BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Aljabar linier adalah salah satu cabang ilmu matematika, yang sangat bermanfaat atau diperlukan di dalam perkembangan teknologi maupun ilmu pengetahuan. Sebagai contoh, aljabar linier dapat digunakan untuk memecahkan masalah – masalah dalam mekanika untuk penyelidikan dan sebagainya. Sebuah garis lurus dalam bidang xy secara aljabar linier dapat dinyatakan oleh persamaan yang berbentuk : a1x + a2y = b Persamaan semacam ini kita namakan persamaan linier dalam peubah (variabel) x dan peubah y. Secara lebih umum kita mendefinisikan persamaan linier dalam n peubah x1, x2, …, xn sebagai persamaan yang dapat dinyatakan dalam bentuk: a1x1 + a2x2 + … + anxn = b di mana a1, a2, …, an dan b adalah konstanta – konstanta riil. Penerapan aljabar linier ini lebih ditekankan pada masalah ruang vektor dari momentum sudut. Vektor dalam matematika merupakan besaran dengan arah tertentu. Vektor dapat dideskripsikan dengan sejumlah komponen tertentu tergantung dari sistem Universitas Sumatera Utara yang digunakan . Maksud dari bergantung pada arah adalah bahwa nila dari besaran tadi dapat berubah pada arah yang berbeda. Arah, dalam operasi vektor didefinisikan lebih khusus adalah sudut yang dibentuk terhadap sumbu x positif. Misalkan vektor V adalah sebarang himpunan benda yang didefinisikan dua operasi yakni penjumlahan dan perkalian dengan skalar (bilangan riil). Yang kita artikan dalam penjumlahan adalah sebuah kaidah untuk mengasosiasikan dengan setiap pasangan benda U dan V, dan yang diartikan sebagai perkalian skalar adalah sebuah kaidah mengasosiasikan dengan setiap skalar k dan benda U di dalam V sebuah elemen k u yang dinamakan kelipatan skalar dari U oleh k. Jika aksioma berikut dipenuhi oleh semua benda u, v, w di dalam V dan oleh semua skalar k dan l, maka kita menamakan V sebuah ruang vektor . Sebuah sub himpunan dari S di mana sebuah sub ruang dari V, jika S itu adalah sebuah ruang vektor di bawah penambahan dan perkalian skalar yang didefinisikan dalam V. Jika S adalah sebuah himpunan dari satu atau lebih vektor dari sebuah ruang vektor V maka S adalah sebuah sub ruang dari V jika dan hanya jika kondisi – kondisi berikut : S1 : untuk sebarang x di dalam S, maka x + y di dalam S S2 : untuk sebarang x dan sebarang bilangan riil αx di dalam S Vektor v dan w di dalam Rn dikatakan orthogonal jika v.w = 0. Sesuai dengan definisi di atas, maka vektor nol adalah orthogonal terhadap setiap vektor di dalam Rn. Keorthogonalan secara umum adalah suatu arah tegak lurus yang terjadi di dalam geometri 2 dan 3 demensi. Hubungan dengan konsep geometri adalah saling orthogonal. Universitas Sumatera Utara 1.2 Tujuan Penelitian 1. Memahami operasi aljabar linier dalam ruang vektor. 2. Memahami sifat orthogonal dan orthonormal dalam ruang vektor. 3. Mengetahui aplikasi linier dalam fisik 1.3 Batasan Masalah Adapun batasan masalah dalam penulisan tugas akhir ini adalah : 1. Ruang vektor linier dibatasi hanya dalam matriks 3×3. 2. Ruang vektor yang digunakan adalh riil. 3. Hanya digunakan untuk sistem persamaan linier bukan untuk pertidaksamaan. 4. Aplikasi dalam fisika hanya dalm bentuk ruang vektor momentum anguler. 1.4 Metodologi Penelitian 1. Menjelaskan aljabar linier dalam vektor. 2. Memaparkan keorthogonalan ruang vektor. 3. Menjelaskan teori persaman linier. Universitas Sumatera Utara