DATA DAN PENYAJIAN Pokok Bahasan Jenis-jenis Data (Berdasarkan Sifatnya) Kualitatif & kuantitatif Kategorik & Kontinum Level of data Penyajian Data : Tabel Histogram Poligon Kurve Pengerjakan dengan komputer Pemasukan data Penyajian data Data Berdasarkan Sifatnya 1. Data Kualitatif Data kualitatif adalah data yang berbentuk kata-kata, bukan dalam bentuk angka. Data kualitatif diperoleh melalui berbagai macam teknik pengumpulan data misalnya wawancara, analisis dokumen, diskusi terfokus, atau observasi yang telah dituangkan dalam catatan lapangan (transkrip). 2. Data Kuantitatif Data kuantitatif adalah data yang berbentuk angka atau bilangan. Sesuai dengan bentuknya, data kuantitatif dapat diolah atau dianalisis menggunakan teknik perhitungan matematika atau statistika. Berdasarkan proses atau cara untuk mendapatkannya : • Data diskrit • Data Kontinum Data diskrit adalah data dalam bentuk angka (bilangan) yang diperoleh dengan cara membilang. Contoh data diskrit misalnya: 1) Jumlah Sekolah Dasar Negeri di Kecamatan XXX sebanyak 20. 2) Jumlah siswa laki-laki di SD YYY sebanyak 67 orang. 3) Jumlah penduduk di Kabupaten ZZZ sebanyak 246.867 orang. Karena diperoleh dengan cara membilang, data diskrit akan berbentuk bilangan bulat (bukan bilangan pecahan). Data kontinum adalah data dalam bentuk angka/bilangan yang diperoleh berdasarkan hasil pengukuran. Data kontinum dapat berbentuk bilangan bulat atau pecahan tergantung jenis skala pengukuran yang digunakan. Contoh data kontinum misalnya: 1) Tinggi badan Budi adalah 150,5 centimeter. 2) IQ Budi adalah 120. 3) Suhu udara di ruang kelas 24o Celcius. Jenis (tingkatan) Data Berdasarkan tipe skala pengukuran yang digunakan, data kuantitatif dapat dikelompokan dalam empat jenis (tingkatan) yang memiliki sifat berbeda yaitu: Data nominal, Data Ordinal, Data Interval, dan Data rasio DATA NOMINAL : Data berskala nominal adalah data yang diperoleh dengan cara kategorisasi atau klasifikasi. CIRI : posisi data setara tidak bisa dilakukan operasi matematika (+, -, x, :) CONTOH : jenis kelamin, jenis pekerjaan DATA ORDINAL : Data berskala ordinal adalah data yang dipeoleh dengan cara kategorisasi berdasar peringkat atau rangking, diantara data tersebut terdapat hubungan CIRI : posisi data tidak setara tidak bisa dilakukan operasi matematika (+, -, x, :) CONTOH : rangking klas, juara ke…, status sosial ekonomi DATA INTERVAL : Data berskala interval adalah data yang diperoleh dengan cara pengukuran, di mana jarak antara dua titik skala sudah diketahui. CIRI : Tidak ada kategorisasi bisa dilakukan operasi matematika CONTOH : skor ujian, skor tes inteligensi, skor tes prestasi DATA RASIO : Data berskala rasio adalah data yang diperoleh dengan cara pengukuran, di mana jarak antara dua titik skala sudah diketahui dan mempunyai titik 0 absolut. CIRI : tidak ada kategorisasi bisa dilakukan operasi matematika CONTOH : gaji, jumlah buku, Contoh data nominal Misalnya (1) = laki-laki, (2) = perempuan, maka (1) + (2) ≠ (3), karena tidak ada kategori (3) yang merupakan hasil penjumlahan (1) dan (2). Status pernikahan yang terdiri dari tiga kategori yaitu: (1) Belum menikah, (2) Menikah, (3) Janda/ Duda. Data tersebut memiliki sifat-sifat yang sama dengan data tentang jenis kelamin. Contoh Data Ordinal Walaupun data ordinal dapat disusun dalam suatu urutan, namun belum dapat dilakukan operasi matematika ( +, – , x , : ). Contoh jenis data ordinal antara lain: Tingkat pendidikan yang disusun dalam urutan sebagai berikut: (1) Taman Kanak-kanak (TK) (2) Sekolah Dasar (SD) (3) Sekolah Menengah Pertama (SMP) (4) Sekolah Menengah Atas (SMA) (5) Diploma (6) Sarjana Contoh Data Interval Dalam banyak kegiatan penelitian, data skor yang diperoleh melalui kuesioner (misalnya skala sikap atau intensitas perilaku) sering dinyatakan sebagai data interval setelah alternatif jawabannya diberi skor yang ekuivalen (setara) dengan skala interval, misalnya: Skor (5) untuk jawaban “Sangat Setuju” Skor (4) untuk jawaban “Setuju” Skor (3) untuk jawaban “Tidak Punya Pendapat” Skor (2) untuk jawaban “Tidak Setuju” Skor (1) untuk jawaban “Sangat Tidak Setuju” Contoh Data Rasio Data rasio adalah data yang menghimpun semua sifat yang dimiliki oleh data nominal, data ordinal, serta data interval. Data rasio adalah data yang berbentuk angka dalam arti yang sesungguhnya karena dilengkapi dengan titik Nol absolut (mutlak) sehingga dapat diterapkannya semua bentuk operasi matematik ( + , – , x, : ). Data Berdasarkan Sumbernya Data Primer Data primer adalah data yang diperoleh atau dikumpulkan oleh peneliti secara langsung dari sumber datanya. Teknik : observasi, wawancara, diskusi terfokus (focus grup discussion – FGD) dan penyebaran kuesioner. Utama dan Pendukung Kualitatif dan Kuantitatif Kategorik & Kontinum Data Sekunder Data Sekunder adalah data yang diperoleh atau dikumpulkan peneliti dari berbagai sumber yang telah ada (peneliti sebagai tangan kedua). Data sekunder dapat diperoleh dari berbagai sumber seperti Biro Pusat Statistik (BPS), buku, laporan, jurnal, dan lain-lain. Contoh : Data hasil pengukuran berat suatu benda yang dinyatakan dalam gram memiliki semua sifat-sifat sebagai data interval. Benda yang beratnya 1 kg. berbeda secara nyata dengan benda yang beratnya 2 kg. Ukuran berat benda dapat diurutkan mulai dari yang terberat sampai yang terringan. Perbedaan antara benda yang beratnya 1 kg dengan 2 kg memiliki rentang berat yang sama dengan perbedaan antara benda yang beratnya 2 kg. dengan 3 kg. Angka 0 kg. menunjukkan tidak ada benda (berat) yang diukur. Benda yang beratnya 2 kg., 2 kali lebih berat dibandingkan dengan benda yang beratnya 1 kg.. Konsep Data Data numerik interval, data numerik rasio ini dapat diubah menjadi data: a) numerik ordinal, dengan cara me-ranking-nya b) kategorik ordinal, dengan cara mengkategorikannya. Penyajian Data Tabel Grafik dan Diagram Histogram Poligon Kurve 7. Penyajian Data TABEL Tabel 1.1 Bidang Pekerjaan berdasarkan Latar Belakang Pendidikan Count SMU bidang pekerjaan Jumlah GRAFIK adminis trasi pers onalia produks i marketing keuangan pendidikan Akademi 1 8 1 4 3 2 14 3 4 10 30 Sarjana 6 7 5 11 6 35 Jumlah 15 8 12 27 13 75 bidang pekerjaan administrasi personalia produksi marketing keuangan Pies show counts 10. Jenis Grafik Grafik Garis (line) 20 20 10 10 Jumlah 30 0 administrasi personalia produksi marketing 0 administrasi keuangan personalia produksi marketing keuangan bidang pekerjaan bidang pekerjaan Grafik Interaksi (interactive) Grafik lingkaran (pie) 800000 keuangan administrasi 700000 600000 personalia marketing produksi Mean gaji perbulan Count Grafik Batang (Bar) 30 500000 Jenis kelamin 400000 laki-laki 300000 w anita sangat jelek jelek prestasi kerja cukup baik baik sangat baik GRAFIK : memberikan informasi dengan benar dan cepat, tetapi tidak rinci. Syarat : 1. Pemilihan sumbu (sumbu tegak dan sumbu datar), kecuali grafik lingkaran 2. Penetapan skala (skala biasa, skala logaritma, skala lain) 3. Ukuran grafik (tidak terlalu besar, tinggi, pendek) Sumbu tegak 4 Jenis Grafik : 3 • Grafik Batang (Bar) 2 • Grafik Garis (line) 1 • Grafik Lingkaran (Pie) 0 Titik pangkal 1 2 3 4 Sumbu datar • Grafik Interaksi (Interactive) FREKUENSI : banyaknya data untuk satu kelompok/klasifikasi KELOMPOK FREKUENSI Kelompok ke-1 f1 Administrasi 18 Kelompok ke-2 f2 Personalia 8 Kelompok ke-3 f3 Produksi 19 Kelompok ke-i fi Marketing 27 Kelompok ke-k fk Keuangan 13 k n = Σ fi i=1 PEKERJAAN FREKUENSI 85 k n = Σ fi = f1 + f2 + f3 +….. + fi + …… + f k i=1