat bakteri dikonsumsi memasuki bagian atas saluran usus dimana empedu disekresikan ke dalam usus. Cairan empedu merupakan campuran dari asam empedu, kolesterol, asam lemak, fosfolipid, pigmen empedu dan sejumlah xenobiotik terdetoksifikasi. Sekresi pankreas juga mengandung serangkaian enzim pencernaan, dimana enzim yang bersifat lipolitik diaktifkan oleh karakteristik aktif permukaan empedu. Kombinasi tersebut bersifat bakterisidal bagi mikroorganisme komersial dalam tubuh manusia kecuali bagi beberapa genus penghuni usus yang tahan terhadap empedu. Garam empedu berpengaruh terhadap permeabilitas sel bakteri. Pada sel bakteri asam laktat yang diinkubasi pada larutan penyangga yang mengandung garam empedu masih mengalami pertumbuhan dan tidak mengalami lisis, tetapi mengalami peningkatan kebocoran materi intraseluler yang terabsorbsi pada panjang gelombang 260 nm, yang berarti terjadi perubahan sifat permeabilitas pada membran sel bakteri. Pada bakteri yang tidak tahan terhadap garam empedu diduga bahwa perubahan permeabilitas seluler dan kebocoran materi intraseluler yang dialami lebih besar sehingga menyebabkan lisisnya sel, 46 mengakibatkan kematian. Empedu bersifat sebagai senyawa aktif permukaan sehingga dapat menembus dan bereaksi dengan sisi membran sitoplasma yang bersifat lipofilik, menyebabkan perubahan dan kerusakan struktur membran. Sifat aktif permukaan empedu juga mengakibatkan aktifnya enzim lipolitik yang disekresikan oleh pankreas. Enzim tersebut juga mungkin bereaksi dengan asam lemak pada membran sitoplasma bakteri yang dapat mengakibatkan perubahan struktur membran dan sifat permeabilitasnya. Dari hasil seleksi didapatkan bahwa dua isolat yang berasal dari buah mengkudu matang Lactobacillus sp. JR17 dan Lactobacillus sp. JR10 tidak mampu tumbuh pada media yang mengandung garam empedu dengan konsentrasi 10 % seperti Gambar 9. 10 Jumlah Sel (Log Cfu/ml) 9 8 7 6 5 4 3 2 1 0 Sumber Isolat Simbol : : Jumlah Sel Stater : Garam Empedu 10% Stater Gambar 9. 10% Kemampuan tumbuh isolat Lactobacillus sp. pada media garam empedu 10 %. Data pertumbuhan isolat pada berbagai konsentrasi garam empedu seperti pada Lampiran 10. Sedangkan tiga isolat Lactobacillus sp. JR64 dan Lactobacillus sp. JR19 serta Lactobacillus sp. JR92 yang berasal dari badag pace mampu tumbuh pada media yang mengandung garam empedu sampai konsentrasi 1 % dan pertumbuhannya terhambat setelah konsentrasi garam empedu ditingkatkan 5 % dan 10 %, kemampuan ini lebih kecil dibandingkan bakteri pembanding (kontrol) yang mampu tumbuh sampai kadar garam empedu 10 %. Meningkatnya konsentrasi garam empedu menyebabkan pertumbuhan isolat terhambat tidak mampu tumbuh hingga mencapai 85,5 % untuk isolat yang bersumber 47 mengkudu matang Lactobacillus sp. JR17. Sedangkan untuk isolat Lactobacillus sp. JR64 jumlah isolat yang tidak dapat bertahan relatif lebih kecil sebesar 65,4 % dan mikroba kontrol sebesar 57,4%. Kemampuan tumbuh pada pH rendah Kemampuan tumbuh pada pH rendah semakin menurun dengan semakin menurunnya pH media. Pada pH 3,5 semua isolat yang diperoleh masih mampu tumbuh 4 – 7 log cycle, kemudian pada pH 3 terjadi penurunan menjadi 3 - 6 log cycle, pada pH 2,5 turun lagi menjadi 2 – 5 log cycle dan pada pH 2 hanya Lactobacillus sp. JR64 dan kontrol yang masih mampu tumbuh sampai 3 log cycle, sedangkan yang lainnya hanya mampu tumbuh 1 log cycle. Pada Gambar 10 ditunjukkan bahwa pertumbuhan isolat yang berasal dari tuak mengkudu Lactobacillus sp. JR64 masih dapat tumbuh mencapai 1,1 x 105 Cfu/ml, sedangkan kontrol Lactobacillus bulgaricus FNCC41 pertumbuhannya mencapai 8 x 105 Cfu/ml. Jumlah mikroba yang tidak dapat bertahan pada pH 2,5 paling besar isolat yang bersumber dari BPB yang mengalami penurunan hingga 81,8 % dari total stater yang diinokulasikan. Sedangkan untuk isolat yang bersumber dari badeg pace Lactobacillus sp. JR64 menurun 63,4 % dan kontrol menurun 55,5 %. Data pertumbuhan isolat pada berbagai pH dapat dilihat pada Lampiran 11. 10 Jumlah Sel (Log Cfu/ml) 9 8 7 6 5 4 3 2 1 0 JR17 JR10 JR64 JR19 JR92 FNCC41 Sumber isolat & pertumbuhan pH 2,5 Simbol : : Jumlah Sel Stater Starter : pH : 2,5 pH 2,0 Gambar 10. Kemampuan tumbuh isolat Lactobacillus sp. pada media pH rendah. 48 Kebanyakan bakteri asam laktat tidak hanya mengalami pertumbuhan pada kondisi pH rendah, tetapi mungkin juga mengalami kerusakan asam dan hilangnya viabilitas sel. Pengaturan pH rendah dengan menggunakan HCl dalam media pertumbuhan, untuk mendekati kondisi lambung yang juga mengandung HCl. HCl adalah asam kuat yang mudah terdisosiasi menghasilkan proton menyebabkan penurunan pH medium di luar sel atau pH ekstraseluler. Paparan pada kondisi yang sangat asam dapat mengakibatkan kerusakan membran dan lepasnya komponen intraseluler yang dapat menyebabkan kematian. Bakteri asam laktat pada umumnya memiliki ketahanan yang lebih baik terhadap kerusakan membran akibat terjadinya penurunan pH ekstraseluler dibandingkan dengan bakteri yang tidak tahan terhadap asam. Perbedaan kerentanan terhadap kerusakan membran akibat turunnya pH telah diteliti oleh Bender et al., (1986), dimana kerusakan membran diukur berdasarkan pada keluarnya ion Mg dari sel. Pada galur yang kurang tahan terhadap asam, ion Mg akan keluar dari dalam sel ketika pH mencapai 4, sedangkan pada Lactobacillus casei mulai terjadi kerusakan membran pada pH eksternal kurang dari 3. Ada beberapa kemungkinan mekanisme bagaimana bakteri mengatur pH internalnya tetapi mekanisme yang paling penting adalah translokasi protron oleh enzim ATP-ase (Hutkins dan Nannen 1993). Enzim yang terikat pada membran tersebut melakukan reaksi reversible bertindak sebagai pompa yang memindahkan ion. Enzim tersebut mengkatalisa gerakan proton melewati membran sel sebagai akibat dari hidrolisis atau sintesa ATP. Pada bakteri yang tahan asam, pH optimal enzim tersebut lebih rendah dibandingkan dengan yang kurang tahan terhadap asam. Parameter lain yang terlibat dalam pengaturan pH internal adalah permeabilitas membran plasma terhadap proton. 4.2.3. Identifikasi Lactobacillus sp. dengan Molekuler Identifikasi molekuler Lactobacillus sp. dipilih dari hasil karakterisasi potensi isolat lokal terbaik yaitu Lactobacillus sp. JR64 dari badeg pace. Bakteri Lactobacillus sp. JR64 dilakukan identifikasi dengan menggunakan PCR yang diperkirakan akan berada pada daerah 16S rRNA. Isolasi Genom DNA Proses ekstrasi genom DNA dari isolat bakteri genus Lactobacillus sp. JR64 dilakukan secara enzimatis dengan menggunakan Instagene matrix, yaitu suatu kit yang dapat digunakan untuk ekstraksi genom DNA. Kit ini mengandung komponen yang 49 dibutuhkan dalam proses ekstraksi genom seperti lisozim, RNAse, dan EDTA. RNAse berfungsi untuk menguraikan RNA, karena keberadaan RNA dapat mengkontaminasi isolat DNA. Keberadaan protein dalam isolat DNA juga dapat mengganggu proses amplifikasi PCR, terutama jika protein tersebut adalah suatu DNAse yang dapat menguraikan DNA. Dari proses isolasi ini diperoleh DNA sebesar 1.360 ng dengan kemurnian (260/280) 2,5. Hasil isolasi ini mencukupi sebagai DNA templat, karena untuk proses amplifikasi PCR hanya diperlukan DNA sebesar 50-200 ng/µl. Amplifikasi PCR pada daerah 16S rRNA Amplifikasi gen 16S rRNA menggunakan primer 8F dan 1492R. Visualisasi hasil amplifikasi dilakukan dengan elektroforesis gel agarosa dengan konsentrasi 1%. 1 2 1500bp 1.500 pb Gen16S rRNA Keterangan : 1. GeneRuler™ 1Kb DNA Ladder 2. Amplikon gen 16S rRNA Isolat Lactobacillus sp. JR64 Skala GeneRuler™ 1Kb DNA Ladder Gambar 11. Hasil amplifikasi Gen 16S rRNA Hasil visualisasi seperti pada Gambar 11 menunjukkan panjang fragmen amplikon yang diperoleh dari hasil PCR 16S rRNA diperkirakan sekitar 1.500 pb berdasarkan ukuran pita pada GeneRuler™ 1Kb DNA Ladder. Hasil ini menunjukkan bahwa panjang amplikon gen l6S rRNA mendekati dengan prediksi : 1484 pb jika menggunakan primer 8F dan 1492R. 50 Penentuan Urutan Basa DNA (Sekuensing) daerah 16S rRNA Penentuan urutan basa (sekuensing) hasil PCR dilakukan dengan menggunakan primer 765R dan 1141R. Hasil pembacaan urutan basa fragmen DNA sampel Lactobacillus sp. JR64 menggunakan ABI 3130 Genetic Analyzer diperoleh sebanyak 945 bp, dapat dilihat pada Lampiran 12. Data hasil amplikon selanjutnya dibandingkan tingkat homologinya dengan data hasil sekuensing gen bakteri yang terdapat pada data Genebank, menggunakan program BLAST-N. Hasil BLAST urutan nukleotida tersebut terhadap data base 16S rDNA yang terdapat dalam situs www.ncbi.com dapat dilihat pada Lampiran 13. Berdasarkan analisis penjajaran dengan program Clustal X, maka diperoleh pohon kekerabatan filogenetik seperti Gambar 12. Analisis menunjukkan bahwa isolat Lactobacillus sp. JR64 mempunyai kemiripan yang paling tinggi dengan Lactobacillus plantarum strain UK-3 dengan nilai kesamaan pasangan basa (max score) 854, nilai total pasangan basa (total score) 854, presentase analisis keseluruhan (query coverage) 100%, persentase kesalahan dalam proses (E value) 0,0 dan presentase keakuratan identifikasi (max identify) 99 %. Dari hasil pembacaan pohon filogenetik diperoleh hasil bahwa isolat yang berasal dari badeg pace merupakan jenis bakteri Lactobacillus plantarum JR64. Gambar 12. Pohon filogenetik isolat Lactobacillus sp. JR64 51 Berdasarkan data pohon filogenetik isolat Lactobacillus sp. JR64 memiliki kesamaan dengan isolat Lactobacillus plantarum UK-3 yang ditemukan oleh Oh,K.H. and Um,S.J., 2011, Lactobacillus plantarum strain UK-3 16S ribosomal RNA gene, www.ncbi..nlm.nih.gov/nucleotide. Data secara detail Lactobacillus plantarum UK-3 ditunjukkan pada Lampiran 14. 4.2.4. Pemilihan bahan baku Bahan baku yang digunakan untuk produksi probiotik penghasil omega-6 dan penurun kolesterol digunakan bahan baku ekstrak jagung dan ekstrak mengkudu. Harga bahan baku untuk media fermentasi dari ekstrak jagung dan ekstrak mengkudu merupakan produk pertanian yang memiliki harga lebih murah dibandingkan dengan harga bahan baku substrat yang berasal dari medium glukosa sehingga bahan baku dari produk pertanian direkomendasikan untuk digunakan sebagai bahan baku fermentasi produksi probiotik penghasil omega-6 dan penurun kolesterol. Selisih harga bahan baku tersebut dapat memberikan keuntungan yang lebih besar. Komposisi medium fermentasi yang digunakan dapat berupa medium sederhana atau medium komplek karena keduanya dapat diperoleh secara sintetis. Medium sintetis sangat menguntungkan dimana untuk setiap komponen dapat dikurangi dihilangkan atau ditambahkan dan pada umumnya tidak membentuk busa karena tidak mengandung protein dan peptida. Pada fermentasi skala industri sumber-sumber nutrien harus mampu membentuk produk atau biomassa dengan hasil maksimum untuk setiap gram substrat yang digunakan. Manipulasi metabolik juga diharapkan dapat memacu pembentukan produk fermentasi dengan laju yang maksimum dan dapat menghambat pembentukan produk yang tidak diinginkan. Aspek lain adalah medium fermentasi harus memiliki mutu yang konsisten, murah dan cukup tersedia sepanjang tahun serta tidak menimbulkan masalah aerasi, agitasi dan pemurnian hasilnya (Rachman, 1992). Manipulasi metabolik merupakan salah satu cara dalam teknik fermentasi untuk memperoleh hasil yang optimum. Manipulasi metabolik dapat dilakukan dengan pemberian substrat media yang bervariasi baik jenis maupun konsentrasi. Pada lintasan primer metabolik dapat ditemui beberapa senyawa antara yang membentuk lintasan samping. Dalam hal ini modifikasi metabolisme mikroorganisme dengan menggunakan peubah variasi konsentrasi substrat diharapkan terjadi pembelokan lintasan metabolisme tersebut kearah pembentukan senyawa asam linoleat (omega-6). 52 4.2.5. Pemilihan jalur proses Masalah yang dihadapi dalam produksi probiotik dengan isolat lokal Lactobacillus plantarum JR64 adalah besarnya efisiensi dari setiap tahapan proses karena akan berkorelasi dengan biaya produksi. Oleh sebab itu pemilihan jalur proses perlu dikaji secara detail sehingga hasil perancangan dapat memberikan keuntungan secara maksimal. Dalam perancangan proses perlu dipertimbangkan efisiensi dan kesesuaian peralatan proses sehingga pabrik memiliki umur yang panjang. Proses yang efisien sangat dipengaruhi oleh besarnya konversi bahan baku menjadi produk yang diharapkan dengan konsumsi energi. Jika proses yang dipilih sangat efisien maka akan mampu memberikan keuntungan yang besar sehingga pengembalian modal investasi bisa dilakukan lebih cepat. Sedangkan proses yang efektif sangat terkait dengan pemilihan peralatan yang tepat sehingga waktu proses lebih cepat, kondisi proses yang aman dan mudah dalam pengoperasiannya. Faktor lain yang perlu diperhatikan dalam perancangan proses yaitu pemilihan jalur proses dengan tahapan yang singkat dimungkinkan dapat memberikan keuntungan yang lebih besar karena semakin panjang tahapan proses akan menambah biaya pembelian peralatan dan membutuhkan tenaga pengoperasi yang lebih banyak. Produksi probiotik penghasil omega-6 (ω-6) dan penurun kolesterol dapat dilakukan dengan cara fermentasi menggunakan bahan baku glukosa maupun bahan baku subsitusi dari ekstrak jagung dan ekstrak buah mengkudu. Sistem fermentasi dipilih fermentasi batch karena memiliki kelebihan seperti harga instrumentasi relatif lebih murah dan penggunaannya fleksibel artinya dapat dihentikan secara mudah dan cepat setiap saat serta dapat digunakan secara multifungsi. Pemilihan sistem batch telah mempertimbangkan selama proses fermentasi diharapkan Lactobacillus plantarum JR64 tidak menghasilkan zat toksin karena tidak dapat dikeluarkan yang dapat mengganggu metabolisme sehingga produktivitas akan menurun. Fermentasi batch setelah dilakukan inokulasi tidak dilakukan lagi penambahan media ke dalam fermentor, sehingga semakin lama waktu fermentasi, laju pertumbuhan spesifik (μ) mikroba semakin menurun sampai akhirnya berhenti. Penurunan dan berhentinya pertumbuhan disebabkan nutrien berkurang dan terjadi akumulasi metabolit yang mempengaruhi laju pertumbuhannya, sehingga pada fermentasi curah jumlah sel pada fase stasioner merupakan jumlah sel maksimum dan faktor pembatas utama dari luar terhadap pertumbuhan mikroba adalah konsentrasi nutrien dan konsentrasi metabolitmetabolit dapat menghambat pertumbuhan mikroba. 53 4.3. Kreasi Teknologi Proses Produksi Perancangan proses merupakan proses kreatif dan berdisiplin untuk memecahkan masalah yang mencakup pendefinisian dan penyelesaian masalah dengan menggunakan prinsip metode ilmiah dan seni, informasi teknis dan imajinasi menentukan struktur, mesin, proses atau sistem baru yang memenuhi fungsi yang diinginkan dengan nilai ekonomis dan efisiensi tinggi. Kreasi proses dilaksanakan melalui pengumpulan data percobaan laboratorium dan diakhiri dengan analisis keuntungan secara garis besar. Hasil analisa sangat menentukan proses dinilai layak atau tidak. Proses dianggap layak ketika harga produk lebih tinggi dari nilai harga bahan baku dan proses ditolak ketika tidak dapat memberikan keuntungan. Kreasi proses produksi probiotik dari isolat lokal Lactobacillus plantarum JR64 penghasil omega-6 dan penurun kolesterol dilakukan dengan percobaan fermentasi skala laboratorium 250 ml dengan menggunakan substrat standar glukosa pada konsentrasi substrat glukosa awal 20 g/l dan 30 g/l serta 40 g/l. Hasil percobaan dari ketiga konsentrasi tersebut selanjutnya dipilih yang terbaik ditentukan berdasarkan nilai efisiensi fermentasi yaitu Y p/s dan Y x/s. 4.3.1. Profil Fermentasi Batch Skala Laboratorium. Hasil fermentasi produksi probiotik dengan menggunakan isolat lokal Lactobacillus plantarum JR64 skala laboratorium dengan konsentrasi glukosa awal fermentasi 20 g/l yang diberi notasi (GL-20) dapat dilihat pada Gambar 13. Untuk mengetahui pola interaksi antara penggunaan substrat dengan pertumbuhan Lactobacillus plantarum JR64 dan pembentukan produk maka dilakukan analisa glukosa (RS) dan penimbangan bobot sel (X) serta kadar omega-6 (P). Untuk menentukan bobot sel dapat dihitung dengan menggunakan kurva hubungan berat sel kering dengan jumlah sel (log cfu/ml) pada fermentasi skala laboratorium seperti pada Lampiran 15. Pada Gambar 13, ditunjukkan bahwa waktu lag terjadi selama 6 jam kemudian mengalami perubahan secara eksponensial hingga jam ke 21 dan sekaligus menjadi permulaan dari fase stasioner. Pertumbuhan tetap ini mulai berakhir saat fermentasi berjalan selama 42 jam dan terus menurun hingga akhir fermentasi. Hasil dari penelitian Hwang et al. (2011) yang menggunakan glukosa sebagai substrat fermentasi isolat Lactobacillus plantarum LP02 ternyata terjadi peningkatan produksi sel ketika konsentrasi glukosa meningkat hingga 30 g/l. Pada konsentrasi substrat glukosa 10 g/l dihasilkan sel sebanyak 54 1,18 g/l dan untuk konsentrasi substrat glukosa 30 g/l terbentuk sel sebanyak 1,17 g/l. Fermentasi mulai tidak efektif pada substrat glukosa 50 g/l karena hanya menghasilkan berat sel kering sebanyak 1 g/l. Pada fermentasi batch rata-rata glukosa terkonsumsi secara cepat hingga jam ke 12. Konsumsi glukosa pada fermentasi produksi probiotik dari isolat Latobacillus plantarum JR64 penghasil omega-6 atau asam linoleat juga terjadi secara cepat hingga jam ke 12. Adapun pada fermentasi dengan substrat glukosa 30 g/l konsumsi glukosa terjadi secara cepat hingga jam ke 15, sedangkan pada konsentrasi glukosa 40 g/l terjadi hingga jam 12. Hal ini diperkirakan jumlah starter memberikan pengaruh terhadap kecepatan di dalam mengkonsumsi subtrat glukosa yang digunakan sebagai pertumbuhan sel. Jumlah sel yang diinokulasikan pada fermentasi substrat glukosa 20 g/l dan 40 g/l lebih banyak dibandingkan pada substrat 30 g/l. 10 9 18 8 15 6 12 5 9 4 3 6 Nitrogen (g/L) Glukosa (g/l) Jumlah Sel (Log cfu/ml) Asam linoleat (mg/l) Asam laktat (g/l) 7 2 3 1 0 0 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 Waktu (Jam) Simbol : + : Glukosa, ■ : Jumlah Sel, ▲: Asam Laktat, X : Asam Linoleat, ● : Nitrogen Gambar 13. Kurva hubungan antara waktu fermentasi dengan konsumsi glukosa, pembentukan sel, asam laktat dan asam linoleat pada substrat glukosa GL-20. Dari Gambar 13 hubungan antara waktu fermentasi dengan konsumsi glukosa (S), jumlah sel (X) dan konsentrasi asam linoleat (P) terlihat bahwa pertumbuhan Latobacillus plantarum JR64 pada fermentasi batch, dapat dikelompokkan menjadi empat zona pertumbuhan yaitu fase awal (lag phase) yang diikuti dengan fase eksponensial atau fase logaritmik, fase stasioner dan fase menurun (fase kematian). Fase awal merupakan 55 periode adaptasi mikroorganisme terhadap lingkungannya. Pada fase ini terjadi sintesis enzim oleh mikroorganisme yang diperlukan dalam proses metabolisme dan selama periode ini tidak terjadi perbanyakan sel. Oleh karena itu pada fase lag, jumlah biomassa X= Xo bernilai konstan dan laju pertumbuhan sel pada fase ini (dx/dt) = 0, demikian pula dengan 30 10 27 9 24 8 21 7 18 6 15 5 12 4 9 3 6 2 3 1 Nitrogen (g/l) Glukosa (g/l) Jumlah Sel (Log cfu/ml) Asam linoleat (mg/l) Asam laktat (g/l) laju pertumbuhan spasifik μ = 0. 0 0 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 Waktu (Jam) Simbol : + : Glukosa, ■ : Jumlah Sel, ▲: Asam Laktat, X : Asam Linoleat, ● : Nitrogen Gambar 14. Kurva hubungan antara waktu fermentasi dengan konsumsi glukosa, pembentukan sel, asam laktat dan asam linoleat pada substrat glukosa GL-30. Profil fermentasi dengan menggunakan substrat glukosa dengan konsentrasi awal 30 g/l seperti ditunjukkan pada Gambar 14. Profil pembentukan produk asam linoleat (omega-6) dan asam laktat berasosiasi dengan konsumsi substrat. Di dalam penelitian Hwang et al., (2011) dinyatakan bahwa asam laktat terbentuk secara maksimal ketika fermentasi berjalan selama 8 jam dan produksi asam laktat berjalan secara konstan hingga fermentasi jam ke 16. Fermentasi dihentikan pada jam ke 28 karena konsentrasi asam laktat yang terbentuk semakin menurun yang kemungkinan terkonsumsi oleh isolat Lactobacillus plantarum LP02. Pada fermentasi dengan isolat Lactobacillus plantarum JR64 pembentukan produk terbaik antara jam ke 21 hingga jam ke 24. Pada konsentrasi glukosa 20 g/l pembentukan asam linoleat dianggap lebih efisien pada fermentasi jam ke 21. 56 10 39 36 9 33 8 7 27 24 6 21 5 18 4 15 12 Nitrogen (g/l) Glukosa (g/l) Jumlah Sel (Log cfu/ml) Asam linoleat (mg/l) Asam lakat (g/l) 30 3 9 2 6 1 3 0 0 0 Simbol : 3 6 9 12 15 18 21 24 27 30 33 + : Glukosa, ■ : Jumlah Sel, ▲: Asam Laktat, X : Asam Linoleat, ● : Nitrogen 36 39 42 45 48 Waktu (Jam) Gambar 15. Kurva hubungan antara waktu fermentasi dengan konsumsi glukosa, pembentukan sel, asam laktat dan asam linoleat pada substrat glukosa GL-40 Pada Gambar 15 ditunjukkan profil fermentasi pada konsentrasi substrat 40 g/l. Konsumsi glukosa terjadi sangat cepat hingga jam ke 12, Lactobacillus plantarum JR64 telah mengkonsumsi 27,5 g/l. Besarnya glukosa yang terkonsumsi diperkirakan berhubungan erat dengan jumlah sel yang diinokulasikan untuk fermentasi. Namun dengan kenaikan konsentrasi glukosa terjadi penurunan pembentukan produk asam linoleat dan asam laktat sehingga fermentasi dinilai kurang efisien jika digunakan konsentrasi glukosa yang lebih tinggi. Kenaikan konsentrasi glukosa akan meningkatkan viskositas media fermentasi, sehingga menurunkan kelarutan oksigen. Oksigen dalam sel berfungsi sebagai acceptor elektron dari NADH (nicotinamide adenine dinucleotide) dalam proses respirasi atau elektron transport chain yang menghasilkan ATPs dan NAD. ATPs merupakan senyawa penyimpan energi yang diperlukan untuk proses biosintesis sedangkan NAD diperlukan untuk siklus Krebs (Shuler dan Kargi, 1992). 57 4.3.2. Laju pertumbuhan Spesifik maksimum (µ) Skala Laboratorium Penentuan nilai nominal laju pertumbuhan spesifik (μ) dapat dihitung dengan cara membuat kurva hubungan antara waktu fermentasi dengan Ln Xavg / (1 -Xavg). Dalam hal ini Xavg adalah nilai dari jumlah biomassa pada waktu t dibagi dengan berat biomassa maksimum. Dari data hasil penelitian pertumbuhan sel Lactobacillus plantarum JR64 pada konsentrasi glukosa 20 g/l mempunyai Xmax = 2,32 g/l dan untuk konsentrasi glukosa 30 g/l diperoleh Xmax : 2,78 g/l, sedangkan untuk konsentrasi glukosa 40 g/l mempunyai Xmax : 2,37 g/l. Pada Gambar 16 ditunjukkan kurva hubungan antara waktu fermentasi dengan Ln Xavg / (1 -Xavg) pada substrat glukosa 20 g/l yang diperoleh persamaan regresi Y = 0,301 x – 2,56 sehingga dari persamaan tersebut dapat dihitung nilai laju pertumbuhan spesifik maksimum (μ max) sebesar : 0,301 Jam-1 yang merupakan slope dari persamaan garis lurus. 3,0 2,0 Y = 0,301x - 2,560 R² = 0,947 Ln (Xt/Xmax)/(1-Xt/Xmax) 1,0 0,0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 -1,0 -2,0 -3,0 -4,0 Waktu (jam) Gambar 16. Kurva hubungan antara waktu fermentasi dengan Ln Xavg / (1 Xavg) pada media glukosa 20 (GL-20) Dengan cara yang sama maka nilai laju pertumbuhan spesifik pada substrat glukosa 30 g/l dan 40 g/l dapat dibuat persamaan garis regresinya. Hasil penyusunan garis regresi diperoleh persamaan Y = 0,296 x – 2,41 untuk substrat glukosa 30 g/l seperti yang ditunjukkan pada Gambar 17 dengan nilai laju pertumbuhan spesifik maksimum (µ max) 58 0,296 Jam-1. Sedangkan pada Gambar 18 merupakan garis regresi untuk substrat glukosa 40 g/l dengan nilai laju pertumbuhan spesifik maksimum (µ max) 0,310 Jam-1. 3,0 2,0 Y = 0,296x - 2,410 R² = 0,938 Ln (Xt/Xmax)/(1-Xt/Xmax) 1,0 0,0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 -1,0 -2,0 -3,0 -4,0 Waktu (jam) Gambar 17. Kurva hubungan antara waktu fermentasi dengan Ln Xavg / (1 -Xavg) pada media glukosa 30 (GL-30) 3,0 2,0 Y = 0,310x - 2,428 R² = 0,887 Ln (Xt/Xmax)/(1-Xt/Xmax) 1,0 0,0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 -1,0 -2,0 -3,0 -4,0 Waktu (jam) Gambar 18. Kurva hubungan antara waktu fermentasi dengan Ln Xavg / (1 Xavg) pada media glukosa 40 (GL-40) 59 4.3.3. Efisensi Fermentasi (Yp/s dan Yx/s) Skala Laboratorium Pertumbuhan sel dan pembentukan produk oleh mikroorganisme merupakan proses biokonversi dengan unsur makro dan mikro sebagai sumber nutrien yang digunakan selama kultivasi sehingga akan terjadi biokonversi menjadi biomassa dan metabolit. Setiap tahap biokonversi tersebut dapat dikuantitatifkan dengan suatu koefisien hasil (yield) yang dinyatakan sebagai biomassa yang terbentuk per unit substrat dan produk yang terbentuk per unit substrat yang dinotasikan sebagai Yx/s dan Yp/s. Cara yang biasa digunakan dalam menghitung hasil adalah dengan mengukur biomassa atau produk yang dihasilkan dan substrat yang dikonsumsi selama periode waktu tertentu. Penentuan nilai Yp/s dapat dihitung dengan metoda linierisasi persamaan dengan cara membuat garis regresi antara jumlah penggunaan substrat (So-S) dengan jumlah produk yang dihasilkan (P-Po) pada tiap satuan waktu. Menurut Wang et al., (1979) nilai rendemen konsumsi substrat untuk pembentukan produk dihitung dengan rumus empiris (Pt–Po)=Yp/s (So–St). Kemiringan garis regresi dari persamaan garis (P–Po)=Yp/s (So–S) merupakan nilai Yp/s. Pada Gambar 19 ditunjukkan kurva hubungan penggunaan substrat (So-St) dan pembentukan produk (Pt-Po) dengan persamaan regresi Y = 0,688 x + 0,207. Nilai kemiringan garis regresi (slope) dari persamaan tersebut sebesar 0,688 g produk/ g substrat sebagai nilai perbandingan antara produk yang dihasilkan dari tiap satuan substrat atau dikenal harga product yield Yp/s : 0,688 g produk/ g substrat. Hal ini berarti bahwa setiap gram glukosa akan terkonversi menjadi 0,688 g asam linoleat (omega-6). Jadi efisiensi pembentukan produk pada substrat glukosa sebesar 68,8 %. Hasil penelitian Berry et al., (1999) menggunakan isolat Lactobacillus rhamnosus dengan konsentrasi glukosa 80 g/l diperoleh data pembentukan asam lakat (+) sebesar Yp/s : 0,84 hingga fermentasi jam ke 14. Pada fermentasi dengan substrat glukosa 20 g/l diperoleh yield fermentasi 68,8 % yang dihitung terhadap produksi asam linoleat dan diperkirakan hasil Yp/s yang diperoleh tidak jauh berbeda jika Yp/s dihitung terhadap jumlah asam laktat yang terbentuk. 60 14 y = 0,688x + 0,207 R² = 0,955 12 10 Pt - Po 8 6 4 2 0 0 5 10 15 20 So - S Gambar 19. Kurva hubungan antara jumlah penggunaan substrat (So-S) dan jumlah asam linoleat yang terbentuk (Pt-Po) pada media GL-20 tiap satuan waktu. Dengan cara yang sama maka diperoleh persamaan garis untuk konsentrasi awal glukosa 30 g/l dengan persamaan Y = 0,51 x + 1,567 dan substrat glukosa 40 g/l dengan persamaan regresi Y = 0,345 x + 1,977. Dari masing-masing persamaan tersebut maka diperoleh konversi substrat menjadi asam linoleat sebesar 51 % dan 34, 5 %. Kedua nilai tersebut lebih rendah jika dibandingkan dengan konversi substrat pada media glukosa 20 g/l. Berdasarkan hasil perhitungan ternyata nilai Yp/s secara keseluruhan bahwa meningkatnya kadar gula yang tinggi tidak selalu memberikan nilai Yp/s yang tinggi pula. Hal ini disebabkan penggunaan substrat dengan konsentrasi yang tinggi dapat menyulitkan mikroorganisme untuk mengkonsumsi secara baik sehingga pertumbuhan dapat terhambat. Faktor lain adalah karena mikroorganisme mengalami perubahan permeabilitas sel terhadap substrat dan produk yang mengakibatkan hanya pada konsentrasi tertentu yang dapat dimanfaatkan dengan baik selama fermentasi. 61 Rendemen penggunaan substrat untuk penggandaan biomassa Yx/s merupakan rasio antara perbedaan jumlah biomassa pada saat t dengan jumlah biomassa pada saat t=0 dengan selisih antara jumlah substrat pada awal fermentasi dengan sisa substrat pada waktu t. Nilai Yx/s dapat ditentukan dengan cara menghubungkan antara selisih penggunaan substrat (So-S) dan jumlah biomassa yang terbentuk (X-Xo). Kemiringan garis regresi (slope) persamaan garis (X–Xo) = Yx/s (So–S) merupakan nilai Yx/s. Pada Gambar 20 ditunjukkan kurva hubungan antara jumlah penggunaan substrat (So-S) dan jumlah sel yang terbentuk (Xt-Xo) pada substrat GL-20 tiap satuan waktu yaitu Y = 0,142 x – 0,088. Dengan cara yang sama maka diperoleh persamaan regresi pada konsentrasi glukosa 30 g/ l dan 40 g/l yaitu masing-masing Y = 0,123 x – 0,163 dan Y = 0,07 x + 0,019. Data kemiringan regresi dari ketiga persamaan tersebut diperoleh nilai masing-masing 14,2 % untuk substrat 20 g/l dan 12,3% untuk substrat 30 g/l serta substrat 40 g/l sebesar 7 %. Jika dibandingkan dari masing-masing nilai maka produktivitas sel paling tinggi terjadi pada fermentasi dengan menggunakan glukosa 20 g/l. 5 4 Xt - Xo 3 y = 0,142x - 0,088 R² = 0,896 2 1 0 0 -1 5 10 15 20 So - S Gambar 20. Kurva hubungan antara jumlah penggunaan substrat (So-S) dan jumlah sel yang terbentuk (Xt-Xo) pada media GL-20 tiap satuan waktu. 62 4.4. Pengembangan proses produksi probiotik skala pilot plant Alternatif 1. Jalur proses diagram alir dan integrasi proses dengan bahan baku glukosa Input • 2,61 g MRSA + 50 g Air. • Media 6 ml/ Slant Tahapan MRS Agar Kondisi Sterilisasi 121 0C, 15 Menit Output Mendapatkan Isolat Segar Inkubasi / Kulkas 37 0 C, 48 Jam Koloni Terbaik & Tunggal • 2,61 g MRS Broth + 50 g Air. • Media 6 ml/ Slant MRS Broth (Pre Vegetatif lt) Sterilisasi 121 0C, 15 Menit Inkubasi 37 0C, 24 Jam Mendapatkan Isolat Koloni Terbaik & Tunggal Inokulasi 3 v/v dari Volume Kerja 50 ml Susu Segar + 1,5 g Laktosa monohidrat Starter (Vegetatif 2,5 l) Glukosa : 20% Media Unsur Mikro 50 g Butter + 20 g Gula Halus + 15 g Probiotik. Pasteurisasi 80 0C, 5 Menit Inkubasi 37 0C, 18 -24 Jam Mendapatkan Jumlah Sel Yang Banyak Inokulasi 5 v/v dari Volume Kerja Bioreaktor 75 liter (Volume Kerja 50 liter Probiotik) Formulasi Packing Produk Sterilisasi 121 0C, 15 Menit Inkubasi 37 0C, 48 Jam Produktivitas Sel dan Omega-6 Tinggi Produk Probiotik & Omega-6 Gambar 21. Alternatif perancangan teknologi proses produksi dengan bahan baku glukosa 63 Alternatif 2. Jalur proses perancangan teknologi proses produksi dengan bahan baku ekstrak jagung dan ekstrak mengkudu Input • 2,61 g MRSA + 50 g Air. • Media 6 ml/ Slant Tahapan MRS Agar Kondisi Sterilisasi 121 0C, 15 Menit Output Mendapatkan Isolat Segar Inkubasi / Kulkas 37 0 C, 48 Jam Koloni Terbaik & Tunggal • 2,61 g MRS Broth + 50 g Air. • Media 6 ml/ Slant 50 ml Susu Segar + 1,5 g Laktosa monohidrat • • MRS Broth (Pre Vegetatif lt) 50 g Butter + 20 g Gula Halus + 15 g Probiotik. Inkubasi 37 0C, 24 Jam Mendapatkan Isolat Koloni Terbaik & Tunggal Inokulasi 3 v/v dari Volume Kerja Starter (Vegetatif 2,5 l) Yield Susu Jagung : 35% Yield Ekstrak Mengkudu : 55 % 640 ml Susu Jagung + 160 ml Ekstrak Mengkudu + 200 ml Susu Segar Sterilisasi 121 0C, 15 Menit Pasteurisasi 80 0C, 5 Menit Inkubasi 37 0C, 18 -24 Jam Mendapatkan Jumlah Sel Yang Banyak Inokulasi 5 v/v dari Volume Kerja Bioreaktor 75 liter (Volume Kerja 50 liter Probiotik) Formulasi Sterilisasi 121 0C, 15 Menit Inkubasi 37 0C, 48 Jam Produktivitas Sel dan Omega-6 Tinggi Produk Probiotik & Omega-6 Packing Produk Gambar 22. Alternatif perancangan teknologi proses produksi dengan bahan baku ekstrak jagung dan ekstrak mengkudu 64 Pemilihan jalur proses ini bertujuan untuk merancang proses produksi probiotik dari isolat lokal Lactobacillus plantarum JR64 dengan menggunakan bahan baku fermentasi dari glukosa atau bahan baku alternatif dari campuran pati atau ekstrak jagung dengan ekstrak mengkudu. Hasil terbaik dari kreasi percobaan skala laboratorium dengan membandingkan nilai Yp/s dan Yx/s, maka diperoleh hasil terbaik pada fermentasi substrat glukosa 20 g/l. Data terbaik skala laboratorium selanjutnya akan digunakan sebagai dasar untuk pengujian skala pilot plant. Hasil pengujian skala pilot plant dengan substrat glukosa dan campuran ekstrak jagung dan ekstrak mengkudu kemudian dipilih sebagai dasar perancangan dan perhitungan finansial untuk mengevaluasi kelayakan secara ekonomi ditinjau dari aspek biaya bahan baku, biaya peralatan, biaya pabrik secara umum serta biaya variable lainnya. 4.4.1. Pengujian Sistem Fermentasi Bacth Pada Skala Pilot Plant. Profil teknologi proses produksi probiotik dengan menggunakan media glukosa Hasil pengujian tahapan proses alternatif 1 seperti Gambar 21 pada skala pilot plant dengan menggunakan substrat glukosa 20 g/l diperoleh profil fermentasi seperti yang ditunjukkan pada Gambar 23. Pada Gambar 23 ditunjukkan bahwa fase eksponensial berlangsung selama 21 jam. Meningkatnya produksi metabolit primer diikuti oleh penurunan glukosa yang signifikan. Setelah fermentasi berjalan selama 20 jam sisa glukosa tinggal 4 g/l atau terjadi penurunan kurang lebih 16 g/l. Hal ini tidak memungkinkan untuk terjadinya proses metabolisme sehingga jumlah sel dan pembentukan produk berjalan secara stationer. Glukosa dalam kondisi aerob akan terkatabolisme mengikuti EMP (EmbdenMeyerhof-Parnas) pathway, menjadi pyruvate dan energi dalam bentuk ATP. Pyruvate dalam kondisi aerob akan terkonversi menjadi CO2 dan NADH melalui siklus Krebs/ trycarboxylic acid (TCA). Pyruvate dalam kondisi anaerob dapat terkonversi menjadi asam laktat, etanol, aseton, butanol atau asam asetat. Jumlah oksigen yang terbatas akan menghambat pembentukan ATPs sehingga akan menurunkan proses biosintesis. Penurunan konsentrasi oksigen dalam sel memacu pembentukan asam laktat, sehingga glukosa yang terbentuk tidak digunakan untuk pembentukan biomassa tetapi untuk pembentukan asam laktat. Pada konsentrasi substrat karbon , viskositas media fermentasi sangat tinggi sehingga membatasi ketersediaan oksigen dalam media fermentasi dan dapat menghambat proses metabolisme secara menyeluruh. 65 10 9 18 8 15 6 12 5 9 4 3 6 Nitrogen (g/L) Glukosa (g/l) Asam Lakat (g/l) Berat Sel (g/l), Asam Linoleat (mg/l) 7 2 3 1 0 0 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 Waktu (Jam) Simbol : + : Glukosa, ■ : Jumlah Sel, ▲: Asam Laktat, X : Asam Linoleat, ● : Nitrogen Gambar 23. Kurva hubungan antara waktu fermentasi dengan konsumsi glukosa, jumlah sel, asam laktat dan asam linoleat pada media glukosa 20 g/l pada skala 75 L. Teknologi proses produksi probiotik dengan menggunakan media komplek Hasil pengujian tahapan proses alternatif 2 seperti Gambar 22 pada skala pilot plant dengan menggunakan media dari ekstrak jagung diperoleh profil fermentasi seperti yang ditunjukkan pada Gambar 24. Penggunaan media dari ekstrak jagung diharapkan dapat menggantikan substrat glukosa dan menghasilkan konsentrasi produk omega-6 yang lebih tinggi. Kandungan omega-6 pada kaldu fermentasi diharapkan mampu meningkatkan efektivitas sebagai penurun kolesterol. Omega 6 merupakan salah satu makanan yang telah terbukti dapat menurunkan kadar kolestrol dalam darah. Pada Gambar 24 ditunjukkan kurva hubungan waktu fermentasi dengan konsumsi substrat sumber karbon dan nitrogen, pembentukan sel dan pembentukan produk. Produktivitas Lactobacillus plantarum JR64 dalam menghasilkan omega-6 selama fermentasi relatif rendah dan cenderung konstan. Hasil tertinggi omega-6 terjadi pada jam ke-18 dengan konsentrasi 1,03 g/l. Kandungan asam lemak di dalam ekstrak jagung sebesar 4 % ternyata tidak dapat berfungsi sebagai substrat induser yang dapat meningkatkan pembentukan omega-6. 66 10 21 9 18 8 7 6 12 5 9 4 Nitrogen (g/L) Ekstrak Jagung (g/l) Jumlah Sel (Log cfu/ml) Asam laktat (g/l) Asam linoleat (g/l) 15 3 6 2 3 1 0 0 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 Waktu (Jam) Simbol : + : Glukosa, ■ : Jumlah Sel, ▲: Asam Laktat, X : Asam Linoleat, ● : Nitrogen Gambar 24. Kurva hubungan antara waktu fermentasi dengan konsumsi ekstrak jagung, jumlah sel, asam laktat dan asam linoleat pada media komplek skala 75 L. Kadar nitrogen pada media ekstrak jagung ternyata mengalami perubahan secara fluktuatif. Perubahan peningkatan terjadi dari jam ke-0 sampai jam ke-9 tetapi setelah itu mengalami penurunan sampai jam ke-15 dan meningkat kembali hingga jam ke-33. Hal ini disebabkan pada awal pertumbuhan, bakteri masih memanfaatkan kandungan nutrisi lain yang ada pada media ekstrak jagung, kemudian setelah kandungan nutrisi itu habis, bakteri mulai menggunakan protein untuk pembentukan komponen-komponen selnya sehingga kadar berkurang dan sejalan dengan peningkatan jumlah sel, kadar protein kembali mengalami peningkatan. Buckle et al., (1987) bahwa berdasarkan berat keringnya mikroba mengandung protein yang cukup tinggi yaitu sekitar 49-80% dan menurut Botazzi (1983) bahwa mikroba menyumbangkan 7% dari total protein dalam fermentasi susu. 67 4.4.2. Laju Pertumbuhan Spesifik Maksimum (µ max) Percobaan Skala Pilot Plant Pertumbuhan sel selalu berhubungan dengan konsumsi substrat. Pertumbuhan sel sangat erat kaitannya dengan waktu yang diperlukan untuk perbanyakan sel dalam jumlah maupun masanya. Hal ini menunjukkan bahwa pertumbuhan mikroorganisme dan aktifitasahifitas fisiologis lainnya merupakan kemampuan sel dalam memberikan respon terhadap lingkungannya. Untuk menentukan bobot sel dapat dihitung dengan menggunakan kurva hubungan berat sel kering dengan jumlah sel (log cfu/ml) pada fermentasi skala laboratorium seperti pada Lampiran 15. Pada Gambar 25 ditunjukkan hubungan antara waktu fermentasi dengan Ln Xavg / (1 -Xavg) pada media glukosa-20 skala pilot plant dengan nilai persamaan regresi sebesar 0,148 Jam-1 yang merupakan nilai dari laju pertumbuhan spesifik maksimum (µ max). Sedangkan pada Gambar 26 ditunjukkan persamaan regresi Y = 0,143 x – 2,62 yang diperoleh dari kurva hubungan antara waktu fermentasi dengan Ln Xavg / (1 -Xavg) pada media komplek campuran ekstrak jagung dengan ekstrak mengkudu. 3,0 Y = 0,148x - 1,588 R² = 0,688 2,0 Ln (Xt/Xmax)/(1-Xt/Xmax) 1,0 0,0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 -1,0 -2,0 -3,0 -4,0 Waktu (jam) Gambar 25. Kurva hubungan antara waktu fermentasi dengan Ln Xavg / (1 -Xavg) pada media glukosa-20 skala pilot plant 68 3,0 2,0 Ln (Xt/Xmax)/(1-Xt/Xmax) 1,0 0,0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 -1,0 Y = 0,143x - 2,620 R² = 0,984 -2,0 -3,0 -4,0 Waktu (jam) Gambar 26. Kurva hubungan antara waktu fermentasi dengan Ln Xavg / (1 -Xavg) pada media komplek skala pilot plant 4.4.3. Efisensi Fermentasi (Yp/s dan Yx/s) Skala Pilot Plant Penentuan nilai Yp/s dapat dihitung dengan metoda linierisasi persamaan dengan cara membuat garis regresi antara jumlah penggunaan substrat (So-S) dengan jumlah produk yang dihasilkan (P-Po) pada tiap satuan waktu. Kemiringan garis regresi dari persamaan garis (P–Po)=Yp/s (So–S) merupakan nilai Yp/s. Demikian juga untuk menghitung Yx/s dapat dilakukan dengan cara membuat persamaan regresi hubungan antara selisih penggunaan substrat (So-S) dan jumlah biomassa yang terbentuk (X-Xo). Kemiringan garis regresi (slope) persamaan garis (X–Xo) = Yx/s (So–S) merupakan nilai Yx/s. Hasil perhitungan efisiensi fermentasi skala pilot plant seperti yang ditunjukkan pada Tabel 8. Fermentasi dengan menggunakan konsentrasi glukosa awal 20 g/l diperoleh Yp/s : 51,6%, sedangkan pada fermentasi dengan medium komplek diperoleh Yp/s : 22,2 %. Pada fermentasi dengan medium standar diperoleh Yx/s : 40,1 % dan dengan menggunakan medium komplek diperoleh Yx/s : 62,1%. 69 Tabel 8. Data efisiensi fermentasi media glukosa dan media komplek skala pilot plant No Parameter Satuan 1 2 3 4 µ max Xm Xo Yp/s Jam-1 g/l g/l 5 Yx/s Efisiensi penggunaan substrat terhadap pembentukan produk (%) Efisiensi penggunaan substrat terhadap pertumbuhan sel (%) Substrat Glukosa 20 g/l Komplek 0,149 0,148 0,059 8,88 0,601 0,602 51,6 22,2 40,1 62,1 Pada Tabel 8 ditunjukkan bahwa medium kombinasi ekstrak jagung dan ekstrak mengkudu setiap gram substrat akan menghasilkan 0,621 gram sel Lactobacillus palntarum JR64, sedangkan efisiensi pembentukan produk relatif rendah dimana setiap gram substrat akan menghasilkan 0,22 gram asam linoleat (omega-6). Hasil penelitian Berry et al., (1999) yang menggunakan Lactobcaillus rhamnosus untuk menghasilkan asam laktat diperoleh Y p/s : 0,84 pada medium glukosa, sedangkan pada fermentasi dengan medium komplek diperoleh Yp/s : 0,8. Hal ini berarti bahwa nilai produktivitas pada medium komplek lebih rendah dibandingkan dengan penggunaan medium standar. Hasil penelitian ini tidak jauh berbeda dengan percobaan yang menggunakan isolat Lactobacillus plantarum JR64 untuk menghasilkan omega-6. Produktivitas Lactobacillus plantarum JR64 dalam memproduksi asam laktat tertinggi pada jam ke 24 dengan konsentrasi 14,1 g/l. Penggunaan media fermentasi diharapkan selama fermentasi tidak terbentuk produk yang tidak diinginkan. Disamping itu harga bahan baku bisa lebih murah dan memiliki kualitas yang berkesinambungan serta tersedia sepanjang tahun. Pertimbangan penggunaan bahan baku jagung juga mudah dalam penanganan selama proses, terutama untuk pengadukan, aerasi, purifikasi dan penanganan limbah. 70 4.5. Desain dan Formulasi Produk Krem Probiotik Desain produk yang menjadi target dari formulasi ini dibuat dalam bentuk krem untuk mendapatkan viabilitas sel yang cukup panjang dan dapat diaplikasikan pada berbagai bentuk makanan. Pada Gambar 27 ditunjukkan hasil formulasi dalam bentuk krem. Gambar 27. Hasil formulasi krem probiotik Pengujian viabilitas sel dilakukan selama 28 hari pada penyimpanan suhu refrigeran. Jumlah bakteri rata-rata dari kelima formulasi hingga hari ke 14 mengalami peningkatan, namun mulai terjadi penurunan pada hari ke 21 dan cenderung terus menurun pada hari ke 28. Menurut Tamime et al., (1992), daya simpan produk pada suhu refrigeran lebih panjang dari pada daya simpan produk dalam suhu kamar, sebagai akibat rendahnya aktivitas BAL dalam penyimpanan suhu rendah. Pada Gambar 28 ditunjukkan bahwa jumlah sel Lactobacillus plantarum JR64 dari kelima formulasi, ternyata untuk formula ke 5 memiliki viabilitas sel yang cukup baik dibandingkan keempat formula lainnya. Formula ke lima (E) yang berisi 50 gram butter dan 20 gram icing sugar serta 15 gram probiotik memiliki kesesuaian sebagai media probiotik untuk tetap bertahan hidup. 71 12 Jumlah Sel Log (Cfu / ml) 10 8,76 8,48 8,00 10,39 8,95 8,77 7,76 7,23 8 10,42 10,30 10,28 6,67 6 4 2 0 Kontrol A B C D E Formulasi Hari Ke 21 & 28 Simbol : : Hari ke 0, : Hari ke 35 Gambar 28. Jumlah L. plantarum JR64 formula krem selama penyimpanan. Jumlah Lactobacillus plantarum JR64 rata-rata awal formulasi berkisar 107 Cfu/ml dan setelah disimpan selama 28 hari jumlah Lactobacillus plantarum JR64 yang masih memenuhi persyaratan probiotik yaitu formula ke 3, 4 dan 5. Namun yang memiliki jumlah sel tertinggi yaitu formula ke-5 sebanyak log 8,95 Cfu/ml atau setara 8,92 x 108 Cfu/ml. Hasil formulasi ini juga menunjukkan bahwa desain produk dalam bentuk krem juga lebih baik dan tahan lama dibandingkan dengan formulasi bentuk cair. Bahkan aplikasinya memiliki spektrum yang cukup luas. Helferich dan Westhoof, (1980) telah melakukan penelitian tentang lama penyimpanan terhadap toleransi pH rendah dan akan semakin bertahan dalam penyimpanan kondisi dingin. Pada penyimpanan suhu kamar probiotik tetap memperlihatkan aktivitasnya sehingga terus membutuhkan sumber karbon dan sumber energi untuk berkembang, namun sebaliknya aktivitas itu menurun jika disimpan pada suhu 10-15 ºC. Pada Gambar 29 ditunjukkan perubahan pH selama penyimpanan terlihat cukup stabil untuk semua formulasi, tidak ada perbedaan yang signifikan antara hari ke-0 dengan setelah disimpan selama 28 hari. 72 6 pH Formula Krem 4,28 4,55 4,25 4,46 4,39 4,32 4,34 4,27 4,30 4,25 4,25 4,26 4 2 0 Kontrol A B C D E Formulasi Hari Ke 0 & 28 Simbol : : Hari ke 0, : Hari ke 35 Gambar 29. Perubahan pH formula krem hari ke 0 dan 28 hari. Pada Tabel 9 ditunjukkan memiliki kandungan asam laktat selama penyimpanan selama 28 hari sebesar 0,897 %. Kandungan asam laktat tersebut memenuhi persyaratan sebagai probiotik yaitu minimal kandungan asam laktat 0,85 %. Tabel 9. Hasil analisa asam laktat, asam linoleat, gula reduksi dan protein. Waktu Asam Laktat Asam Linoleat Gula Reduksi Protein (hari) 0 7 14 21 (%) 0,719 0,753 0,797 0,842 (mg/L) 18,54 19,75 20,97 22,19 (g/L) 8,61 7,31 5,38 4,53 (%) 1,061 1,193 1,111 1,092 28 0,897 20,22 3,67 1,104 Terjadi penurunan kadar gula reduksi namun tidak terlalu besar, sesuai dengan jumlah pertumbuhan bakteri yang melambat karena proses penyimpanan pada suhu refrigerator sehingga jumlah gula reduksi yang digunakan bakteri untuk proses pertumbuhannya sedikit. Kadar gula reduksi awal dari formulasi hampir sama dengan kadar gula reduksi pada jam ke-33. Gula reduksi lalu digunakan oleh bakteri untuk pertumbuhannya sehingga setelah 28 hari kadar gula reduksi sangat kecil. 73 Kadar protein pada formulasi ke-5 mengalami perubahan secara fluktuatif karena perubahan suhu penyimpanan mempengaruhi fase pertumbuhan sehingga mempengaruhi kemampuan bakteri untuk memecah protein menjadi komponen-komponen yang lebih sederhana, sedangkan kadar asam linoleat mengalami peningkatan, hal ini terjadi karena kemungkinan butter juga mempunyai kandungan asam linoleat sehingga mempengaruhi jumlah kadar asam linoleat pada sediaan krem. Produk formulasi dalam bentuk krem dapat diaplikasikan untuk penurunan kolesterol karena selain dari kemampuan Lactobacillus plantarum JR64 yang diduga untuk menurunkan kolesterol, jumlah kadar asam linoleat dari produk krem relatif lebih besar. 4.6. Karakterisasi Produk Dengan Uji In Vivo 4.6.1. Aktivitas Asimilasi Kolesterol Hasil pengujian asimilasi kolesterol Lactobacillus plantarum JR64 memiliki kemampuan mengasimilasi kolesterol 34,6 μg/ml. Besarnya aktivitas asimilasi kolesterol dihitung berdasarkan selisih antara kolesterol yang terdeteksi pada kontrol dengan jumlah kolesterol yang terdeteksi pada media uji dengan kaldu Lactobacillus plantarum JR64. Pada asimilasi kolesterol oleh Lactobacillus plantarum JR64, diduga bahwa koleterol yang diambil oleh sel bakteri bergabung dengan membran seluler bakteri tersebut, sebab sel bakteri yang ditumbuhkan dengan adanya misel kolesterol lebih tahan terhadap lisis karena sonikasi. 4.6.2. Uji In- Vivo Media Tikus 4.6.2.1. Perkembangan Hewan Coba dan Konsumsi Pakan Penelitian ini menggunakan tikus putih galur Wistar jantan dengan bobot badan berkisar 200 gr sampai dengan 250 gr. Sebelum perlakukan tikus putih dipelihara dengan pemberian pakan standar dan minum secara ad libitum selama 7 hari dengan maksud untuk beradaptasi dengan lingkungan seperti yang ditunjukkan pada Gambar 30. 74 Berat Pakan : 20 g/hari 1 Ekor tikus/ Kandang Minum Ad libitum Gambar 30. Berat pakan dan tempat pakan tikus serta cara minum ad libitum Pada Gambar 31. ditunjukkan bahwa perkembangan bobot badan tikus selama perlakuan ternyata terjadi penurunan. Berdasarkan data perhitungan rata-rata penurunan bobot badan tikus paling tinggi terjadi pada kelompok D yaitu 0,53 gr / hari atau sebesar 52,96 % diikuti kelompok C yang mencapai 0,462 gr / hari setara 46,16 %, sedangkan untuk kontrol positif dan negatif masing-masing mengalami penurunan bobot badan sebesar 0,4 gr / hari atau 39,96 % dan 0,215 gr/ hari (21,48%). Data bobot badan tikus secara lengkap dapat di lihat pada Lampiran 17. Menurut Murray et al., (2003) pemberian propil tiourasil dapat mempengaruhi korteks adrenal yang dapat mengubah kolesterol menjadi kortisol yang memicu terjadinya penurunan bobot badan. Bobot badan hewan yang normal akan mengalami peningkatan sejalan dengan pertambahan umur, sedangkan diet dengan kadar lemak dan kolesterol tinggi menyebabkan peningkatan bobot badan lebih cepat dibandingkan diet dengan kadar lemak rendah. Namun, dalam penelitian ini ditemukan bahwa bobot badan tikus cenderung menurun yang disebabkan oleh faktor stres yang dipengaruhi oleh hormon kortisol dan adrenalin. Hormon kortisol dapat meningkatkan suplai glukosa untuk pembakaran dan pembentukan energi, sedangkan hormon adrenalin dapat menyebabkan terjadinya pembakaran lemak. 75 300 250 Berat Badan , gr 200 150 100 50 0 A B C D E F Kelompok Perlakuan, Hari Ke 0 & 35 Simbol : : Hari ke 0, : Hari ke 35 Gambar 31. Perubahan bobot badan tikus selama perlakuan. Penurunan bobot badan tikus juga dipengaruhi oleh jumlah pakan yang dikonsumsi. Pada Gambar 32 ditunjukkan bahwa kelompok kontrol negatif mengkonsumsi pakan ratarata 91,08 % dari total pakan yang diberikan 20 gr/hari, sedangkan kelompok kontrol positif lebih rendah dalam mengkonsumsi pakan yang hanya 52,76 %. Pada kelompok C dan D selama perlakukan 35 hari masing-masing mengkonsumsi pakan jauh lebih rendah hanya 49,48 % dan 61,70 % dari total pakan yang di berikan sebanyak 700 gr. Kelompok B, C, D, E dan F memperoleh pakan dengan kandungan lemak berkalori tinggi yang dapat menyebabkan interval waktu makan menjadi lebih lama sehingga jumlah pakan yang dikonsumsi menjadi lebih sedikit. Rendahnya jumlah pakan yang dikonsumsi kelompok B dan C ternyata dapat menimbulkan penurunan bobot badan tikus paling besar. Data konsumsi pakan secara rinci dapat dilihat pada Lampiran 18. 76 Konsumsi Pakan, g/hari 20 15 10 5 0 STD A B C D E F Kelompok Perlakuan Gambar 32. Rata-rata jumlah konsumsi pakan selama perlakuan. 4.6.2.2. Pengaruh kondidat probiotik terhadap perubahan kadar kolesterol total Kadar kolesterol total selama perlakuan ditunjukkan pada Gambar 33. Hasil uji ANOVA menunjukkan perubahan kadar kolesterol total dipengaruhi oleh perlakuan pakan yang digunakan (F hitung =16,20 > F tabel 0,01=3,51). Hasil uji lanjut menggunakan BNT 0,05 = 13,702 menunjukkan bahwa kadar kolesterol total dari tiap-tiap kelompok pada akhir adaptasi (hari ke- 0) yaitu kelompok A 0,695 mg/ml dan kelompok B 0,768 mg/ml, sedangkan kelompok C : 0,809 mg/ml dan kelompok D : 0,835 mg/ml. Adapun kondisi awal kadar kolesterol total pada kelompok E sebesar 0,839 mg/ml dan kelompok F 0,746 mg/ml. Perubahan kadar kolesterol total pada hari ke 35 untuk kelompok D mengalami penurunan sebesar 0,101 mg/ml dengan perlakuan penambahan kaldu probiotik, sedangkan untuk kontrol negatif mengalami peningkatan 7,33 %. Peningkatan kolesterol total paling tinggi terjadi pada kontrol positif sebesar 27,31 % diikuti kelompok F 23 %. Adapun untuk kelompok C meningkat 4,27 % dan kelompok E 4,12 %. Data pengaruh kondidat probiotik terhadap perubahan kadar kolesterol total secara rinci dapat dilihat pada Lampiran 19. 77 1,1 0,97 1,0 Kolesterol Total, mg/ml 0,9 0,8 0,74 0,77 0,92 0,81 0,79 0,84 0,83 0,87 0,75 0,73 0,69 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 A B C D E F Kelompok perlakuan, Hari ke 0 & 35 Simbol : : Hari ke 0, : Hari ke 35 Gambar 33. Perubahan kadar kolesterol total darah hari ke 0 dan 35 hari. 4.6.2.3. Pengaruh kondidat probiotik terhadap perubahan kadar Trigliserida Pada Gambar 34 ditunjukkan perubahan trigliserida selama perlakuan. Hasil uji ANOVA menunjukkan perubahan kadar kolesterol total dipengaruhi oleh perlakuan pakan yang digunakan (F hitung =18,47 > F tabel 0,01=3,51). Hasil uji lanjut menggunakan BNT 0,05 = 19,234 menunjukkan bahwa kadar trigliserida darah tikus hari ke-0 sebelum perlakuan semua kelompok berkisar antara 0,499 – 0,862 mg/ml dan mengalami penurunan rata-rata perhari 0,06 – 0,49 mg/ml. Perlakuan dengan pemberian pakan yang berbeda, induksi propil tiourasil kemungkinan dapat memperlambat pelepasan asam lemak bebas dari jaringan adiposa dan menurunkan kadar asam lemak bebas plasma dengan menurunkan laju lipolisis pada simpanan trigliserida, (Murray et al., 1996). Data pengaruh kondidat probiotik terhadap perubahan kadar trigliserida secara rinci dapat dilihat pada Lampiran 20. 78 1,00 0,86 0,90 0,79 0,80 0,75 0,70 0,67 Trigliserida, mg/ml 0,70 0,63 0,58 0,60 0,50 0,50 0,46 0,42 0,42 0,38 0,40 0,30 0,20 0,10 0,00 A B C D E F Kelompok Perlakuan, Hari ke 0 & 35 Simbol : : Hari ke 0, : Hari ke 35 Gambar 34. Perubahan kadar trigliserida darah hari ke 0 dan 35 hari. 4.6.2.4. Pengaruh kondidat probiotik terhadap perubahan kadar HDL kolesterol Pada Gambar 35 ditunjukkan perubahan kadar HDL kolesterol selama perlakuan. Hasil uji ANOVA menunjukkan perubahan kadar HDL kolesterol dipengaruhi oleh perlakuan pakan yang digunakan (F hitung =8,40 > F tabel 0,01=3,51). Hasil uji lanjut menggunakan BNT 0,05 = 7,749 menunjukkan bawa kadar HDL Kolesterol hari ke-0 sebelum perlakuan berkisar antara 0,454 - 0,60 mg/ml. Pada kelompok kontrol negatif terjadi peningkatan HDL sebesar 23,10 % dan kelompok E dengan perlakuan penambahan suplemen kondidat sel probiotik Lactobacillus plantarum JR64 terjadi peningkatan kadar HDL sebesar 35,78 %. Untuk perlakuan pemberian kaldu Lactobacillus plantarum meningkat 9,9 %. Adapun untuk kelompok D yang mendapat perlakuan penambahan suplemen kaldu Lactobacillus bulgaricus FNCC41 mengalami penurunan 1,36 % dan kelompok F dengan perlakuan sel Lactobacillus bulgaricus meningkat 30,74 %. Pengaruh probiotik Lactobacillus plantarum JR64 terhadap peningkatan kadar HDL kolesterol berbeda secara nyata. Hal ini terjadi karena Lactobacillus plantarum JR 64 mampu mencegah kolesterol endogen yang disintesis dalam tubuh selama 35 hari yang dibawa oleh lipoprotein ke dalam darah dan menyerap langsung kolesterol eksogen dalam usus dan mengekskresikannya melalui feses. High Density Lipoprotein (HDL) kolesterol merupakan 79 carier (lipoprotein) yang berfungsi untuk mentransfer kelebihan kolesterol dan jaringan periferal menuju ke hati dan sangat bermanfaat dalam menurunkan resiko aterosklerosis. Data pengaruh kondidat probiotik terhadap perubahan kadar HDL kolesterol secara rinci dapat dilihat pada Lampiran 21. 0,8 0,66 0,7 0,65 0,62 0,60 0,56 0,6 0,50 Konsentrasi HDL, mg/ml 0,5 0,50 0,49 0,49 0,51 0,52 0,45 0,4 0,3 0,2 0,1 0,0 A B C D E F Kelompok Perlakuan, Hari Ke 0 & 35 Simbol : : Hari ke 0, : Hari ke 35 Gambar 35. Perubahan kadar HDL kolesterol darah hari ke 0 dan 35 hari. 4.6.2.5. Pengaruh kondidat probiotik terhadap perubahan kadar LDL kolesterol Pada Gambar 36 ditunjukkan perubahan kadar LDL kolesterol selama perlakuan. Hasil uji ANOVA menunjukkan perubahan kadar LDL kolesterol dipengaruhi oleh perlakuan pakan yang digunakan (F hitung =6,80 > F tabel 0,01=3,51). Hasil uji lanjut menggunakan BNT 0,05 = 27,783. Kadar Low Density Lipoprotein (LDL) kolesterol dalam darah tikus uji sebelum diberikan perlakukan berkisar antara 0,105 mg/ml – 0,159 mg/ml. Setelah perlakuan selama 35 hari terjadi penurunan LDL kolesterol sebesar 19,5 % untuk kelompok C dengan penambahan kondidat probiotik kaldu Lactobacillus plantarum JR64, sedangkan untuk kelompok pembanding dengan pemberian suplemen kaldu Lactobacillus bulgaricus FNCC41 mampu mengendalikan peningkatan LDL kolesterol karena hanya meningkat yang bertambah 11,12 %. Penurunan kolesterol selain dipengaruhi 80 oleh kandungan asam linoleat tetapi dipengaruhi juga oleh kemampuan bakteri untuk mengasimilasi kolesterol dan mendekonjugasi garam empedu (Ngatirah, 2000). Data pengaruh kondidat probiotik terhadap perubahan kadar LDL kolesterol secara rinci dapat dilihat pada Lampiran 22. 0,4 Konsentrasi LDL, mg/ml 0,34 0,3 0,23 0,2 0,16 0,14 0,13 0,15 0,12 0,13 0,10 0,11 0,16 0,11 0,1 0,0 A B C D E F Kelompok Perlakuan, Hari Ke 0 & 35 Simbol : : Hari ke 0, : Hari Gambar 36. Perubahan kadar LDL Kolesterol darah hari ke 0 dan 35 hari. Kadar kolesterol dalam darah yang tinggi merupakan pemicu utama terjadinya jantung koroner dan stroke, hal tersebut terutama disebabkan oleh pola hidup yang kurang sehat. Berbagai cara telah diusulkan untuk dapat menurunkan kolesterol dalam darah secara nyata. Omega 6 merupakan salah satu makanan yang telah terbukti dapat menurunkan kadar kolestrol. Dari hasil penelitian ditemukan bahwa penggantian diet asam lemak jenuh dengan asam lemak tidak jenuh dapat menurunkan kolesterol, tetapi asam lemak tak jenuh tunggal tidak berpengaruh secara aktif terhadap penurunan kadar kolesterol. Dari percobaan klinis LDL naik 1,74 mg/dl setiap kenaikan 1% asam lemak jenuh pada diet, sedangkan omega 6 justru menurunkan sebesar 0,74 mg/dl setiap 1% energi yang diwakilinya. Makanan yang mengandung lipid mengalami proses sedemikian rupa sebelum diserap oleh usus, Proses itu adalah ester kolesterol dalam makanan dihidrolisis menjadi kolesterol yang bercampur dengan kolesterol yang teresterifikasi dan kolesterol empedu 81 sebelum diabsorpsi, kemudian senyawa ini akan disatukan ke dalam kilomikron, Kilomikron akan bereaksi dengan lipoprotein lipase membentuk sisa kilomikron, kemudian sisa kilomikron bereaksi dengan reseptor LDL kolesterol dan dihidrolisis menjadi kolesterol, Very Low Density Lipoprotein yang terbentuk di hati akan mengangkut kolesterol ke dalam plasma dan dikonversi menjadi LDL kolesterol yang selanjutnya akan diambil oleh reseptor LDL di hati dan jaringan ekstrahepatik, kurang lebih 75-80 % dari LDL kolesterol akan dikonversi menjadi HDL kolesterol oleh enzim Lesitin Kolesteril Asil Transferase untuk diangkut ke hati dan disirkulasikan kembali, (Murray et al., 2003), Peningkatan kolesterol dengan propil tiourasil pada tikus adalah salah satu cara mempercepat peningkatan kolesterol secara endogen dengan cara menekan pembentukkan reseptor LDL di hati dan dapat meningkatkan aktivitas enzim 3-hidroksi-3metilglutaril koenzim A (HMG Ko A), Selain itu peningkatan kolesterol dapat juga terjadi karena absorpsi lemak pada makanan (eksogen) dan terjadinya lipolisis dalam tubuh (endogen), (Murray et al., 2003), 4.6.2.6. Hasil analisa proksimat penentuan kadar lemak Kadar lemak yang diabsorpsi dan diekskresikan ke dalam feses disajikan pada Gambar di bawah ini. 10,00 10,0 9,0 8,0 Kadar Lemak Feses (%) 6,98 7,0 6,0 5,00 5,0 4,53 3,64 4,0 3,14 3,04 3,0 1,52 2,0 1,0 0,0 Feed (-) Feed (+) A B C D E F Kelompok Perlakuan Gambar 37. Kadar lemak pada pakan kontrol negatif (feed -) dan kontrol positif (feed +) serta kadar lemak feses hari ke 35. 82 Dari Gambar 37 ditunjukkan kelompok C kondidat probiotik Lactobacillus plantarum JR64 memiliki kadar lemak lebih tinggi dibanding kelompok B (kontrol positif) hal ini menunjukan bahwa kelompok C yang diberi probiotik Lactobacillus plantarum JR64 mampu mencegah absorpsi lemak ke dalam tubuh atau mengekskresikannya melalui feses lebih banyak, sedangkan kelompok D memiliki kadar lemak total yang lebih tinggi dari pada kelompok B. Gilliland and Speck, 1977 menyatakan bahwa pada kondisi anaerob, bakteri probiotik mampu melakukan dekonjugasi asam taurokolat dan asam glikolat, sedangkan menurut chikai et al., (1987), melakukan percobaan dengan menggunakan kelinci ditemukan adanya peningkatan kandungan asam empedu pada feses ketika diberi pakan yang mengandung probiotik. Hal ini diperkirakan bahwa probiotik mampu mendekonjugasi asam empedu di dalam usus besar lebih mudah dikeluarkan dibandingkan dengan dalam bentuk konjugat, Fletcher (1995) seperti di sitasi oleh Scheinbach (1998) melaporkan adanya penurunan yang tajam pada kadar serum kolesterol pada babi setelah diberi pakan probiotik yang menghasilkan enzim hidrilase (bile salts hydrolase) tinggi. Probiotik di duga juga mampu melakukan asimilasi kolesterol secara langsung, Gilliland and Speck (1977) menunjukan kemampuan asimilasi kolesterol secara in vitro oleh Lactobacillus acidophillus yang diisolasi dari babi, sedangkan Gilliland and Walker (1990) seperti disitasi oleh Scheinbach (1998) menunjukan kemampuan asimilasi kolesterol yang lebih rendah dari Lactobacillus Acidophillus yang diisolasi dari feses manusia. Berbagai penelitian lain tentang efek hipokolesterolemik probiotik sudah pernah dicoba baik in vitro maupun in vivo. Hasil penelitian secara in vitro secara nyata menunjukkan kemampuan asimilasi kolesterol, namun demikian, hasil uji asimilasi kolesterol secara in vivo sejauh ini belum menunjukan efek penurunan kolesterol yang signifikan. 4.6.2.7. Pengaruh kondidat probiotik terhadap perubahan mikroflora usus Flora normal pada usus manusia memiliki fungsi perlindungan yang penting. Bakteri asam laktat menekan bakteri dan virus, menstimulir daya tahan lokal dan sistemik serta merubah aktivitas metabolik mikroba dalam usus. Kemampuan mikroba probiotik bakteri asam laktat untuk menekan pertumbuhan patogen disebabkan karena kemampuannya untuk memproduksi senyawa antimikroba seperti asam laktat, peroksida, dan bakteriosin. Selain itu bakteri probiotik juga menekan bakteri patogen karena terjadinya kompetisi sisi penempelan, peningkatan produksi lendir/mucus usus dan kompetisi nutrisi (Salminen dan 83 Wright 1993). Pada Gambar 38 ditunjukkan hasil peningkatan jumlah sel mikroba total pada feses maupun saluran pencernaan. Sedangkan pada Gambar 39 ditunjukkan adanya perubahan jumlah bakteri asam laktat selama perlakuan. Di dalam penelitian ini membuktikan bahwa bakteri Lactobacillus plantarum JR64 yang diberikan mampu bertahan dan berkembang biak dalam saluran pencernaan dan itu berarti bahwa sel bakteri harus mampu menghadapi berbagai kondisi yang menekan disepanjang saluran pencernaan. Diantara karakteristik bakteri asam laktat yang mendukung kemampuan tersebut adalah sifatnya yang tahan terhadap asam dan garam empedu serta mengkolonisasi saluran pencernaan. Jumlah Sel Mikroba Total (Log Cfu/ml) 10,0 9,36 8,74 9,0 8,0 7,48 8,97 8,58 8,51 8,62 7,67 7,53 7,48 D E F 7,0 6,0 5,20 4,89 5,32 4,60 5,0 4,0 3,0 2,0 1,0 0,0 Feed Kaldu Feed Sel A B C Kelompok Perlakuan, Hari Ke 0 & 35 Simbol : : Hari ke 0, : Hari ke 35 Gambar 38. Perubahan jumlah mikroba total hari ke 0 dan 35 hari. 84 Jumlah Sel BAL (Log Cfu/ml) 10,0 9,36 9,0 8,51 7,74 8,0 7,89 7,62 6,83 7,0 6,0 5,0 3,85 3,69 4,0 3,0 3,68 2,30 2,0 1,30 1,64 1,20 1,11 1,0 0,0 Feed Kaldu Feed Sel A B C D E F Kelompok Perlakuan, Hari Ke 0 & 35 Simbol : : Hari ke 0, : Hari ke 35 Gambar 39. Perubahan jumlah bakteri asam laktat hari ke 0 dan 35 hari. 4.7. Analisis Kelayakan Perancangan Proses 4.7.1. Simulasi Model Perancangan Proses Sebelum dilakukan perhitungan finansial, maka diperlukan simulasi model perancangan proses produksi probiotik dari isolat Lactobacillus plantarum JR64 penghasil omega-6 dan penurun kolesterol yang banyak melibatkan unit operasi seperti halnya sebuah pabrik (Seider et al., 1999). Perancangan proses disimulasikan dengan menggunakan perangkat lunak Hysys 3.2 yang dikembangkan oleh Hyprotech Ltd. Langkah pertama dalam mengembangkan simulasi perancangan proses adalah menyusun bagan alir proses, menghitung neraca masa, menghitung neraca energi, dan menentukan ukuran dan biaya peralatan proses. Langkah selanjutnya adalah melakukan analisis finansiil untuk menilai kelayakan rancangan proses secara ekonomi dengan memperkirakan besarnya biaya produksi yang terdiri dari biaya peralatan, biaya pabrik secara keseluruhan, biaya variabel dan biaya lainnya. Dengan demikian studi tentang perancangan proses ini bertujuan untuk : (1) merancang proses produksi dan menilai kinerjanya dari sudut pandang pabrik secara keseluruhan dan (2) melakukan kajian finansiil untuk mengevaluasi kelayakan ekonomi ditinjau dari aspek biaya bahan baku, biaya peralatan, biaya pabrik secara umum serta biaya lainnya. 85 Hasil percobaan skala pilot plant digunakan sebagai basis data perancangan proses produksi yaitu menggunakan teknologi proses produksi dengan menggunakan bahan baku ekstrak jagung dan ekstrak mengkudu. Hal ini di pilih karena efisiensi pembentukan sel (Yx/s) dan produk (Yp/s) relatif lebih baik. Disamping itu dari perhitungan kasar harga bahan baku ekstrak jagung dan ekstrak mengkudu juga relatif lebih murah di bandingkan dengan glukosa sehingga perancangan proses produksi di pilih jalur dengan bahan baku komples.. Proses produksi di mulai dari persiapan bahan baku ekstraksi jagung dan buah mengkudu. Penyiapan laboratorium diawali dari peremajaan sel Lactobacillus plantarum JR64 dilanjutkan pre-vegetatif dan vegetatif (stater) untuk galur inokulasi fermentasi. Proses fermentasi dilakukan selama 48 jam, namun dapat diperpendek sesuai dengan perkembangan sel dan pembentukan produk. Pemanenan dilanjutkan pada formulasi produk dan pengemasan. Rancangan penggunaan peralatan seperti pada Lampiran 23. Simulasi proses produksi dengan bantuan perangkat lunak Hysys 3.2 dilakukan dengan kapasitas 2.500 kg/batch. Hasil pembuatan flow sheet secara lengkap ditunjukkan seperti pada Gambar 40. Sedangkan pada Tabel 10 ditunjukkan hasil perhitungan neraca bahan dan energi. Hasil perhitungan neraca bahan dan energi tersebut selanjutnya akan digunakan sebagai acuan analisis finansial. 86 Gambar 40. Diagram alir produksi probiotik dari isolat lokal Lactobacillus plantarum JR64 penghasil Omega-6 dan penurun kolesterol 87 Tabel 10. Hasil perhitungan neraca bahan dan energi produksi probiotik. 88 4.7.2. Analisis Kelayakan Finansial Analisis kelayakan perancangan proses produksi probiotik dari isolat Lactobacillus plantarum JR64 penghasil omega-6 dan penurun kolesterol dengan bahan baku utama ekstrak jagung dari aspek finansial didasarkan pada beberapa asumsi dasar sesuai dengan kondisi aktual pada saat analisis dilakukan. Analisis didasarkan pada standar norma yang telah baku digunakan pada industri. Hasil analisis kelayakan finansial industri probiotik dari isolat lokal Lactobacillus plantarum JR64 penghasil omega-6 dan penurun kolesterol berdasarkan asumsi-asumsi yang digunakan disajikan pada Tabel 11, sedangkan keluaran sistem simulasi analisis kelayakan investasi probiotik seperti yang ditunjukkan pada Lampiran 24, Lampiran 25, Lampiran 26, Lampiran 27. Hasil perhitungan kelayakan dilakukan terhadap komposisi terbaik hasil uji coba produksi pada skala pilot menggunakan asumsi-asumsi dasar perhitungan sebagai berikut : Analisis fìnansial dilakukan berdasarkan umur ekonomis pabrik selama 10 tahun seperti yang ditunjukkan pada Lampiran 28. Harga-harga yang digunakan adalah harga pada tahun 2011 dan diasumsikan konstan selama periode analisis dapat dilihat pada Lampiran 29 dan Lampiran 30. Modal kerja dikeluarkan pada tahun ke-1, dengan struktur pembiayaan modal sendiri seperti yang ditunjukkan pada Lampiran 31. Jangka waktu pembangunan industri selama satu tahun. Dalam satu tahun ditetapkan sebanyak 300 hari kerja dan setiap hari digunakan tiga shift dengan setiap 8 jam kerja pergantian. Nilai penyusutan yang digunakan adalah metode garis lurus, dengan penyusutan tiap tahun, serta tidak terdapat nilai sisa dan masing-masing barang modal sesuai dengan umur ekonomisnya seperti yang ditunjukkan pada Lampiran 34. Struktur pembiayaan modal investasi dengan perbandingan modal pinjaman dan modal sendiri sebesar 35 % berbanding 65 % seperti yang ditunjukkan pada Lampiran 36. Tingkat suku bunga pinjaman, baik untuk investasi maupun modal kerja ditetapkan masingmasing sebesar 13,5 % dengan rincian rencana pembayaran seperti yang ditunjukkan pada Lampiran 35. Perhitungan kelayakan disusun dengan menggunakan variabel berubah yaitu dengan memasukkan harga bahan baku, harga produk probiotik, volume kerja dan hari operasi. 89 Tabel 11 . Hasil analisis kelayakan finansiil produk probiotik. No. 1. 2. 3. Keterangan Bahan Baku Utama MRSA MRS Broth Lactosa monohidrat Jagung Mengkudu Susu segar Butter Gula Produk Probiotik Basis volume kerja Hari operasi Harga Probiotik Parameter kelayakan Finansial Investasi Harga Pokok Produksi NPV IRR Rasio B/C Pay Back Period (PBP) Jumlah Produksi Nilai Rp. 1.300.000,00//kg. Rp. 1.350.000,00/kg. Rp. 2.200.000,00/kg. Rp. 1.000,00/kg. Rp. 300,00/kg. Rp. 4.000,00/kg. Rp. 15.0000,00/kg. Rp. 6.000,00/kg. 2.500 kg/batch 300 hari/tahun Rp. 14.000,00/kg. Rp. 7.640.244.620,00 Rp. 11.769,00/kg. Rp. 5.675.613.259,00 32,83 persen 1,74 3,05 tahun 5.377,50 kg Dari Tabel 11 terlihat bahwa dengan probiotik dapat diproduksi dengan harga minimal Rp. 13.000,00/kg pada basis volume kerja 2.500 kg/batch dan layak berdasarkan nilai NPV, IRR, rasio B/C, PBP, dan harga pokok produksinya. Probiotik yang mengandung omega 6 dan penurun kolesterol yang diproduksi mempunyai harga jual yang lebih rendah dibandingkan dengan beberapa produk makanan kesehatan yang ada di pasaran pada saat ini. Perbandingan harga antara probiotik yang mengandung omega 6 ini dengan 3 produk makanan kesehatan probiotik yang ada di pasaran disajikan pada Tabel 12. Tabel. 12. Perbandingan harga produk probiotik yang dirancang dengan harga produk makanan kesehatan probiotik yang ada di pasaran. Produk Probiotik yag dirancang Merk MK Merk A Merk Y Volume 1 kg 80 g 80 g 65 ml Harga Rp. 14,00/g Rp. 33,75/g Rp. 43,75/g Rp. 21,54/ml. 90 Analisis sensitivitas dilakukan dengan asumsi terjadi (1) kenaikan harga bahan baku yaitu jagung dan mengkudu masing-masing 100 %; (2) penurunan kapasitas proses produksi akibat keterbatasan ketersediaan bahan baku berupa mengkudu, jagung, dan susu; dan (3) penurunan harga produk probiotik yang dapat disebabkan semakin banyaknya produk sejenis dengan harga yang lebih murah disajikan pada Tabel 13. Hasil analisis sensitivitas untuk ketiga kondisi tersebut menunjukkan bahwa pada semua kondisi perubahan yang dapat terjadi maka probiotik yang mengandung omega 6 ini layak untuk diproduksi. Tabel. 13. Analisis sensitivitas kelayakan finansial produksi probiotik yang mengandung omega-6. No. 1. 2. 3. Keterangan Harga jagung dan mengkudu naik 100 persen Produk Probiotik Basis volume kerja Hari operasi Parameter kelayakan Finansial Investasi Harga Pokok Produksi NPV IRR Rasio B/C Pay Back Period (PBP) Jumlah Produksi Penurunan kapasitas produksi basis volume kerja 30 persen Produk Probiotik Basis volume kerja Hari operasi Parameter kelayakan Finansial Investasi Harga Pokok Produksi NPV IRR Rasio B/C Pay Back Period (PBP) Jumlah Produksi Penurunan harga jual menjadi Rp. 13.000,00/kg Produk Probiotik Basis volume kerja Hari operasi Parameter kelayakan Finansial Investasi Harga Pokok Produksi NPV IRR Rasio B/C Pay Back Period (PBP) Jumlah Produksi Nilai Rp. 14.000,00/kg. 2.500 kg/batch 300 hari/tahun Rp. 7.640.244.620,00 Rp. 12.205,00/kg. Rp. 2.948.487.338,00 24,82 persen 1,39 3,84 tahun 5.377,50 kg Rp. 14.000,00/kg. 2.000 kg/batch 300 hari/tahun Rp. 7.640.244.620,00 Rp. 11.804,00/kg. Rp. 4.329.915.285,00 32,00 persen 1,18 4,59 tahun 4.302,00 kg Rp. 13.000,00/kg. 2.500 kg/batch 300 hari/tahun Rp. 7.640.244.620,00 Rp. 11.420,00/kg. Rp. 1.666.053.869,00 20,74 persen 1,22 4,44 tahun 5.377,50 kg BAB V KESIMPULAN DAN SARAN 5.1. Kesimpulan 1. Diperoleh data hasil pengujian secara in-vitro dan in-vivo pengaruh konsumsi Lactobacillus plantarum JR64 penghasil omega-6 terhadap aktivitas mikrobiologis saluran cerna dan penurun kadar kolesterol. Galur bakteri asam laktat Lactobacillus plantarum JR64 merupakan isolat lokal hasil isolasi dari tuak mengkudu yang memiliki potensi sebagai kondidat probiotik penghasil omega-6 dan penurun kolesterol. Melalui uji in-vivo dengan media tikus putih ternyata Lactobacillus plantarum JR64 memiliki kemampuan menurunkan LDL kolesterol sebesar 19,5%. 2. Diperoleh data teknologi proses produksi dari isolat lokal Lactobacillus plantarum JR64 sebagai agensia probiotik penghasil omega-6 dan penurun kolesterol dengan data sebagai berikut : Biokonversi substrat (yield) Yx/s dan Yp/s pada skala laboratorium ternyata konsentrasi glukosa 20 g/l menghasilkan biokonversi terbaik yaitu Y x/s : 17,03 % dan Y p/s : 74,72 % dengan laju pertumbuhan maksimum sebesar 0,342 Jam-1. Teknologi proses produksi pada skala pilot plant 75 liter dengan menggunakan media standar glukosa 20 g/l diperoleh biokonversi substrat (yield) sebesar Y x/s : 51,6 % dan Y p/s : 40,1 % dengan laju pertumbuhan maksimum sebesar 0,149 Jam-1. Teknologi proses produksi pada skala pilot plant 75 liter dengan menggunakan media komplek diperoleh biokonversi substrat (yield) sebesar Y x/s : 62,1 % dan Y p/s : 22,2 % dengan laju pertumbuhan maksimum sebesar 0,148 Jam-1. Desain dan formulasi terbaik untuk viabilitas sel Lactobacillus plantarum JR64 direkomendasikan terbuat dari komponen probiotik 15 g dan butter 50 g serta icing sugar 15 g karena selama penyimpanan 28 hari pada suhu refrigeran jumlah sel masih memenuhi persyaratan sebagai probiotik 8,92 x 108 Cfu/ml. 92 3. Hasil perancangan proses produksi probiotik penghasil omega-6 dan penurun kolesterol diperoleh data sebagai berikut : Peluang untuk mengembangkan teknologi produksi probiotik sangat besar karena potensi pasar cukup luas dan sangat mendukung program pemerintah untuk peningkatan gizi masyarakat. Jalur proses direkomendasikan dengan fermentasi sistem batch menggunakan galur Lactobacillus plantarum JR64 dan bahan baku dari ekstrak jagung dan ekstrak mengkudu. Desain dan formulasi produk dalam bentuk krem. Produk memiliki kemampuan menurunkan LDL kolesterol sebesar 19,5%. Kapasitas produksi 2.500 kg/batch dengan waktu operasi 48 jam selama 300 hari kerja dengan modal investasi Rp. 7.640.244.620,-. Harga probiotik yang mengandung omega-6 (Ω-6) adalah Rp. 14.000,00/kg layak secara finansial dengan kriteria IRR 20,74 %, NPV Rp. 1.666.053.869,-, rasio B/C 1,22, dan PBP 4,44 tahun dengan harga pokok produksi Rp. 11.420,-. 5.2. Saran Mengacu hasil perancangan proses produksi probiotik dari isolat lokal Lactobacillus plantarum JR64 hasil isolasi dari tuak mengkudu yang secara laboratorium telah diuji pengaruh media glukosa terhadap produktivitas. Hasil terbaik dari percobaan laboratorium selanjutnya dicoba produksi pada skala pilot plant 75 L dengan menggunakan substrat glukosa dan media komplek dengan hasil secara finansial layak untuk diproduksi. Untuk menyempurnakan hasil penelitian sebaiknya dilakukan penelitian lanjutan dengan melakukan optimasi pengaruh sumber nitrogen, kecepatan pengadukan dan sistem fermentasi dengan sistem semi kontinue (feed-batch) yang dimungkinkan akan meningkatkan produktivitas fermentasi. 93 DAFTAR PUSTAKA _______. 2001. “Integrated System Of Engineering Software”. Hyprotech Ltd. Canada. _______. http://en.wikipedia.org/wiki/Lactobacillus_plantarum. Diakses pada tanggal 27 Desember 2011. _______. http://id.wikipedia.org/wiki/Jagung. Diakses pada tanggal 27 Desember 2011. _______. http://id.wikipedia.org/wiki/Kolesterol. Diakses pada tanggal 27 Desember 2011. _______. http://ms.wikipedia.org/wiki/Pokok_Jagung. Diakses tanggal 27 Desember 2011. _______. Riskesdas, Kementerian Kesehatan, 2007. _______. Rencan aksi nasional pangan dan gizi 2011-2015. BAPPENAS 2011. _______. 1992. In Vitro Cultivation of Microorganisms. Open Universiteit and Thames Polytechnic. Butterworth-Heinemann, Ltd. Jordan Hil, Oxford OX2 8DP. Aiba,S., Humphrey, A.E. dan Millis, N.F. 1973. Biochemical Engineering. 2nd edition, University of Tokyo Press, Japan. Anonim. 2001. Tutorials and Applications Hysys 3.0. Hyprotech Ltd.Canada. Anonim. pehttp://anandamarga.or.id/imdex.php. AOCS. 1993. Journal methode preparation of metil ester of long chain fatty acid. Washington DC. Pp. 2-66. Association of Official Analytical Chemist (AOAC). 1984. Official Methods of Analysis. Washington DC. Bailey, JE. dan Ollis, DF. 1986. Biochemical Engineering Fundamentals. McGraw-Hill Chemical Engineering Series. New York. Barefoot SF., Chen YR., Hughes TA., Bodine AB., Shearer MY., dan Hughes MD. 1994. Identification and Purification of a Protein That Induces Production of the Lactobacillus acidhophilus Bacteriocin Lactacin B. Appl. Environ. Microbiol. 60 (10) : 3522-3528. Berry AR, Franco CMM, Zhang W, dan Middleberg APJ. 1999. Growth and lactic acid production in batch culture of Lactobacillus rhamnosus in a defined medium. Biotechnology Letters. 21 : 163-167. Botazzi V. 1983. Other fermented dairy product in : Biotecnologi: food and feed product with microorganism. Vol 5. Florida: Verlag Chemic. Buckle KA. 1987. Ilmu Pangan (terjemahan Purnomo dan Hadiono. Jakarta : UI Press . 94 Candy DCA., Densham L., Lamont LS., Greig M., Lewis J., Bennett H., dan Griffiths. 2001. Effect of Administration of Lactobacillus casei Shirota on Sodium balance in an Infant with Short Bowel Sndrome. J. Pediatr. Grastoenterol. Nutr. 32:506508. Dalimartha, S. 2001. Resep Tumbuhan Obat untuk Menurunkan Kolesterol. Swadaya. Jakarta. Damayanti E. 2003. Kultivasi Bakteri Asam Laktat Dalam Media Fermentasi Campuran Sari Buah Mengkudu (Morinda citrifolia) dan Susu Kedelai Dengan Perbandingan Volume Yang Berberda. Purwokerto: Departemen Pendidikan Nasional Fakultas Biologi Universitas Jeneral Sudirman. Daniel C., Poiret S., Goudercort D., Dennin V., Leyer G., dan Pot B. 2006. Selecting lactic acid bacteria for their safety and functionality by use of a model of a mouse colitis model. Applied and Environmental Microbiology. 86 : 5799-5805. Degnan AJ., Kaspar CW., Otwell WS., Tamplin ML., dan Luchansky JB. 1994. Evaluation of lactic Bacterium Fermentation Products and Food-Grade Chemichals To Control Listeria monocytogenes in Blue Crab (Callinectes sapidus) Meat. Appl. Environ. Microbiol. 60 (9) : 3198-3203. Dharmawan N., Darmadji P, dan Harmayani E. 1999. Kemampuan Ekstrak Fraksi-fraksi Buah Pace (Morinda citrifolia) sebagai Anti Bakteri. Prosiding Seminar Nasional Pangan. PAU Pangan dan Gizi UGM, Yogyakarta. Djauhariya, E. dan Tirtoboma. 2001. Mengkudu (Morinda citrifolia. L.) Tanaman Obat Tradisional Multi Khasiat. Warta Penelitian dan Pengembangan Tanaman Industri 7(1-2): 1-7. Douglas JM. 1988. Conceptual Design of Chemical Processes. New York: McGraw-Hill Chemical Engineering Series. Duffie, NGM, 1991, Bioreactor Design Fundamentals, Butter Heinemann. Edgar TF, Himmelblau DM. 2001. Optimization of Chemical Processess. 2sd Edition. New York: McGraw-Hill. El Shafie HA, Yahia NI, Ali HA, Khalil FA, El Kady EM, Moustafa YA. 2009. Hypocholesterolemic Action of Lactobacillus plantarum NRRL-B-4524 and Lactobacillus paracasei in Mice with Hypercholesterolemia Induced by Diet. Australian Journal of Basic and Applied Sciences. 3(1): 218-228. Fardiaz S. 1989. Mikrobiologi Pengolahan Pangan Lanjut. PAU Pangan dan Gizi IPB, Bogor. 95 Fardiaz S. 1992. Mikrobiologi Pangan I. Jakarta: PT. Gramedia Pustaka Utama. Frazier WC, dan Westhoff, DC. 1979. Food Microbiology 3th. New York: McGraw-Hill Publishing Company Ltd. Friendrich, R dan Lenke J. 2006. Improved Enumeration of lactic Acid Bacteria in Mesophilic Dairy starter Cultures by Using Multiplex Quantitative Real-Time PCR and flow Cytometry-Fluorescence In Situ Hybridization. Appl. Environ. Microbiol. 72 (6) : 4163-4171. Fukushima M, Matsuda T, Yamagishi K, dan Nakano. 1997. “Comparative Hypocholesterolemic effects of six Dietary Oils in Cholesterol-Fed Rats After Long-Term Feeding”. Lipids. 32 (10) : 1069-1074. Fuller R. 1986. Probiotics in man and animals. J. Appl. Bateriol. 66 : 365-378. Ganong, F.W. 1998. Buku Ajar Fisiologi Kedokteran Edisi ke 17. Terjemahan Djauhari Widjajakusuma. EGC. Jakarta. Ghosh R, Hardmeyer A, Thoenen I, dan Bachofen R. 1994. Optimization of the Sistrom Culture Medium for Large-Scale Batch Cultivation of Rhodospirillum rubrum under Semiaerobic Conditions with Maximal Yield of Photosynthetic Membranes. Appl. Environ. Microbiol. 60 (5) : 1698-1700. Gilliand SE. 1986. Bacterial Starter Cultures For Food. Florida: CRC Press inc., Boca Parton. Girindra, A. 1998. Biokimia I. Gramedia. Jakarta. Grundy, S.M. 1991. Multifactorial Etiologi of Hypercholesterolemic : Implication for Prevention of Corony Heart Disease. Arteriosclerosis and Trombosis II:1619-1635. Guo LD, Yang LJ, dan Huo GC. 2011. Cholesterol Removal by Lactobacillus plantarum Isolated from Homemade Fermented Cream in Inner Mongolia of China. Czech J. Food Sci. 29 (3) : 219-225. Gupta, S., Ghannam, NA., dan Scannell, AGM. 2010. Growth and Kinetics of Lactobacillus plantarum in the fermentation of edible irish brown seaweeds. www.elsevier.com/locate/fbp. Hang G dan Block DE. 2009. Using Highly Efficient Nonlinear Experimental Design Methohds for Optimization of Lactococcus lactis Fermentation in Chemically Defined Media. Biotechnol. Prog. 25 (6) : 1587-1597. 96 Haryanto, B. 2002. Penggunaan Probiotik dalam Pakan untuk Meningkatkan Kualitas Karkas dan Daging Domba J. Ilmu Ternak dan Veteriner.Vol 5 (4). HLM 224-228. Helferich W dan D. Westhoof. 1980. All About Yoghurt. Englewood Cliff, New Jersey: Prentice Hall Inc. Heslet, L. 1991. Kolesterol. Terjemahan Anton Adiwiyoto. Megapoin. Jakarta. Hirazumi, A. 1996 Immunmodulation contributes to the anticancer activity of Morinda citrifolia noni fruit juice. Proc.West. Pharmacol. Soc. 39: 7-9. Hsu YL dan Wu WT. 2002. A novel approach fo scaling-up a fermentation system. Biochemical Engineering Journal. 11 (123-130). Hwang, CF., Chen, JN., Huang, YT. dan Mao, ZY. 2011. Biomass Production Of Lactobacillus Plantarum LP02 Isolated From Infant Feces With Potential Cholesterol-Lowering Ability. African Journal of Biotechnology. 10(36) : 70107020. Illingworth D.R., dan Bacon S. 1987. Hypolipidemic Effects of HMG-CoA Reductase Inhibitors in Patients with Hypercholesterolemia. The American Journal of Cardiology. 60: 33G-42G. Jay, M. 2000. Modern Food Microbiologi 6th edit. Maryland: Aspen Publisher Inc. Kambe A., Uchida K., Takase H., Nomura Y., dan Adachi Y. 1998. Bile Acid Metabolism in Analbuminemic Rats. Lipids. 33 (1) : 93-99. Kasmiati. 2002. Kemampuan bakteri asam laktat indigenous untuk menurunkan kadar laktosa yogurt dan potensinya sebagai agensi probiotik. Makalah Ilmiah. Yogyakarta : Program Pasca Sarjana UGM. Kuhn H, Wonde B, Rabsch W. dan Reissbrodt R. 1994. Evaluation of Rambach Agar for detection of Salmonella Subspecies I to VI. Appl. Environ. Microbiol. 60 (2) : 749751. Monteagudo JM. dan Aldavero M. 1999. Production of L-lactic acid by Lactobacillus delbrueckii in chemostat culture using an ion exchange resins system. J Chem. Technol. Biotechnol. 74 : 627-634. Lehninger, AL. 1982. Dasar-Dasar Biokimia. Terjemahan Meggy Thenawidjaja. Erlangga. Jakarta. Mangunwidjaja D., Suryani A. dan Gumbira-Said E. 1994. Teknologi Bioproses. Jakarta: PT. Penebar Swadaya. Schlegel, H. G dan Schmidt. 1994. Mikrobiologi Umum Edisi Keenam. Yogyakarta: Gadjah Mada University Press. 97 Mourad K, dan Eddine KN. 2006. In Vitro Preselection Criteria For Probiotic Lactobacillus Plantarum Strains Of Fermented Olives Origin. International Journal of Probiotics and Prebiotics. 1(1) : 27-32. Murray, KR. dan Graner, KD. 1996. Biokimia Harper Edisi 24. Buku Kedokteran EGC. Jakarta. Nagao F, Nakayama M, Muto T, dan Okumura K. 2000. Effects of a Fermented milk Drink Containing Lactobacillus casei Strain Shirota on the immune System in Healthy Human Subjects. Biosci. Biotechnol. Biochem. 64(12) : 2706-2708. Natarajan, M., dan Rajendran, A. 2009. Effect of fermentation parameters on extra celluler tannase production by Lactobacillus plantarum MTCC1407. Ngatirah. 2000. Seleksi Bakteri Asam Laktat Sebagai Agensi Probiotik Yang Berpotensi Menurunkan Kolesterol. Makalah Ilmiah. Yogyakarta: Program Pascasarjana UGM. Ohashi R, Yamamoto T, dan Suzuki T. 1999. Continuous Production of Lactic Acid from Molasses by Perfusion Culture of Lactococcus lactis Using a Strired Ceramic Membrane Reactor. J. Biosci. Bioeng. 87 (5) : 647-654. Okada S, dan Iwamatu S. 1997. Scale-up Production of Milbemcin by Stretomyces higroscopicus subsp. Aureolacrimosus with Control of Internal Pressure, Temperature, Aeration and Agitation. J. Chem. Technol. Biotechnol. 70 : 179-187. Ooi LG. dan Liong MT. 2010. “Cholesterol-Lowering Effects Of Probiotics And Prebiotics: A Review Of In Vivo And In Vitro Findings. Int”. J. Mol. Sci. 11 (2499-2522). Ooijkaas LP, Wilkinson EC, Tramper J, dan Buitelaar RM . 1999. Medium Optimization for Spore Production of Coniothyrium minitans Using StatisticallyBased Experimental Designs. Biotechnologi and Bioengineering. 64 (1) : 92-100. Osada K., Kodama K., Yamada K., Nakamaru S., dan Sugano M. 1998. Dietary Oxidized Cholesterol Modulates Cholesterol Metabolism and Linoleic Acid Desaturation in Rats Fed High-Cholesterol Diets. Lipids. 33 (8) : 757-764. Povey, R. 1994. Memantau Kadar Kolesterol Anda. Terjermahan Anton Adiwiyoto. Sheldon Press. London. Rahman. 1992. Teknologi Fermentasi. Bogor: IPB Ray, B. 1996. Probiotics of lactic acid bacteria. Science or Myth. Didalam: NATO ASI Series, edition. Lactic Acid Bacteria. Current Advance in Metabolism, Genetic and Application Volume V(98). Springer Verlag Germany. Ren PR, Yu RC, Chou CC, Tsai YH. 2002. Antimutagenic Activity of Several Probiotic Bifidobacteria againts Benzoa (a) pyrene. J. Biosci. Bioeng. 94 (2) : 148-153. 98 Saarela M., Mogensen G., Fonden R., Matto J., Sanholm TM. 2000. Probiotic bacteria : safety, functional and technological properties. Journal of Biotechnology. 84 : 197-215. Saarela M., Mogensen G., Fonden R., Matto J., Sanholm TM. 2000. Probiotic bacteria : safety, functional and technological properties. Journal of Biotechnology. 84 : 197-215. Salminen, S. 1999. Probiotics : how should they be defined. Trends in Food Science and Technology. Sanders, ME. 2000. Consideration for use of probiotic bacteria to modulate human health. Di dalam Symposium Probiotic Bacteria Implication for human health. Scragg, A.H. 1991. Bioreactors in Biotechnology : a practical approach. Ellis Horwood, LTD. England. Seider WD, Seader JD, Lewin DR. 1999. Process Design Principles Synthesis, Analysis and Evaluation. New York: John Wiley & Sons, Inc. Shioya S, Shimizu K, Yoshida T. 1999. Knowledge-Based Design and Operation of Bioprocess Systems. J. Biosci. Bioeng. 87 (3) : 261-266. Sirilun S, Chaiyasut C, Kantachote D, Luxanil P. 2010. Charactisation of non human orogin probiotic Lactobacillus plantarum with cholesterol-lowering property. African Journal of Microbiology research. 4 (10) : 994-1000. Speck, M. L. 1978. Development in Industrial Microbiology. Dalam Economic Microbiology Fermented Food Vol. VII. Academic Press, London. Sreekumar O, Hosono A. 2000. Immediate Effect of Lactobacillus achidophilus on the Intestinal Flora and Fecal Enzymes of rats and the in Vitro Inhibition of Escherichia coli in Coculture. Journal of Dairy Science. 83 (5) : 932-939. Sreenath HK, Moldes AB, Koegel RG, Straub R J. 2001. Lactic Acid Production by Simultaneous Saccharification and Fermemtation of Alfalfa Fiber. J. Biosci. Bioeng. 92 (6) : 518-523. Subbaiah PV, Liu M, Witt TR. 1997. Impaired Cholesterol Esterification in the Plasma in Patients with Breast Cancer. Lipids. 32 (2) : 157-162. Sudarmadji S, Haryono B, Suhardi. 1996. Analisis Bahan Makanan dan Pertanian. Yogyakarta: Liberty dan PAU Pangan dan Gizi UGM. Sugiyama K, Yamakawa A, Saeki S. 1997. Correlation of suppressed Linoleic Acid Metabolism with the Hypocholesterolemic Action of Eritadenine in Rats. Lipids. 32 (8) : 859-866. Sulandari. 2001. ”Penambahan Ekstrak Tempe Untuk Mempertahankan Viabilitas Bakteri Asam Laktat Pada Yogurt Bubuk”. Journal BIOSAINS. 1(3):65-76. 99 Sulantri dan W. P. Rahayu. 1990. Teknologi Fernentasi Umbi-Umbian dan Biji-Bijian. DepDikBud Direktorat Jendral Pendidikan Tinggi Pusat Antar Universitas Pangan dan Biji. Bogor: IPB. Susilorini, T. E dan M. E Sawitri. 2006. Produk Olahan Susu. Jakarta: Penebar Swadaya. Tamime. 1992. “Yoghurt: Tecnologi and Biochemistry”. J. Food Protect. Tannock G W, Tangerman A, Schaik AV, McConnel M A.1994. Deconjugation of Bile Acids by Lactobacilli in the Mouse Small Bowel. Appl. Environ. Microbiol. 60 (9) : 3419-3420. Thu TV, Chwen LT, Foo HL, Halimantun Y, Bejo MH. 2010. “Effecs of Metabolite Combinations Produced by Lactobacillus plantarum on Plasma Cholesterol and Fatty Acid in Piglets”. American Journal of Animal and Veterinary Sciences. 5(4) : 233-236. Todar K. 2000. “Nutrition and Growth of Bacteria”. J. University of Wisconins-Madison Tunga R, Banerjee R, Bhattacharyya BC. 1999. Optimization of n Variable Biological Experiments by Evolutionary Operation Factorial Desighn Technique. J. Biosci. Bioeng. 87 (2) : 224-230. Valerio F., Bellis PD., Lonigro SL., Morelli L., Viscinti A., dan Lavermicocca P. 2006. In Vitro and in Vivo Survival and Transit Tolerance of Potentially Probiotic Strains Carried by Arthchokes in the Gastrointestinal Tract. Appl. Environ. Microbiol. 72 (4) : 3042-3045. Waha, M G.2000. Sehat dengan Mengkudu. MSF Group Jakarta Indonesia. Wang IC, Cooney CL, Demain AL, Dunnil, P, Humphrey AE, Lilly MD. 1979. Fermentation and Enzime Technology. New York: John Wiley & Sons. Wegkamp A, Teusink B, De Vos WM, Smid EJ. 2010. Development of a minimal growht medium for Lactobacillus plantarum. Letters in Applied Microbiology. 50 : 57-64. Winarno FG. 1992. Kimia Pangan dan Gizi. Jakarta : PT. Gramedia Pustaka Utama. Yoo IK., Chang HN., Lee EG., Chang YK., dan Moon SH. 1997. Effect of B Vitamin Supplementation on Lactic Acid Production by Lactobacillus casei. J. Ferment. Bioeng. 84 (2) : 172-175. Zavaglia, A.G., Kociubinski, G., Pe´rez, P., De Antoni, G., 1998. Isolation and characterization of Bifidobacterium strains for probiotic formulation. J. Food Prot. 61 : 865– 873. Zwietering MH, Cuppers HGAM, Wit JC, Riet K. 1994. Evaluation of Data Transformation and validation of a Model for the Effect of Temperature on Bacterial Growth. Appl. Environ. Microbiol. 60 (1) : 195-203. 12 LAMPIRAN Lampiran 1. Prosedur identifikasi molekuler Lactobacillus sp. Instruksi kerja ekstraksi DNA genom bakteri menggunakan Instagene Langkah-langkah kerja yang dilakukan adalah mengambil satu koloni isolat yang sudah tumbuh dan murni. Setelah itu, ditambahkan 1 mL H2O dan melakukan proses tapping. Setelah dilakukan proses tapping, dilanjutkan dengan Sentrifuge dengan kecepatan 1.200 rpm selama 1 menit. Langkah berikutnya, membuang supernatan dan menambahkan 250 µL Instagene. Setelah ditambahkan Instagene, tahapan yang harus dilakukan adalah vorteks. Setelah vorteks, inkubasi pada suhu 56 0C selama 30 menit. Selanjutnya, dilakukan vorteks kembali. Kemudian panaskan pada heat block 100 0C selama 8 menit. Setelah proses pemanasan, divorteks kembali. Selanjutnya, sentrifuge pada kecepatan 10.000 12.000 rpm selama 2 - 3 menit. Langkah yang terakhir, mengambil supernatan untuk PCR. Amplifikasi PCR Campuran berikut seperti tertera pada Tabel di bawah ini dibuat dalam tabung volume 0,2 ml. Solution Air MgCl2 10X PCR Buffer dNTP Mix Primer 8F Primer 1492R Taq Polimerase Template Total Volume Konsentrasi Akhir Volume Sampel 29,75 µl 5 µl 5 µl 4 µl 1 µl 1 µl 0,25 µl 2 µl 1X 0,2 mM 10 mM 10 mM 1,5 U 100-200 ng 50 µl Pertama-tama, air dicampurkan dengan tapping pelan-pelan. Setelah tercampur, larutan dilakuan sentrifugasi. Kemudian mesin thermal cycler diatur sesuai program yang diinginkan. Setelah proses pengaturan selanjutnya PCR dijalankan. Elektroforesis produk PCR Langkah pertama yang dilakukan untuk elektroforesis produk PCR adalah agarose ditimbang sebanyak 1% (w/v). Selanjutnya agarose dimasukkan ke dalam tabung erlenmeyer yang berisi buffer TAE 1X. Selanjutnya larutan agarose dipanaskan dalam 101 microwave sampai benar-benar larut. Setelah larut, larutan didinginkan sampai suhu 40500C. Larutan ditambahkan syber safe 10.000 X. Setelah ditambahkan syber safe, larutan dituang dalam cetakan gel dengan memastikan tidak ada gelembung udara. Larutan dibiarkan sampai beku. Setelah beku, dilepaskan dari cetakan gel. Kemudian dimasukkan cetakan dalam tangki elektroforesis (seluruh bagian gel dipastikan terendam dalam buffer TAE 1X). Selanjutnya dimasukkan marker DNA yang mengandung loading dye 6X ke dalam sumuran pada gel. Setelah itu, sampel DNA yang mengandung loading dye 6X dimasukkan ke dalam sumuran pada gel. Selanjutnya dijalankan elektroforesis pada 100V selama 30 menit. Pita DNA divisualisikan diatas UV Transluminator dan didokumentasikan dengan gel documentation system. Purifikasi gel produk PCR dengan gene aid Tahapan pertama yang harus dilakukan adalah tabung 1,5 ml kosong yang akan digunakan untuk Purifikasi Gel Produk PCR dengan Gene Aid ditimbang. Tahapan selanjutnya, agarose yang mengandung filamen DNA dipotong dengan scapel. Setelah itu, dimasukkan ke dalam tabung yang sudah ditimbang. tabung yang sudah berisi gel ditimbang kembali. Dihitung selisih berat, tabung berisi gel dengan berat kosong (berat gel ± 300mg). Kemudian, ditambahakan 500 µl buffer DF pada sampel dan campur dengan cara divorteks. Proses Inkubasi dilakukan pada suhu 55-600C selama 10-16 menit sampai semua agarose larut dengan membolak-balik tabung setiap 2-3 menit. Setelah gel larut, selanjutnya didinginkan sampai suhu ruang. Langkah selanjutnya, DF kolom ditempatkan pada tabung 2 ml, kemudian sampel dipindahkan ke DF kolom (lebih dari 700 µl). Tahapan selanjutnya disentrifuge pada kecepatan 13000 rpm selama 1 menit. Setelah sentrifuge selama 1 menit, larutan dibuang dari tabung 2 ml kemudian ditempatkan kembali DF kolom pada tabung 2 ml. Setelah ditempatkan, ditambahkan 600 µl wash buffer dan sentrifuge pada kecepatan 13000 rpm selama 1 menit. Larutan dibuang kembali dari tabung 2 ml, kemudian ditempatkan kembali DF kolom pada tabung 2 ml. Setelah itu dilakukan tahapan sentrifuge pada kecepatan 13000 rpm selama 3 menit. Selanjutnya dipindahkan DF kolom ke tabung 1,5 ml yang baru. Tahapan berikutnya, DNA dielusi dengan menambahkan 15-50 µl di tengah-tengah membran DF kolom. Kemudian diinkubasi selama 2 menit. Setelah diinkubasi selama 2 menit, Sentrifuge pada kecepatan 13000 rpm selama 3 menit dan selanjutnya tahapan terkhir, simpan DNA pada suhu 40C. 102 Amplifikasi PCR cycle sekuensing Campuran seperti yang tertera pada Tabel berikut dibuat dalam dalam tabung volume 0,2 ml. SOLUTION 5 X Buffer Sekuensing Primer (1,6 pmol/ µl) Big Dye V.3.1 Template (10-40ng/µL) ddH2O Total Volume VOLUME SAMPEL 2 µl 2 µl 1 µl 2 µl 3 µl 10 µl Tahap selanjutnya adalah mencampurkan dengan tapping secara pelan-pelan. Kemudian, melakukan spindown larutan dengan sentrifugasi. Kemudian mesin thermal cycler diatur sesuai program yang diinginkan. Setelah mesin thermal cycler telah di set, PCR dijalankan dengan pengaturan sebagai berikut. Program PCR 960C : 2 menit 960C :10 menit 550C : 5 menit 600C : 4 menit :∞ 40C Purifikasi produk cycle sekuensing Untuk purifikasi produk cycle sekuensing, sampel hasil PCR cycle sekuensing ditambah 10 µl air bebas DNA dan RNA (sampai 20 µl). Selanjutnya tambahkan 5 µl larutan EDTA 125mM, tambahkan juga 5 µl larutan natrium asetat 3M dan 60 µl etanol absolut. Setelah itu, sampel diinversi sebanyak 4 kali dan selanjutnya diinkubasi pada suhu ruang selama 15 menit dengan ditutup alumunium foil. Setelah itu Sentrifuge dengan kecepatan 3000g selama 30 menit. Selanjutnya supernatan dibuang, lalu pelet ditambah 70 µl etanol 70%. Lakukan lagi tahapan Sentrifuge dengan kecepatan 3000g selama 30 menit, dan buang kembali supernatan. Setelah itu, lakukan spind down untuk menghilangkan sisa etanol 70%. Kemudian dikeringkan dengan menggunakan vacum desikator selama 10 menit. Selanjutnya Elusi dengan 10 µl air bebas DNA dan RNA. Kemudian panaskan dengan heat block digital pada suhu 420C selama 5 menit, dan tapping perlahan setiap 2 menit. Setelah itu, Spindown larutan dengan sentrifugedan sampel siap disekuensing. 103 Sekuensing Untuk sekuensing, langkah pertama adalah komputer dihidupkan AB 3130. Setelah lampu hijau menyala, RUN DATA COLLECTION dipilih dan menunggu sampai semua kotak berwarna hijau. Kemudian, PROTOKOL MANAGER dipilih yang dilanjutkan kotak NEW dipilih. Dilakukan pengisian nama, type (reguler), Run Module (Fastseq 50_pop_1/standart50_POP1)Dye(Z-BigDye V.3.1), kemudian OK dipilih . Setelah itu, PLATE MANAGER dipilih dan dilanjutkan dengan NEW. plate dialog diisi dan diklik OK. Plate Record SEQ ANALYSIS PLATE EDITOR diisi kemudian RUN SCHEDULER dipilih dan FIND ALL. Selanjutnya plate name dipilih dari daftar, dan POS ISI PLATE untuk LINK dipilih. Pada posisi START DIALOG BOX, tanda panah warna hijau dipilih dan OK. Komputer running dan didapatkan basa nukleotida. Analisa data hasil sequensing Untuk menganalisa data hasil Sequensing tahap pertama yaitu membuat software sequensing analysis Ver 5.2. Kemudian diklik FILE, dipilih ADD SAMPLE, selanjutnya dipilih data yang akan dianalisis. Diklik ADD SELECTED SAMPLE, kemudian diklik OK. Kualitas hasil sequensing diperiksa dengan melihat indikator QV yang tertera dalam software dan dipastikan kualitas hasil sequensing memenuhi standar QV yaitu nilai QV diatas 20 atau QV Bar berwarna biru. Selanjutnya data hasil sequensing digabung dengan software ATGCTM. Penggabungan data hasil sequensing dengan software ATGC Langkah-langkah untuk menggabungkan data hasil sequensing dengan software ATGC adalah software ATGC dibuka, kemudian diklik FILE, dipilih NEW PROJECT, selanjutnya diberi nama PROJECT dan diklik SAVE. Setelah disimpan, masukkan data dengan diklik ADD atau ADD from FOLDER, kemudian diklik IMPORT. Setelah itu, diklik ANALYZE. Kemudian dipilih ASSEMBLY. Disalin sekuen hasil analisis ke dalam NOTEPAD dan Data sekuens hasil penggabungan. Analisis Blast Tahapan pertama yang harus dilakukan adalah mengedit urutan DNA hasil sekuensing dengan menterjemahkan N menjadi basa sesuai elektroferogram. Kemudian, disalin urutan DNA ke program NotePad. Selanjutnya, website http://www.ncbi.nih.nlm.gov dibuka dan diklik icon BLAST. Sesudah di klik, di layar 104 monitor akan muncul window hasil blast yang berisi diagram similarity sequens kita dengan sequens yang di NCBI. Selanjutnya, dipilih sequen yang memiliki TOP Similarity dan ditentukan identifikasi contoh sesuai dengan TOP Similarity. Analisis Clustal-X Tahapan awalnya, membuat data sequens spesies yang memiliki TOP Similarity dalam bentuk fasta (<) ke program NotePad. Buka Software CLUSTAL-X, kemudian diklik FILE, pilih Load Sequens. Selanjutnya data dimasukkan fasta sampel pertama, kemudian dipilih Append Sequens untuk memasukkan data selanjutnya. Dipilih Bootstrap N-J Tree. Pilih Branch Similarity 100. Selanjutnya diklik Alignment, pilih Do Complete Alignment. Proses Alignment ditunggu sampai selesai. Setelah itu data hasil alignment diedit dengan program GENEDOC. Lampiran 2: Penentuan Kadar Asam Linoleat Metode HPLC Analisis penentuan kadar asam linoleat dilakukan dengan metode HPLC. Pelarut : Akuades dengan 15% CH3COOH : Asetonitril (25:75) Detektor : UV 120 nm Kecepatan alir : 1,5 ml/menit Kolom : Hypersil MOS (C8) Sebanyak 5 ml sampel diekstraksi dengan pelarut heksana selama 10 menit dalam corong pisah 25 ml dan ditepatkan sampai batas dengan heksana. Fase heksana selanjutnya diuapkan sampai fase heksan habis, kemudian ditambahkan asetonitil sebanyak 2,5 ml. Selanjutnya diinjeksikan ke dalam alat HPLC sebanyak 1 µl dan hasilnya dibandingkan dengan standar asam linoleat. Pembuatan Larutan Standar Asam Linoleat Sebanyak 100 mg asam linoleat dilarutkan dengan 10 ml pelarut heksana lalu dimasukkan ke dalam labu ukur 25 ml dan ditepatkan sampai batas dengan heksana. Fase heksana selanjutnya diinjeksikan ke dalam alat HPLC sebanyak 1 μl. 105 Kurva standar HPLC analitik untuk penentuan konsentrasi Omega-6 70.000 y = 114,4x + 487,7 R² = 0,999 60.000 50.000 Luas Area 40.000 30.000 20.000 10.000 0 0 100 200 300 400 500 600 Konsentrasi (mg/L) Untuk menentukan konsentrasi omega-6 maka dihitung berdasarkan kurva standar yaitu dengan pendekatan persamaan regresi Y :114,4 x + 487,7. Sebagai contoh perhitungan konsentrasi omega-6 pada fermentasi dengan menggunakan medium komplek skala pilot plan 75 L pada jam ke 18 berdasarkan gambar Kromatogram 5,37 ; 118.898 di bawah ini. Diperoleh retention time : 5,37 dan luas area : 118.898 sehingga diperoleh konsentrasi omega-6 sebesar : (118.898 – 114,4) / (487,7) * (1) = 1.034, 33 ppm. 106 Lampiran 3. Analisa Kadar Glukosa dan Asam Laktat Metode HPLC Kondisi HPLC Kolom volume injek fase gerak Kecepatan alir Temperature detektor Temperature kolom Detector : Aminex HPX-87H : 10 µl : 0.008 N H2SO4 : 1 ml/menit : 35°C : 35°C : Refractive Index (RI) Pembuatan Kurva Standar Gula Reduksi Standar glukosa sebanyak 0,0250 gr ditimbang kemudian dilarutkan dengan fase gerak sebanyak 10 ml dengan labu takar. Larutan disaring dengan kertas membran millipore 0,45 µm. Larutan tersebut adalah larutan standar glukosa stok dengan konsentrasi 0,25 %. Dibuat pengenceran dari larutan stok dengan memipet 200 µl, 400 µl, 600µl, 800 µl dan melarutkan fase gerak sampai volume 1 ml. Larutan deret standar yang telah dibuat kemudian diinjek kedalam alat HPLC. Pembuatan Kurva Standar Asam Laktat Dipipet sebanyak 200 µl larutan standar asam laktat 10 % kemudian diencerkan dengan fase gerak sampai volume 10 ml. Larutan tersebut adalah larutan standar stok 0,2 %. Dibuat pengenceran dari larutan stok dengan memipet 200 µl, 400 µl, 600µl, 800 µl dan dIlarutkan fase gerak sampai volume 1 ml. Larutan deret standar yang telah dibuat kemudian diinjek kedalam alat HPLC. Preparasi Sampel Sampel disentrifugasi dengan kecepatan 400 rpm selama 15 menit kemudian supernatan disaring dengan kertas membran millipore 0,45 µm. Larutan sampel diencerkan sebanyak 10x dengan fase gerak. Larutan sampel kemudian diinjek kedalam alat HPLC. 107 Kurva standar HPLC analitik untuk penentuan konsentrasi Glukosa 800.000 700.000 Y = 288,9x - 4128 R² = 0,999 600.000 Luas Area 500.000 400.000 300.000 200.000 100.000 0 0 500 1.000 -100.000 1.500 2.000 2.500 3.000 Konsentrasi Standar Glukosa (ppm) Untuk menentukan konsentrasi asam laktat maka dihitung berdasarkan kurva standar yaitu dengan pendekatan persamaan regresi Y :288,9 x - 4128. Sebagai contoh perhitungan konsentrasi asam laktat pada fermentasi dengan menggunakan medium komplek skala pilot plan 75 L pada jam ke 18 berdasarkan gambar Kromatogram di bawah ini. 5 . 75.716 16 70.00 60.00 60.00 4 .0 8 5 30.00 8 .1 4 2 20.00 40.00 M V M V 40.00 5,741 5 .7 4 1 50.00 5 .1 1 1 10.00 0.00 9 .7 1 5 20.00 0.00 -20.00 1.00 2.00 3.00 4.00 5.00 6.00 Minutes 7.00 8.00 9.00 10.00 11.00 12.00 -10.00 -20.00 Name Standar glukosa 0,15% Migration Area Time 5.741 441.943 1.00 Name Sample Glukosa Jam ke 2.00 3.00 4.00 5.00 6.00 Minutes Migration Time 5.716 7.00 8.00 Area 541.790 9.00 10.00 11.00 Kons. (%) 1,89 Diperoleh retention time : 5.716 dan luas area : 541.790 sehingga diperoleh konsentrasi glukosa sebesar : 1,89 %. 12.00 108 Kurva standar HPLC analitik untuk penentuan konsentrasi Asam Laktat 400.000 350.000 Y = 187,6x + 12,18 R² = 0,999 300.000 Luas Area 250.000 200.000 150.000 100.000 50.000 0 0 500 1.000 1.500 2.000 2.500 Konsentrasi Standar Asam Laktat (ppm) Untuk menentukan konsentrasi asam laktat maka dihitung berdasarkan kurva standar yaitu dengan pendekatan persamaan regresi Y :187,6 x + 12,18. Sebagai contoh perhitungan konsentrasi asam laktat pada fermentasi dengan menggunakan medium komplek skala pilot plan 75 L pada jam ke 18 berdasarkan gambar Kromatogram di bawah ini. 70.00 60.00 60.00 4 .0 8 5 8 .8.142 142 7,815 40.00 30.00 M V 7 .8 1 5 10.00 0.00 9 .7 1 5 20.00 5 .1 1 1 M V 20.00 5 .7 1 6 50.00 40.00 0.00 -20.00 -10.00 1.00 2.00 3.00 Name Standar Asam laktat 0,08% 4.00 5.00 6.00 Minutes 7.00 Migration Time 7.815 8.00 9.00 10.00 11.00 Area 152497 12.00 -20.00 1.00 2.00 Name Asam laktat 3.00 4.00 5.00 6.00 Minutes 7.00 8.00 9.00 10.00 Migration Area Time 8.142 250819 11.00 Kons. (%) 1.34 Diperoleh retention time : 8,142 dan luas area : 250.819 sehingga diperoleh konsentrasi asam laktat sebesar : (Luas area – slope )/ (Intersep) x (faktor pengenceran) = 1,34 %. 12.00 109 Lampiran 4. Peremajaan dan pembuatan starter. Peremajaan galur Lactobacillus sp. dan L. bulgaricus FNCC41 (Fardiaz, 1989). Disiapkan kultur liofilisasi Lactobacillus sp. , Lactobacillus bulgaricus FNCC41 dan media MRS agar cawan dan miring steril. Kultur liofilisasi disegarkan pada MRS agar cawan dengan dilakukan pengenceran lebih dulu hingga 103. Dua pengenceran terakhir dispread pada permukaan agar cawan, kemudian diinkubasi 2 x 24 jam suhu 37 °C. Koloni tunggal yang tumbuh diremajakan kembali dengan mengambil 1 ose koloni dan digoreskan pada MRS agar miring secara strik. Kemudian diinkubasi pada suhu 37 °C selama 1 x 24 jam. Peremajaan dilakukan pada MRS Broth selama 1 x 24 jam suhu 37 °C, sebelum digunakan sebagai inokulum. Pembuatan starter Lactobacillus sp. (Modifikasi Sulandari, dkk, 2001). Susu segar steril sebanyak 50 ml ditambah laktosa monohydrat sebanyak 3% dari volume susu, dihomogenkan dan dipasteurisasi pada suhu 80 °C selama 5 menit. Kemudian didinginkan hingga suhu 37 - 40 °C dan diinokulasikan dengan Lactobacillus sp JR64 sebanyak 1% dari volume susu (atau 0,5 ml inokulum). Selanjutnya diinkubasikan pada suhu 37 ºC hingga pertumbuhan bakteri berada pada fase log (18 - 24 jam). Demikian juga untuk pembuatan stater Lactobacillus bulgaricus FNCC41. Lampiran 5. Prosedur analisis dan pengujian sample fermentasi Penghitungan jumlah sel bakteri secara SPC (Standar Plate Count) (Fardiaz, 1989) Diambil 0,1 ml sampel perlakuan dan dibuat seri pengenceran menggunakan eppendorf dengan penambahan air pepton 0,9 ml. Banyaknya pengenceran yang dilakukan disesuaikan dengan perkiraan jumlah sel yang mungkin tumbuh. Pengenceran terakhir diplating secara spread plate pada MRS agar, kemudian diinkubasikan pada suhu 37 °C selama 2 x 24 jam. Dihitung koloni yang tumbuh dengan colony counter dan data yang diperoleh dihitung secara SPC. 110 Pengukuran pH (Fardiaz, 1989) Kalibrasi pH Meter Elektroda dimasukkan ke dalam buffer pH 7, lalu ditekan tombol cal. Ditunggu hingga muncul ‘ready CFM’ pada layer pH meter. Lalu tekan tombol CFM, dilayar akan muncul pH 7. Kemudian elektroda dimasukan ke dalam buffer pH 4,02. Ditunggu hingga muncul ‘ready CFM’ pada layer pH meter. Lalu tekan tombol CFM, dilayar akan muncul pH 4,02. pH meter siap digunakan. Setelah dikalibrasi dengan larutan buffer standar, elektroda-elektroda harus dicuci bersih dengan akuades, kemudian bilas beberapa kali dengan larutan yang akan diperiksa sebelum pembacaan pH. Pengukuran pH Diambil sampel dari media fermentasi sebanyak 5 ml secara aseptis. pH meter digital dihidupkan, ujung elektroda dibersihkan dengan akuades dan dimasukan ke dalam sampel. Angka yang terbaca pada alat adalah besarnya pH yang terukur. Pengukuran kadar protein metode Kjeldahl Pembakuan HCl 0,05 Natrium karbonat (Na2CO3) anhidris yang telah dikeringkan pada 105 ºC, ditimbang sebanyak 0,200 g dan dimasukkan ke dalam labu ukur 100 ml, kemudian diencerkan dengan akuades sampai batas. Sebanyak 10 ml larutan dipipet dan dimasukkan ke dalam erlenmeyer, lalu ditambahkan 3 tetes indikator metilen merah, kemudian dititrasi dengan HCl 0,05 N sampai larutan menjadi kuning. Normalitas HCl dihitung dengan rumus: V1N1=V2N2 Penentuan kadar protein metode Kjeldahl Sampel ditimbang sebanyak 1 g dalam tabung destruksi, ditambahkan 1 butir selenium tablet sebagai katalis dan 10 ml H2SO4 pekat. Kemudian didestruksi selama 2 jam hingga sampel berwarna jernih. Selanjutnya didestilasi dan uapnya ditampung dalam erlenmeyer berisi 25 ml asam borat 4 %. Dilakukan titrasi dengan HCl 0,05 N (yang sudah dibakukan) hingga titik akhir (abu-abu). Dihitung ml HCl 0,05 N yang digunakan untuk titrasi dengan rumus : 111 Kadar N total = (Vs-Vb) x NHCl x14,01 x 100 % Berat contoh (mg) Vs = volume HCl yang digunakan pada titrasi sampel Vb = volume HCL yang digunakan pada titrasi blangko NHCl = normalitas HCl Kadar Protein total = N total x f f = faktor konversi untuk protein dari makanan (6,38) Lampiran 6. Pembuatan krem probiotik (Modifikasi Susilorini, 2006) Tahapan proses pembuatan krim probiotik meliputi tahapan formulasi bahan dan pencampuran. Formulasi bahan dilakukan dengan mencampurkan butter, icing sugar dan Yogurt probiotik dengan komposisi perlakuan seperti yang tertera pada Tabel berikut. Kemudian dilakukan pencampuran menggunakan mixer selama 10 menit. Untuk lebih jelasnya tahapan pembuatan krim dapat dilihat pada Gambar di bawah ini. Formula Krem A B C D E Kontrol cair Butter 10 20 30 40 50 0 Komposisi (gr) Icing sugar 20 20 20 20 20 0 Probiotik 15 15 15 15 15 15 Butter dan gula dicampur, lalu diaduk hingga rata. Kemudian dimasukkan kaldu fermentasi dan diaduk dengan menggunakan mixer hingga tercampur sempurna. Selanjutnya dihitung jumlah sel BAL pada hari ke-0, 7, 14, 21, 28. Kemudian diambil formulasi yang memiliki jumlah sel BAL paling banyak, selanjutnya dianalisis kadar asam laktat, gula reduksi, protein dan asam linoleat pada hari ke-0, 7, 21, 14, 28. 112 Butter, icing sugar Butter, icing sugar Probiotik Pencampuran dg mixer, 10 mnt Krem probiotik Uji viabilitas Penyimpanan Suhu refrigerator Krem probiotik Uji viabilitas Lampiran 7. Pengujian asimilasi kolesterol Uji asimilasi kolesterol menggunakan prosedur seperti yang dilakukan Usman dan Hosono (1999). Pada prosedur tersebut konsentrasi kolesterol ditentukan dengan menggunakan reagen 0-Ftalaldehida (0,5 mg 0-ftalaldehida tiap ml asam asetat glasial). Untuk uji kemampuan mangasimilasi kolesterol, MRSB yang mengandung 2% natrium tioglikolat, 0,3% oxgal dan kolesterol murni sebanyak 0,1% (b/v) dilakukan sterilisasi 121oC 15 menit. Sebanyak 10 ml campuran tersebut diinokulasi dengan 100 µl sampel broth fermentasi dari galur Lactobacillus sp JR64, sedangkan untuk kontrol tidak dilakukan inokulasi dengan broth fermentasi kemudian dilakukan inkubasi pada suhu 37oC selama 20 jam. Selanjutnya sel dipisahkan dari larutan dengan sentrifugasi selama 10 menit pada 12.000 g, suhu 4oC. Konsentrasi kolesterol supernatan diukur dengan metode OF (0-Ftalaldehida) sebagai berikut. Supernatan sebanyak 0,5 ml diletakkan dalam tabung reaksi (dibuat duplo untuk masing-masing sampel). Selanjutnya ke dalam tabung tersebut ditambahkan 3 ml etanol 95%, dikocok ditambah 2 ml KOH 50% dan dikocok kembali. Tabung dipanaskan di atas pemanas air bersuhu 60% selama 10 menit, dibiarkan sampai suhu kamar dan ditambah 5 ml heksan. Setelah penambahan heksan tabung divortex selama 20 detik, selanjutnya ditambah dengan 3 ml akuades dan kembali dikocok. Tabung dibiarkan selama 15 menit pada suhu kamar supaya terjadi pemisahan. 113 Lapisan heksan sebanyak 2,5 ml yang terpisah dipindahkan ke dalam tabung reaksi lain, kemudian dilakukan evaporasi ke dalam masing-masing tabung ditambahkan 4 ml reagen 0-Ftalaldehida. Tabung dibiarkan 10 menit pada suhu kamar kemudian ditambah 2 ml asam sulfat pekat (dipipet secara perlahan). Selanjutnya isi tabung dikocok segera menggunakan vortex dan dibiarkan kembali selama 10 menit pada suhu kamar. Setelah itu larutan dibaca absorbansinya menggunakan spektrofotometer pada panjang gelombang 550 nm menggunakan reagen sebagai blanko. Kurva standar dibuat dengan prosedur yang sama tetapi sampel digantikan dengan kolesterol (standar 99% untuk kromatografi, Sigma). Konsentrasi kolesterol untuk kurva standar adalah 0, 10, 20, 30, 40, dan 50. Selisih konsentrasi kolesterol yang terdeteksi pada sampel broth fermentasi dengan kontrol dinyatakan sebagai kolesterol yang diasimilasi oleh asam laktat dalam µ/ml. Lampiran 8. Berbagai perlakuan terhadap hewan coba tikus putih Penyiapan asupan konsentrasi sel dan kaldu fermentasi Penyiapan konsentrasi sel dilakukan dengan cara sentrifugasi broth fermentasi pada 7000 rpm selama 10 menit pada suhu 4°C. Supernatan dibuang, sel dicuci dengan larutan Bufer Fosfat pH 7, kemudian disentrifugasi sekali lagi dan dicuci lagi dengan larutan Bufer Fosfat. Selanjutnya ke dalam endapan sel ditambahkan susu skim 10% (10 ml susu skim 10% untuk setiap endapan sel yang dihasilkan dari 1.000 ml media kultivasi) dan dikocok hingga homogen. Mengingat probiotik harus dikonsumsi dalam keadaan hidup, maka kondisi penyimpanan krem biskuit probiotik perlu mendapat perhatian untuk mempertahankan viabilitasnya. Untuk asupan kaldu, broth hasil fermentasi hanya ditambahkan bubuk susu skim agar menjadi padat. 114 Asupan Perlakuan Kelompok Tikus Kelompok Taraf Perlakuan Perlakuan A B Lima ekor diberi pakan standar sebanyak 20 g/hari dan dicekok akuades 60 mg/kg BB/hari (rata-rata 2 ml). Lima ekor diberi pakan kolesterol sebanyak 20 g/hari dan dicekok PTU (propil tiourasil) 60 mg/kg BB/hari dalam larutan CMCNa 0,5 %. Lima ekor dengan diberi pakan kolesterol 20 g/hari, dicekok PTU 60 C mg/kg BB/hari dalam larutan CMCNa 0,5 % dan sampel broth probiotik Lactobacillus sp. 108 CFU. Lima ekor dengan diberi pakan kolesterol 20 g/hari, dicekok PTU 60 D mg/kg BB/hari dalam larutan CMC Na 0,5 % sampel broth probiotik Lactobacillus bulgaricus FNCC41 108 CFU. Lima ekor dengan diberi pakan kolesterol 20 g/hari, dicekok PTU 60 E mg/kg BB/hari dalam larutan CMCNa 0,5 % dan sampel sel Lactobacillus sp. 108 CFU. Lima ekor dengan diberi pakan kolesterol 20 g/hari, dicekok PTU 60 F mg/kg BB/hari dalam larutan CMC Na 0,5 % sampel sel Lactobacillus bulgaricus FNCC41 108 CFU. Lampiran 9. Metoda pengukuran kadar kolesterol total, trigliserida, HDL dan LDL Metode pengukuran kolesterol dan trigliserida dianalisis dengan metode CHODPAP (Cholesterol Oxydase Phenol Amino Phenazon). Dipipet ke kuvet Sampel/standar Air Destilata Reagen Blanko 10 µl 1000 μl sampel/standar 10 µl 1000 µl Blanko atau sampel dicampur diinkubasi selama 20 menit pada suhu ruang, lakukan pengukuran absorbannya pada panjang gelombang 546 nm. 115 Pengukuran trigliserida menggunakan metode GPO (Glycerol Phosphat Oxydase). Kadar High Density Lipoprotein (HDL) Kolesterol ditentukan dengan prinsip pengendapan lipoprotein yang berdensitas rendah. Sebanyak 200 µl sampel/standard ditambahkan pada 500 µl larutan pengendap (Posphotungstic acid dan Magnesium chloride) kemudian didiamkan selama 15 menit lalu disentrifuse dengan kecepatan 2500 rpm selama 20 menit pada suhu ruang. Sebanyak 0,1 ml supernatan (filtrat HDL) diambil kemudian ditambah 1000 µl reagen kolesterol, dicampur, didiamkan 15 menit pada suhu ruang kemudian diukur absorbannya dengan spektrofotometer pada panjang gelombang 546 nm. Berdasarkan prosedur Randox kadar LDL dihitung berdasarkan rumus : LDL = Kolesterol total – Trigliserida - HDL 5 Analisa proksimat penentuan kadar lemak dalam feses Analisa proksimat dilakukan untuk mengetahui lemak yang diabsorpsi dan diekskresikan melalui feses. Feses tikus diambil setelah 35 hari perlakuan dan dikeringkan dalam oven ± 400 C, kemudian setelah kering digerus dan dilakukan analisis serta dihitung berdasarkan rumus: Kadar lemak pakan kolesterol - kadar lemak pada feses Membersihkan labu penyari dan mengeringkan dalam oven selama 1 jam pada suhu 100° C - 105°C, kemudian didinginkan dalam eksikator selama 20 menit, selanjutnya ditimbang (a = gram). Mengeringkan sampel dalam oven 40° C, digerus dan ditimbang = X (gram). Menyiapkan selongsong yang dibuat dari kertas saring, pada bagian bawahnya ditutup dengan kapas yang tidak berlemak. Sampel dimasukkan dalam tabung ekstraksi soxhlet dan diberi pemberat, lalu dipasang labu penyari di bawahnya. Ke dalam tabung ekstraksi dimasukkan solven petrolium benzen secukupnya, dipasang pada alat destilasi soxhlet. Kemudian air pendingin dialirkan dan dipanaskan pada suhu 60°C di atas penangas air selama 4 jam. Setelah penyarian selesai dilakukan destilasi untuk mengeluarkan pelarut agar terpisah dari lemak, di atas penangas pada suhu 100°C. Labu penyari yang berisi lemak dikeringkan dalam oven pada suhu 100°C - 105°C selama 1 jam . Kemudian didinginkan dalam eksikator selama 20 menit dan ditimbang sampai berat konstan (b= gram). 116 Lampiran 10. Hasil Pengujian kemampuan tumbuh Lactobacillus sp. pada berbagai konsentrasi garam empedu. Isolat Starter Konsentrasi Garam Empedu 0,50% 1% 5% 10% 8,1 4,2 3,1 2,2 1,2 6,9 6,1 5,8 3,6 1,3 JR64 8,9 7,1 6,1 4,0 3,1 JR19 9,1 6,0 5,8 3,1 1,4 9,2 6,1 5,3 2,8 1,4 9,0 7,2 6,2 5,9 3,8 JR17 JR10 JR92 FNCC41 Lampiran 11. Hasil Pengujian kemampuan tumbuh Lactobacillus sp. pada pH Rendah No Sumber Kode Sarter isolat 1 2 3 Kemampuan tumbuh pada pH rendah pH 3,5 pH 3,0 pH 2,5 pH 2,0 Buah JR17 Mengkudu JR10 Matang Badeg JR64 1,26 x 108 2,47 x 104 1,11 x 103 1,68 x 102 3,50 x 101 7,60 x 106 2,18 x 106 9,80 x 104 4,80 x 103 7,50 x 101 8,00 x 108 2,80 x 107 2,20 x 106 1,10 x 105 1,80 x 103 Pace JR19 1,32 x 109 1,08 x 107 8,00 x 106 1,20 x 103 4,60 x 101 JR92 1,76 x 109 7,20 x 106 1,92 x 106 6,00 x 102 5,50 x 101 9,50 x 108 1,30 x 107 1,70 x 106 8,00 x 105 9,80 x 103 Kontrol Lampiran 12. Hasil penentuan urutan basa (sekuensing) fragmen 16S rDNA dan kedekatan (homology) isolat genus Lactobacillus sp. JR64 yang dibandingkan dengan gen spesies lainnya. GCTCCGTAGAATATCCGGCCAATACACATCTTGGACTGCATGGTCCGAGCTGAGAAGTTGCCTCGCTTATTC CACTTTGAATGGTCCCGCGGCGTATTAGTCTAGATGTGGGTAACGGCTCACCATGGCAATGATACGTAGCCG ACCTGAGAGGGTAATCGGCCCACCATTGGGACTGAGACACGGCCCAAACTCCTTACCGGGAGGCCAGCAGT AGGGAATTCTTCCACAATGGACGAAAGTCTGATGGAGCCACGCCCGCGTGAGTGAAGAAGGGTTTGGCCTC GTAAAACTTCTGTTGTAAAGAAGAACCATATTTGAGGAGTAACTGTTCAGGTATGGCCGGTATTTACCAGAA AGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGGGCAAGCGTTGTCCGGATTTATTGGGC GTAAAGCGAGCGCAGGCGGTTTTTTAAGTCTGATGTGAAAGCCTTGGGCTCAACCGAAGAAGTGCATCGGA AACTGGGAAACTTGAGTGCAGAAGAGGACAGTGGAACTCCATGTGTAGCGGTGAAATGCGTAGATATATGG AAGAACACCAGTGGCGAAGGCGGCTGTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGTATGGGTAGCAAA CAGGATTAGATACCCTGGTAGTCCATACCGTAAACGATGAATGCTAAGTGTTGGAGGGTTTCCGCCCTTCAG TGCTGCAGCTAACGCATTAAGCATTCCGCCTGGGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGAC GGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCTACGCGAAGAACCTTACCAGGTCTTGAC ATACTATGCAAATCTAAGAGATTAGACGTTCCCTTCGGGGACATGGATACAGGTGGTGCATGGTTTCGTCAG CTTTCGTGGTCTCCCAACGTTA 117 Lampiran 13. Hasil BLAST Urutan Fragmen 16S rDNA isolat Lactobacillus sp JR64 terhadap data base 16S rDNA Keterangan : • Accesion No • Max score • Total Score : Nomor urut : Nilai kesamaan (identik) pasang basa : Nilai keseluruhan pasang basa • • • Query coverage E value Max Identify : : : Persentase keseluruhan analisis Persentase kesalahan dalam proses Persentase keakuratan proses identifikasi 118 Lampiran 14. Lactobacillus plantarum strain UK-3 16S ribosomal RNA gene, partial sequence. GenBank: JF266589.1 LOCUS JF266589 1017 bp DNA linear BCT 22-MAR-2011 DEFINITION Lactobacillus plantarum strain UK-3 16S ribosomal RNA gene, partial sequence. ACCESSION JF266589 VERSION JF266589.1 GI:326378236 KEYWORDS . SOURCE Lactobacillus plantarum ORGANISM Lactobacillus plantarum Bacteria; Firmicutes; Lactobacillales; Lactobacillaceae; Lactobacillus. REFERENCE 1 (bases 1 to 1017) AUTHORS Oh,K.H. and Um,S.J. TITLE Antibacterial Effects of Lactobacillus plantarum UK-3 Isolated from Female Genitalia JOURNAL Unpublished REFERENCE 2 (bases 1 to 1017) AUTHORS Oh,K.H. and Um,S.J. TITLE Direct Submission JOURNAL Submitted (26-JAN-2011) Biotechnology, Korea Soonchunhyang University, Sinchang-Myeon, Asan-Si, Chungcheongnam-Do, Chungnam 336-745, Korea FEATURES Location/Qualifiers source 1..1017 /organism="Lactobacillus plantarum" /mol_type="genomic DNA" /strain="UK-3" /isolation_source="female genitalia" /db_xref="taxon:1590" /note="PCR_primers=fwd_name: 8F, rev_name: 1492R" <1..>1017 rRNA /product="16S ribosomal RNA" ORIGIN 1 tatctgagag taactgttca ggtatgacgg tatttaacca gaaagcacgg ctaactacgt 61 gccagcagcc gcggtaatac gtaggtggca agcgtgtccg gatttattgg gcgtaaagcg 121 agcgcaggcg gttttttaag tctgatgtga aagccttcgg ctcaaccgaa gaagtgcatc 181 ggaaactggg aaacttgagt gcagaagagg acagtggaac tccatgtgta gcggtgaaat 241 gcgtagatat atggaagaac accagtggcg aaggcggctg tctggtctgt aactgacgct 301 gaggctcgaa agtatgggta gcaaacagga ttagataccc tggtagtcca taccgtaaac 361 gatgaatgct aagtgttgga gggtttccgc ccttcagtgc tgcagctaac gcattaagca 421 ttccgcctgg ggagtacggc cgcaaggctg aaactcaaag gaattgacgg gggcccgcac 481 aagcggtgga gcatgtggtt taattcgaag ctacgcgaag aaccttacca ggtcttgaca 541 tactatgcaa atctaagaga ttagacgttc ccttcgggga catggataca ggtggtgcat 601 ggttgtcgtc agctcgtgtc gtgagatgtt gggttaagtc ccgcaacgag cgcaaccctt 661 attatcagtt gccagcatta agttgggcac tctggtgaga ctgccggtga caaaccggag 721 gaaggtgggg atgacgtcaa atcatcatgc cccttatgac ctgggctaca cacgtgctac 781 aatggatggt acaacgagtt gcgaactcgc gagagtaagc taatctctta aagccattct 841 cagttcggat tgtaggctgc aactcgccta catgaagtcg gaatcgctag taatcgcgga 901 tcagcatgcc gcggtgaata cgttcccggg ccttgtacac accgcccgtc acaccatgag 961 agtttgtaac acccaaagtc ggtggggtaa ccttttagga accagccgcc taagtga 119 Lampiran 15. Kurva hubungan berat sel kering dengan jumlah sel (log cfu/ml) pada fermentasi skala laboratorium. 18 Jumlah Sel (Log cfu/ml) 15 12 9 Y20 = 3,707x + 5,157 R² = 0,898 6 Y30 = 3,530x + 4,300 R² = 0,866 3 Y40 = 3,050x + 5,292 R² = 0,893 0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 Berat Sel Kering (gr) Lampiran 16. Kurva hubungan berat sel kering dengan jumlah sel (Log cfu/ml) pada fermentasi skala pilot plan 75 L pada substrat glukosa 20 g/l. 18 Jumlah Sel (Log cfu/ml) 15 y = 3,583x + 5,280 R² = 0,896 12 9 6 3 0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 Berat Sel Kering (gram) 120 Lampiran 17. Data hasil pengukuran berat badan tikus Kontrol Positif Kontrol Negatif Kelompok 0 7 14 21 28 A1 257,2 241,0 236,0 233,6 238,6 231,2 A2 254,0 235,2 233,2 232,8 248,2 239,6 A3 247,8 226,2 225,8 223,6 237,4 229,6 A4 248,2 220,0 222,6 220,6 237,0 229,0 A5 257,0 239,0 231,6 229,2 234,6 227,4 252,8 232,3 229,8 228,0 239,2 231,4 B1 261,0 234,8 231,8 230,2 234,6 224,4 B2 262,2 249,8 249,4 255,4 260,8 245,0 B3 261,4 227,4 214,2 218,4 223,6 206,8 B4 264,4 240,6 231,8 229,0 231,4 220,8 B5 250,4 222,6 222,8 219,0 271,4 202,6 259,9 235,0 230,0 230,4 244,4 219,9 C1 272,8 250,2 244,5 237,5 240,1 228,0 C2 233,1 220,2 206,5 202,0 206,3 194,0 C3 263,1 196,5 226,0 223,5 228,5 220,4 C4 282,5 243,0 241,0 235,5 230,1 223,8 C5 252,8 231,2 221,6 218,0 219,2 216,2 260,9 228,2 227,9 223,3 224,8 216,5 D1 252,8 231,2 221,6 218,0 219,2 216,2 D2 238,6 225,0 205,6 207,0 187,2 180,4 D3 241,2 230,8 216,8 216,8 192,4 192,2 D4 235,2 215,0 207,4 208,2 195,8 190,8 D5 262,2 245,4 231,6 234,4 220,0 216,0 Rata-rata 246,0 229,5 216,6 216,9 202,9 199,1 E1 273,0 250,0 244,6 237,6 240,2 227,8 E2 233,0 220,8 206,6 202,0 206,4 193,8 E3 263,2 196,6 225,6 223,0 228,8 212,4 E4 282,8 242,8 240,8 235,6 230,0 223,8 BrothL. plantarum JR64 BrothL. Bulgaricus FNCC41 Rata-rata SelL. plantarum JR64 35 Rata-rata Rata-rata SelL. Bulgaricus FNCC41 Hari ke- Ulangan E5 297,2 256,8 241,6 245,0 230,6 230,2 Rata-rata 269,8 233,4 231,8 228,6 227,2 217,6 F1 297,2 256,8 241,6 245,0 230,6 216,4 F2 238,6 225,0 205,6 207,0 187,2 184,4 F3 241,2 230,8 216,8 216,8 192,4 216,0 F4 235,2 215,0 207,4 208,2 195,8 199,6 F5 262,2 245,4 231,6 234,4 220,0 200,4 Rata-rata 254,9 234,6 220,6 222,3 205,2 203,4 121 Lampiran 18. Data hasil pengukuran konsumsi pakan Kontrol Positif Kontrol Negatif Kelompok 0 7 14 21 28 35 A1 19,00 18,17 19,00 18,16 18,96 18,20 A2 15,97 17,68 19,08 19,18 19,88 19,40 A3 18,23 17,71 19,00 18,17 19,64 19,22 A4 14,00 17,28 19,06 20,00 18,84 18,44 A5 19,20 16,54 19,04 19,08 17,98 20,00 Rata-rata 17,28 17,48 19,04 18,92 19,06 19,05 B1 9,34 13,43 13,86 11,11 12,40 11,86 B2 8,03 12,17 18,28 12,17 10,17 14,17 B3 7,37 10,17 14,97 10,40 12,57 12,88 B4 9,77 10,77 14,28 10,46 11,54 14,91 B5 8,74 13,80 12,57 9,74 12,34 12,77 8,65 12,07 14,79 10,78 11,80 13,32 C1 11,20 11,36 13,34 10,91 11,82 13,51 C2 11,68 7,44 11,83 9,66 11,74 12,88 C3 6,11 10,00 13,63 10,46 12,71 12,22 C4 7,46 7,24 11,40 10,23 13,68 14,17 C5 11,08 8,88 13,82 12,28 14,34 13,08 9,51 8,98 12,80 10,71 12,86 13,17 D1 14,88 19,47 12,11 12,71 14,54 14,68 D2 13,05 16,14 11,74 12,71 11,74 13,20 D3 11,74 13,74 10,34 12,84 9,68 12,84 D4 10,88 16,31 11,00 17,04 11,54 17,04 D5 11,54 16,43 13,08 13,68 12,65 13,68 Rata-rata 12,42 16,42 11,65 13,80 12,03 14,29 E1 11,60 13,31 11,37 15,11 11,82 13,51 E2 14,34 15,02 8,68 11,74 11,74 12,88 E3 10,17 14,60 15,28 13,91 12,71 12,22 E4 15,17 13,82 14,65 14,62 13,68 14,17 BrothL. plantarum JR64 Rata-rata SelL. plantarum JR64 BrothL. Bulgaricus FNCC41 Rata-rata SelL. Bulgaricus FNCC41 Hari ke- Ulangan E5 12,25 11,68 11,34 13,45 14,34 13,08 Rata-rata 12,71 13,69 12,26 13,77 12,86 13,17 F1 12,51 12,94 12,11 12,71 14,54 15,11 F2 12,22 13,81 11,74 12,71 11,74 11,74 F3 9,85 12,57 10,34 12,84 9,68 13,91 F4 11,45 12,17 11,00 17,04 11,54 14,62 F5 13,11 14,17 13,08 13,68 12,65 13,45 Rata-rata 11,83 13,13 11,65 13,80 12,03 13,77 122 Lampiran 19. Data hasil pengukuran kolesterol total serum darah tikus Kontrol Negatif Kelompok Ulangan Kontrol Positif 21 28 35 72,65 69,15 69,15 69,42 A2 64,24 87,89 85,08 76,67 71,93 73,27 A3 69,09 76,32 78,31 76,42 75,18 76,23 A4 78,49 70,18 68,71 66,91 68,67 75,07 68,79 69,46 67,02 74,67 65,76 73,40 71,40 72,11 75,44 72,13 74,04 74,25 B1 64,85 69,75 89,47 66,10 82,46 96,80 B2 73,25 82,56 81,93 82,03 84,21 97,77 B3 89,39 81,85 75,44 94,07 86,32 95,24 B4 83,03 92,53 82,03 86,10 90,18 96,50 B5 BrothL. plantarum JR64 14 71,93 Rata-rata 73,64 76,83 97,58 84,85 87,19 83,21 93,73 84,41 95,44 87,72 96,50 96,56 80,12 C1 84,75 99,57 96,49 91,65 76,12 C2 90,68 98,19 92,63 97,48 71,17 85,09 C3 68,79 71,10 72,52 67,02 75,76 74,40 C4 95,44 96,67 99,42 98,86 93,22 74,70 C5 64,85 66,10 82,46 96,80 85,96 82,46 Rata-rata BrothL. Bulgaricus FNCC41 7 66,67 A5 Sel L. plantarum JR64 0 A1 Rata-rata Sel L. Bulgaricus FNCC41 Hari ke- 80,90 86,33 88,70 90,36 80,45 79,35 D1 69,53 95,65 93,08 76,67 69,35 69,15 D2 74,68 98,55 92,52 95,76 81,31 85,08 D3 88,67 90,82 99,63 94,95 84,74 78,31 D4 87,54 92,37 94,95 84,69 84,95 68,71 D5 96,95 94,06 86,58 84,69 82,35 65,76 Rata-rata 83,47 94,29 93,35 87,35 80,54 73,40 E1 75,30 88,90 116,50 98,77 86,32 82,51 E2 83,33 105,42 121,36 101,75 95,96 88,30 E3 87,58 99,57 112,62 103,25 86,84 77,89 E4 88,30 99,62 106,80 99,25 87,72 87,89 E5 84,85 98,29 119,42 112,81 102,26 98,93 Rata-rata 83,87 98,36 115,34 103,17 91,82 87,10 F1 74,85 118,15 90,29 85,09 73,68 71,06 F2 69,70 79,72 119,42 97,37 86,84 85,20 F3 70,91 87,54 125,24 101,75 98,25 93,27 F4 83,64 105,34 133,98 114,04 109,65 107,62 F5 73,64 78,29 122,33 105,26 100,88 101,35 Rata-rata 74,55 93,81 118,25 100,70 93,86 91,70 123 Lampiran 20. Data hasil pengukuran Trigliserida serum darah tikus Kontrol Negatif Kelompok Ulangan Kontrol Positif BrothL. plantarum JR64 21 28 35 48,46 67,47 44,92 58,88 42,17 A2 71,25 48,85 68,81 40,39 40,61 39,17 A3 76,25 50,00 74,69 61,45 42,64 42,17 A4 74,25 40,39 60,23 46,99 35,53 34,94 78,75 75,10 43,27 46,19 45,75 63,39 48,19 48,39 42,64 44,06 49,88 41,67 B1 85,00 83,65 74,07 68,46 71,08 69,16 B2 84,35 77,89 68,42 63,65 65,75 62,17 B3 73,75 71,15 64,41 57,69 59,27 70,72 B4 81,25 79,00 66,16 63,27 62,51 62,65 B5 72,50 69,62 70,06 67,69 68,10 69,88 Rata-rata 79,37 76,26 68,62 64,15 65,34 66,92 C1 28,92 33,87 30,51 30,77 46,15 33,52 C2 30,17 43,27 67,80 35,17 54,81 38,55 C3 58,75 48,46 46,05 43,27 35,75 48,19 C4 46,93 78,85 55,37 46,93 26,51 47,50 C5 Rata-rata BrothL. Bulgaricus FNCC41 14 75,00 A5 Sel L. plantarum JR64 7 A1 Rata-rata 85,00 49,95 48,46 50,58 71,08 54,16 49,16 41,06 65,92 45,83 62,94 46,14 D1 68,96 51,06 51,25 54,55 47,62 67,47 D2 48,27 32,62 43,75 38,79 48,28 68,81 D3 102,07 58,16 47,50 31,52 52,41 74,69 D4 68,96 73,76 51,25 43,64 56,55 60,23 D5 59,31 63,83 50,00 38,79 55,17 45,75 Rata-rata 69,51 55,89 48,75 41,46 52,01 63,39 E1 82,50 76,93 61,81 38,55 36,87 35,53 E2 87,50 83,65 57,63 34,94 40,22 30,46 E3 93,75 50,04 58,76 55,42 43,58 40,61 E4 88,24 69,04 63,28 32,53 44,69 35,53 E5 78,75 45,35 52,94 62,65 35,75 45,69 Rata-rata Sel L. Bulgaricus FNCC41 Hari ke0 86,15 65,00 58,88 44,82 40,22 37,56 35,53 F1 62,50 68,31 45,81 27,71 46,93 F2 58,75 70,19 56,50 57,83 35,75 F3 50,00 83,66 75,88 56,63 58,10 F4 61,25 57,69 63,28 33,73 72,63 49,75 F5 57,50 55,77 61,02 51,81 33,52 38,58 Rata-rata 58,00 67,12 60,50 45,54 49,39 33,50 50,76 41,62 124 Lampiran 21. Data hasil pengukuran HDL serum darah tikus Kontrol Negatif Kelompok Ulangan Kontrol Positif 21 28 35 48,09 52,80 55,88 55,01 A2 45,63 41,70 47,56 55,13 56,66 57,57 A3 45,37 46,13 43,72 50,19 52,57 54,12 A4 43,73 45,87 53,75 52,74 54,74 54,28 44,49 45,35 50,17 46,20 50,10 48,64 51,33 52,44 53,12 54,59 57,92 55,78 B1 42,97 46,56 45,09 49,89 49,02 48,44 B2 53,99 44,55 52,57 49,35 47,60 42,74 B3 57,79 52,36 55,98 64,08 49,62 54,14 B4 56,27 36,36 40,84 43,10 46,50 49,20 B5 BrothL. plantarum JR64 14 47,11 Rata-rata 41,06 50,42 52,00 46,37 41,23 47,14 59,76 53,24 48,32 48,21 49,85 48,87 C1 64,48 52,79 21,72 34,39 53,27 57,79 C2 68,12 46,27 27,96 28,93 54,55 74,52 C3 44,49 54,55 47,18 50,17 56,10 51,33 C4 79,78 60,56 25,27 26,29 62,36 57,45 C5 Rata-rata BrothL. Bulgaricus FNCC41 7 47,53 A5 Sel L. plantarum JR64 0 A1 Rata-rata 42,97 59,97 49,89 52,81 55,02 35,43 61,44 40,24 67,76 58,81 67,44 61,71 D1 42,97 50,77 63,50 59,03 59,27 48,09 D2 53,99 44,89 52,09 44,79 58,55 47,56 D3 57,79 50,46 56,27 44,44 52,73 43,72 D4 56,27 49,85 64,64 55,56 61,82 53,75 D5 41,06 42,41 47,53 55,90 59,64 50,10 Rata-rata 50,42 47,68 56,81 51,94 58,40 48,64 E1 39,92 47,40 50,18 63,02 52,95 65,61 E2 47,53 42,79 74,91 60,97 62,25 63,58 E3 51,71 38,53 72,36 68,49 67,12 71,68 E4 68,44 36,76 62,18 57,92 52,53 53,95 E5 46,01 38,67 69,82 76,14 55,59 75,15 Rata-rata Sel L. Bulgaricus FNCC41 Hari ke- 50,72 40,83 65,89 65,31 58,09 65,99 F1 44,87 46,20 78,36 59,02 60,89 62,86 F2 46,39 40,82 59,64 56,83 56,65 64,76 F3 39,16 51,96 71,64 55,01 57,80 67,54 F4 68,06 49,56 60,34 58,67 75,14 65,87 F5 60,08 40,51 59,27 60,15 59,64 62,95 Rata-rata 51,71 45,81 65,85 57,94 62,02 64,80 125 Lampiran 22. Data hasil pengukuran LDL serum darah tikus Kelompok Hari ke- Ulangan Kontrol Negatif 0 Kontrol Positif BrothL. plantarum JR64 28 35 19,21 15,13 7,57 17,37 11,76 A2 14,36 26,42 23,76 13,46 17,15 17,87 A3 8,47 20,19 19,65 13,94 14,08 13,68 A4 19,91 16,23 2,91 14,77 16,82 13,80 A5 8,55 8,20 6,51 10,43 10,79 6,14 13,09 17,23 12,08 13,99 14,12 14,14 B1 4,88 6,47 29,57 2,52 19,22 34,52 B2 2,39 22,43 15,68 19,96 23,46 42,59 B3 16,85 15,26 6,58 18,45 24,84 26,95 B4 10,51 40,37 27,95 30,35 31,17 34,77 B5 18,07 10,54 31,66 23,24 31,95 22,35 20,43 18,34 33,49 26,44 32,68 34,30 C1 14,48 40,01 63,83 55,95 13,62 15,63 C2 16,53 43,26 55,96 56,67 5,66 2,86 C3 12,55 6,86 16,14 8,20 12,51 13,43 C4 6,27 20,34 62,52 63,74 25,56 7,75 C5 14,88 6,52 13,22 25,53 15,02 12,43 Rata-rata BrothL. Bulgaricus FNCC41 21 14,14 Rata-rata 12,94 23,40 42,33 42,02 14,47 10,42 5,46 34,67 2,92 23,14 9,80 7,57 7,59 47,14 34,92 39,98 13,10 13,76 16,80 0,00 29,18 48,88 21,52 19,65 12,05 27,77 9,80 30,67 11,82 7,91 D5 12,46 38,88 27,16 22,92 11,67 11,51 Rata-rata 10,87 29,69 20,80 33,12 13,58 12,08 18,88 26,11 53,96 28,04 26,00 9,79 18,30 45,90 34,92 33,79 25,67 18,63 17,12 51,03 28,51 23,68 11,00 11,91 12,21 49,05 31,96 34,82 26,25 26,83 13,09 50,55 39,01 24,14 39,52 14,64 15,92 44,53 37,67 28,89 25,69 16,36 D1 D2 D3 D4 E1 Sel L.plantarum JR64 14 A1 Rata-rata E2 E3 E4 E5 Rata-rata Sel L. Bulgaricus FNCC41 7 F1 17,48 58,29 32,77 30,53 23,40 21,09 F2 11,56 24,86 48,48 28,97 23,04 13,74 F3 21,75 18,85 38,42 35,41 28,83 15,58 F4 13,33 44,24 50,98 48,62 19,98 31,80 F5 12,06 26,63 50,86 34,75 34,54 30,68 Rata-rata 15,24 34,57 44,30 35,66 25,96 22,58 126 Lampiran 23 : Rancangan peralatan produksi probiotik Lactobacillus plantarum JR64 penghasil omega-6 dan penurun kolesterol. Inokulasi (3% Volume Kerja Bioreaktor Slant MRS Agar Unit Pekerjaan Lab Persediaan Bahan Baku MRS Broth 37oC 24 jam Tank Starter Inokulasi (5% Volume Kerja Bioreaktor 37oC 24 jam Bahan Baku Tertimbang Packing & Gudang Bioreaktor 37oC 100 rpm 48 jam Pemanenan & Formulasi 127 Lampiran 24. Keluaran sistem simulasi analisis kelayakan investasi probiotik dan omega 6 pada kondisi awal. SISTEM SIMULASI ANALISIS KELAYAKAN INVESTASI PROBIOTIK & OMEGA-6 Ketik INPUT Black Box Variabel Harga Bahan Baku Utama MRSA MRS Broth Laktosa Monohidrat Jagung Mengkudu Susu Segar Butter Gula Harga Probiotik Basis Volume Kerja Hari Operasi 1.300.000 1.350.000 2.200.000 1.000 300 4.000 15.000 6.000 Harga Produk Probiotik 13.000 2.500 300 Kg Kg Kg Kg Kg Kg Kg Kg Kg Kg/Batch Hari/Tahun Silahkan Ketik Angkanya PARAMETER KEUANGAN INDUSTRI PROBIOTIK OUTPUT Investasi 7.640.244.620 IDR HPP 11.420 IDR/Kg NPV 1.666.053.869 IDR IRR 20,74% B/C Ratio 1,22 Payback Period 4,44 Tahun Produk 5377,50 Kg/Batch 128 Lampiran 25. Keluaran sistem simulasi analisis kelayakan investasi probiotik dan omega 6 pada kondisi terjadi kenaikan harga jagung dan mengkudu 100 %. SISTEM SIMULASI ANALISIS KELAYAKAN INVESTASI PROBIOTIK & OMEGA-6 Ketik INPUT Black Box Variabel Harga Bahan Baku Utama MRSA MRS Broth Laktosa Monohidrat Jagung Mengkudu Susu Segar Butter Gula Harga Probiotik Basis Volume Kerja Hari Operasi 1.300.000 1.350.000 2.200.000 2.000 600 4.000 15.000 6.000 Harga Produk Probiotik 14.000 2.500 300 Kg Kg Kg Kg Kg Kg Kg Kg Kg Kg/Batch Hari/Tahun Silahkan Ketik Angkanya PARAMETER KEUANGAN INDUSTRI PROBIOTIK OUTPUT Investasi 7.640.244.620 IDR HPP 12.205 IDR/Kg NPV 2.948.487.338 IDR IRR 24,82% B/C Ratio 1,39 Payback Period 3,84 Tahun Produk 5377,50 Kg/Batch 129 Lampiran 26. Keluaran sistem simulasi analisis kelayakan investasi probiotik dan omega 6 pada kondisi penurunan produksi 30 persen SISTEM SIMULASI ANALISIS KELAYAKAN INVESTASI PROBIOTIK & OMEGA-6 Ketik INPUT Black Box Variabel Harga Bahan Baku Utama MRSA MRS Broth Laktosa Monohidrat Jagung Mengkudu Susu Segar Butter Gula Harga Probiotik Basis Volume Kerja Hari Operasi 1.300.000 1.350.000 2.200.000 1.000 300 4.000 15.000 6.000 Harga Produk Probiotik 14.000 2.000 300 Kg Kg Kg Kg Kg Kg Kg Kg Kg Kg/Batch Hari/Tahun Silahkan Ketik Angkanya PARAMETER KEUANGAN INDUSTRI PROBIOTIK OUTPUT Investasi 6.148.363.694 IDR HPP 11.804 IDR/Kg NPV 4.329.915.285 IDR IRR 32,00% B/C Ratio 1,70 Payback Period 3,12 Tahun Produk 4302,00 Kg/Batch 130 Lampiran 27. Keluaran sistem simulasi analisis kelayakan investasi probiotik dan omega 6 pada kondisi penurunan harga probiotik SISTEM SIMULASI ANALISIS KELAYAKAN INVESTASI PROBIOTIK & OMEGA-6 Ketik INPUT Black Box Variabel Harga Bahan Baku Utama MRSA MRS Broth Laktosa Monohidrat Jagung Mengkudu Susu Segar Butter Gula 1.300.000 1.350.000 2.200.000 1.000 300 4.000 15.000 6.000 Harga Produk Probiotik Kg Kg Kg Kg Kg Kg Kg Kg Harga Probiotik Basis Volume Kerja Hari Operasi 13.000 2.500 300 Kg Kg/Batch Hari/Tahun Silahkan Ketik Angkanya PARAMETER KEUANGAN INDUSTRI PROBIOTIK OUTPUT Investasi 7.640.244.620 IDR HPP 11.420 IDR/Kg NPV 1.666.053.869 IDR IRR 20,74% B/C Ratio 1,22 Payback Period 4,44 Tahun Produk 5377,50 Kg/Batch 131 Lampiran 28 : Analisis Kelayakan Investasi Uraian Susu Probiotik Produksi (kg/tahun) Pendapatan (Rp/kg) 1.613.250 20.488.275.000 ANALISIS KELAYAKAN INVESTASI Uraian Tahun 0 Tahun 1 Arus Masuk Hasil penjualan produk 0 - Nilai sisa aktiva 0 Jumlah Arus masuk 0 Arus Keluar - Biaya Investasi 7.640.244.620 - Biaya Produksi 0 - Penyusutan - cicilan pinjaman investasi ke bank - cicilan pinjaman modal kerja ke bank Jumlah Kas Keluar sebelum Pajak Margin Sebelum Pajak - Pajak dan lain-lain 0 Jumlah Arus Keluar 7.640.244.620 Arus Kas bersih/tahun (7.640.244.620) Tahun 2 Tahun 5 Tahun 6 Tahun 7 Tahun 8 Tahun 9 Tahun 10 20.488.275.000 0 20.488.275.000 20.488.275.000 20.488.275.000 20.488.275.000 0 0 0 20.488.275.000 20.488.275.000 20.488.275.000 20.488.275.000 20.488.275.000 20.488.275.000 0 0 0 20.488.275.000 20.488.275.000 20.488.275.000 20.488.275.000 20.488.275.000 0 8.065.774.546 12.098.661.819 582.484.610 582.484.610 0 16.131.549.092 582.484.610 695.262.260 236.428.016 17.645.723.979 2.842.551.021 852.765.306 18.498.489.285 1.989.785.715 0 0 0 16.131.549.092 16.131.549.092 16.131.549.092 582.484.610 582.484.610 582.484.610 650.137.066 605.011.871 559.886.676 217.372.624 198.317.232 179.261.839 17.581.543.392 17.517.362.804 17.453.182.217 2.906.731.608 2.970.912.196 3.035.092.783 872.019.483 891.273.659 910.527.835 18.453.562.874 18.408.636.463 18.363.710.052 2.034.712.126 2.079.638.537 2.124.564.948 0 0 0 16.131.549.092 16.131.549.092 16.131.549.092 582.484.610 582.484.610 582.484.610 514.761.481 469.636.286 424.511.092 160.206.447 17.389.001.630 17.183.669.988 17.138.544.794 3.099.273.370 3.304.605.012 3.349.730.206 929.782.011 991.381.503 1.004.919.062 18.318.783.641 18.175.051.492 18.143.463.856 2.169.491.359 2.313.223.508 2.344.811.144 0 16.131.549.092 582.484.610 379.385.897 Rp1.741.068.724 20,89% 1,23 4,33 Tahun HPP Tahun 4 10.244.137.500 15.366.206.250 0 0 10.244.137.500 15.366.206.250 8.648.259.156 12.681.146.429 1.595.878.344 2.685.059.821 478.763.503 805.517.946 9.127.022.659 13.486.664.375 1.117.114.841 1.879.541.875 NPV DF 15 % IRR B/C ratio Pay Back Period Tahun 3 11.315 17.093.419.599 3.394.855.401 1.018.456.620 18.111.876.219 2.376.398.781 132 Lampiran 29 : Asumsi data perhitungan neraca masa dan harga peralatan Asumsi& Data Neraca Bahan&Energi Konversi Jagung Menjadi susu Jagung Konversi Mengkudu Menjadi Juice Mengkudu Konversi Substart menjadi Probiotik Perbandingan inokulasi starter Perbandingan inokulasi MRS broth Asumsi & Data Harga Peralatan Persamaan index marshal yang digunakan Persamaan Harga Kelebihan desain alat Luas perpindahan panas Kebutuhan Listrik Kebutuhan Steam Kebuthan Chiller % 35% 55% 22,20% 5,00% 3,00% Keterangan Data Percobaan volume/volume kerja volume/volume kerja Y=23,2X-45259,08 (Y: index, X : Tahun) Unit Pembuatan Susu Jagung No Nama Alat 1 Bak Cuci 2 pemipil jagung 3 steamer 4 pulper 5 filter 6 pompa 7 PHE 8 Tangki Susu 9 pompa Persamaan Harga(Rp) = 18.375*Kapasitas (kg) Harga (Rp)= 23.000*Kapasitas(kg) Harga (Rp)= 36.750*kapasitas(kg) Harga (Rp)= 36.750*kapasitas(kg) Y=0,442X+360,93 (Y: Harga ($),X : Kapasitas) (Ft3/min) Y=2,326X+326,31 (Y: Harga ($),X : Kapasitas)(Ft3/min) Harga = 625*Luas pemanas (m2) ($) Y=2,296X+500 (Y: Harga ($),X : Kapasitas) (Galon) Y=2,326X+326,31 (Y: Harga ($),X : Kapasitas)(Ft3/min) Unit Pembuatan Juice Mengkudu No Nama Alat 1 Bak cuci 2 pulper 3 filter 4 pompa 5 PHE 6 Tangki Juice Mengkudu 7 pompa Persamaan Harga(Rp) = 18.375*Kapasitas (kg) Harga (Rp)= 23.000*Kapasitas(kg) Y=0,442X+360,93 (Y: Harga ($),X : Kapasitas) (Ft3/min) Y=2,326X+326,31 (Y: Harga ($),X : Kapasitas)(Ft3/min) Harga = 625*Luas pemanas (m2) ($) Y=2,296X+500 (Y: Harga ($),X : Kapasitas) (Galon) Y=2,326X+326,31 (Y: Harga ($),X : Kapasitas)(Ft3/min) Unit Penyimpanan Susu Segar No Nama Alat 1 PHE 2 Tangki Penyimpan Susu 3 pompa Persamaan Harga = 625*Luas pemanas (m2) ($) Y=2,296X+500 (Y: Harga ($),X : Kapasitas) (Galon) Y=2,326X+326,31 (Y: Harga ($),X : Kapasitas)(Ft3/min) Unit Proses Probiotik No Nama Alat 1 Tangki Starter 2 Bioreaktor 3 Tangki Formulasi 4 Pompa vacuum 5 Mesin Pengemasan Persamaan Y=5,54X+525(Y: Harga ($),X : Kapasitas) (galon) Y=12X+900(Y: Harga ($),X : Kapasitas) (galon) Y=5,54X+525(Y: Harga ($),X : Kapasitas) (galon) Y=0,3X+90 (Y: Harga ($),X : Kapasitas)(Ft3/min) Y=3,5X+156(Y: Harga ($),X : Kapasitas) (Kg) Unit Utilitas No Nama Alat 1 Timbangan 2 Genset 3 Boiler 4 Chiller 20% 0,05 m2/Kg bahan 0,2 kW/Kg 1 Kg/Kg 0,5 Kg/Kg Persamaan Harga = 2*Kapasitas (kg) ($) Y=41,911X+1469 (Y: Harga($),X : Kapasitas)(Kva) Y=3,725X+1866 (Y: Harga($),X : Kapasitas) (Lb/jam) Harga = 5*Kapasitas (kg) ($) 133 Lampiran 30 : Daftar harga bahan baku dan asumsi perhitungan kelayakan 300 hari 1. Hari Kerja 2. Harga Bahan Baku MRSA 910.000 IDR MRS Broth 945.000 IDR Laktosa Monohidrat 1.540.000 IDR Jagung 700 IDR Mengkudu 210 IDR Susu Segar 2.800 IDR Butter 10.500 IDR Icing sugar 4.200 IDR 12.700 IDR 1396,12 1256,92 3. Harga Produk 4. Index 2011 5. Index 2005 6. Biaya - Biaya a. Biaya administrasi dan komunikasi b. Biaya promosi dan pemasaran c. Biaya Quality Control d. Biaya bahan bakar, B.Kimia & Pelumas e. Biaya kemasan 7. Biaya Perbaikan dan dan Perawatan - Bangunan - Mesin dan peralatan 8. Kebutuhan Investasi - Modal sendiri - Modal pinjaman 9. Kebutuhan Modal Kerja - Modal sendiri - Modal pinjaman 10. Jangka waktu masa konstruksi 11. Jangka waktu masa produksi 12. Bunga Bank 13. Asumsi Kenaikan bunga Bank 14. Lama Angsuran Modal Kerja 15. Lama Angsuran Modal Investasi 16. Tenggat waktu pembayaran 18. Nilai Rupiah terhadap dolar 19. Nilai akhir investasi 20. Umur Bangunan 21.Umur peralatan 22. Kapasitas produksi - Tahun I - Tahun II - Tahun III -Tahun XII Pajak 2,50% 2,5% 2% 2,5% 800,00 /tahun*penjualan /tahun*penjualan /tahun*penjualan /tahun*investasi Rp/pcs/liter 0,5% 0,5% pertahun*investasi bangunan pertahun*investasiperalatan 35% 65% 35% 65% 1 10 13,5% 0,0% 5 8 3 9.500 10% 20 10 50% 75% 100% 30% tahun tahun pertahun pertahun tahun tahun tahun Rp/$ Tahun Tahun 134 Lampiran 31 : Data hasil perhitungan modal kerja URAIAN Modal Kerja (1 bulan kerja) A. Bahan Baku Kebutuhan Bahan Baku / 25 Hari Sub Total B. Biaya - Biaya 1. Biaya administrasi dan komunikasi 2. Biaya promosi dan pemasaran 3. Biaya perbaikan dan pemeliharaan 4. Biaya Quality Control 5. Biaya BBM, bahan kimia dan pelumas 6. Biaya kemasan Sub Total C. Biaya Gaji/Upah 1. Tenaga kerja Sub Total TOTAL MODAL KERJA MODAL SENDIRI MODAL BANK JUMLAH SATUAN 41.818.136 12 Rp. Orang HARGA SATUAN/BULAN (Rp) TOTAL NILAI Indeks Harga (%) 1.045.453.388 1.568.180.082 77,77% 42.683.906 42.683.906 32.360.256 34.147.125 15.917.176 107.550.000 64.025.859 64.025.859 48.540.384 51.220.688 23.875.764 161.325.000 3,18% 3,18% 2,41% 2,54% 1,18% 8,00% 23.500.000 35.250.000 1,75% 35% 65% 2.016.443.637 705.755.273 1.310.688.363,75 1,00 135 Lampiran 32 : Data rincian perhitungan modal kerja KEBUTUHAN BAHAN BAKU/BATCH Bahan Baku MRSA MRS Broth Laktosa Monohidrat Jagung Mengkudu Susu Segar Butter Icing sugar Harga(Rp/Kg) Jumlah (Kg) 910.000 945.000 1.540.000 700 210 2.800 10.500 4.200 TOTAL BIAYA BAHAN BAKU 4 4 4 4.571 727 1.022 1.850 740 Total (Rp) 3.385.883 3.516.109 6.167.431 3.200.000 152.727 2.862.986 19.425.000 3.108.000 41.818.136 RINCIAN BIAYA PERBAIKAN DAN PEMELIHARAAN Fasilitas Bangunan Mesin dan Peralatan Utilitas Nilai Investasi Biaya Perawatan/th (%) 1.887.140.421 2.053.959.011 2.530.951.786 0,5% 0,5% 0,5% Total Biaya Perawatan Pertahun 9.435.702 10.269.795 12.654.759 32.360.256 RINCIAN BIAYA GAJI/UPAH KARYAWAN Jabatan Pekerjaan 1. Manager produksi 2. Kepala Produksi 3. Analis 4. Laboran 5. Utilitas 6. Operator Sub Total Jumlah (orang) 1 1 2 2 1 6 12 Gaji/Orang (Rp) 4.000.000 2.500.000 2.000.000 1.500.000 2.000.000 2.000.000 Gaji/Bulan (Rp) 4.000.000 2.500.000 4.000.000 3.000.000 2.000.000 12.000.000 23.500.000 136 Lampiran 33 : Data perhitungan biaya peralatan Unit Pembuatan Susu Jagung No Nama Alat 1 Bak Cuci 2 Pemipil jagung 3 Steamer 4 Pulper 5 Filter 6 Pompa 7 PHE 8 Tangki Susu 9 Pompa Kapasitas Ukuran Harga Tahun Index ($) 4571,43 Kg 4571,43 Kg 1600 Kg 1600 Kg 1600 Kg 1600 Kg 1600 kg 4000 liter 9600 liter/jam Harga Tahun 2011(Rp) 84.000.000 105.142.857 58.800.000 58.800.000 385,90 457,72 50.000 2.520 1.114,78 93.302.740 116.787.103 65.311.918 65.311.918 4.072.072 4.829.931 527.604.780 26.593.788 11.763.313 Jumlah 1 1 1 1 1 1 1 1 1 JUMLAH TOTAL HARGA ALAT Total 93.302.740 116.787.103 65.311.918 65.311.918 4.072.072 4.829.931 527.604.780 26.593.788 11.763.313 915.577.563 Unit Pembuatan Juice Mengkudu No Nama Alat 1 Bak cuci 2 Pulper 3 Filter 4 Pompa 5 PHE 6 Tangki Juice Mengkudu 7 Pompa Kapasitas 727,27 400 400 400 400 1000 2400 Ukuran Kg Kg Kg kg kg Liter liter/jam Harga Tahun Index 13.363.636 14.700.000 367,17 359,16 12.500 1.005 523,43 Harga 14.843.618 16.327.980 3.874.444 3.789.923 131.901.195 10.605.483 5.523.269 Jumlah 1 1 1 1 1 1 1 JUMLAH TOTAL HARGA ALAT Total 14.843.618 16.327.980 3.874.444 3.789.923 131.901.195 10.605.483 5.523.269 186.865.911 Unit Penyimpanan Susu Segar No Nama Alat 1 PHE 2 Tangki Penyimpan Susu 3 pompa Kapasitas 1022,50 6334,95 3800,97 Ukuran kg liter liter/jam Harga Tahun Index 31.953 3.700 638,49 Harga 337.170.839 39.037.761 6.737.453 Jumlah 1 1 1 JUMLAH TOTAL HARGA ALAT No Nama Alat 1 Tangki Stater 2 Bioreaktor 3 Tangki Formulasi 4 Pompa vacuum 5 Mesin Pengemasan Kapasitas 345,00 3345,00 6453,00 20070 5377,50 Ukuran liter liter liter liter/jam liter Unit Proses Probiotik Harga Tahun Index 945 9.730 8.389 6.111 18.977 382.946.053 Harga 9.976.326 102.669.151 88.521.242 64.483.856 200.249.756 Jumlah 1 2 1 1 1 JUMLAH TOTAL HARGA ALAT No Nama Alat 1 Timbangan 2 Genset 3 Boiler 4 Chiller Kapasitas 100000 500 2500 1250 Ukuran Kg Kva Kg Kg Unit Utilitas Harga Tahun Index 200.000 22.425 11.179 6.250 Jumlah JUMLAH TOTAL HARGA ALAT Total 337.170.839 39.037.761 6.737.453 Total 9.976.326 205.338.302 88.521.242 64.483.856 200.249.756 568.569.483 Harga 2.110.419.120 236.625.468 117.956.601 65.950.597 Jumlah 1 1 1 1 Total 2.110.419.120 236.625.468 117.956.601 65.950.597 2.530.951.786 4.584.910.796 137 Lampiran 34 : Data hasil perhitungan penyusutan peralatan Fasilitas Nilai Investasi Bangunan Mesin dan Peralatan Utilitas 1.887.140.421 2.053.959.011 2.530.951.786 Biaya Perawatan/th (%) 0,5% 0,5% 0,5% Total Biaya Perawatan Pertahun 9.435.702 10.269.795 12.654.759 32.360.256 RINCIAN BIAYA PENYUSUTAN Fasilitas - Bangunan dan pekerjaan sipil - Mesin dan peralatan - Utilitas TOTAL UMUR ALAT (TAHUN) 20 10 10 NILAI AWAL (Rp) 1.887.140.421 2.053.959.011 2.530.951.786 3.941.099.432 NILAI AKHIR (Rp) 188.714.042 205.395.901 253.095.179 647.205.122 PENYUSUTAN/ TAHUN (Rp) 169.842.638 184.856.311 227.785.661 582.484.610 138 Lampiran 35: Rencana pembayaran cicilan modal investasi dan modal kerja Pembiayaan Bank (65%) Modal Investasi Modal Kerja Struktur Pembayaran Modal Investasi Tahun 3 Tahun 4 Tahun 5 Tahun 6 Tahun 7 Tahun 8 Tahun 9 Tahun10 Struktur Pembayaran Modal Kerja Tahun 3 Tahun 4 Tahun 5 Tahun 6 Tahun 7 7.640.244.620 2.091.258.105 4.966.159.003 1.359.317.768 Cicilan Pokok 620.769.875 620.769.875 620.769.875 620.769.875 620.769.875 620.769.875 620.769.875 620.769.875 Pokok 4.966.159.003 4.345.389.128 3.724.619.252 3.103.849.377 2.483.079.501 1.862.309.626 1.241.539.751 620.769.875 Bunga 670.431.465 586.627.532 502.823.599 419.019.666 335.215.733 251.411.800 167.607.866 83.803.933 Cicilan Pokok 271.863.554 271.863.554 271.863.554 271.863.554 271.863.554 JUMLAH Bunga 183.507.899 146.806.319 110.104.739 73.403.159 36.701.580 Besar Angsuran 455.371.452 418.669.873 381.968.293 345.266.713 308.565.133 1.909.841.465 Lampiran 36 : Struktur pembiayan investasi peralatan produksi No 1 2 3 4 5 6 7 Investasi Penyiapan Tanah dan AMDAL Bangunan dan Pekerjaan Sipil Mesin dan Peralatan Peralatan Laboratorium QC Utilitas Kegiatan Pembangunan Engineering Consultant & Project Management Jumlah 508.076.267 1.887.140.421 2.053.959.011 391.180.525 2.530.951.786 391.180.525 203.230.507 TOTAL INVESTASI 7.640.244.620 MODAL BANK (IDR) Komposisi : ( %) MODAL SENDIRI (IDR) Komposisi : ( %) 2.674.085.617 35 4.966.159.003 65 Besar Angsuran 1.291.201.341 1.207.397.408 1.123.593.474 1.039.789.541 955.985.608 872.181.675 788.377.742 704.573.809 139 Lampiran 37 : Dokumentasi Proses Pengujian Pilot Plant 75 L