PN Junction dan diode Bahan semikonduktor jenis-p di bawah ini lingkaran kecil adalah hole, yang merupakan pembawa muatan mayoritas. Biasanya, hole terdistribusi rata mengisi di seluruh semikonduktor jenis-p. Pada semikonduktor jenis-p pembawa muatan mayoritasnya adalah hole Dalam bahan semikonduktor jenis-n di bawah ini bulatan hitam kecil adalah elektron bebas. Elektron bebas merupakan pembawa muatan mayoriitas di dalam semikonduktor jenis-n. Biasanya, elektron bebas terdistribusi rata mengisi di seluruh semikondur jenisn. Pada semikonduktor jenis-n pembawa muatan mayoritasnya elektron Jika terhadap sebatang silikon intrinsik, pada bagian batang sebelah kiri dilakukan difusi dengan atom-atom impuriti boron, dan pada bagian batang sebelah kanan dilakukan difusi dengan atom-atom impuriti fosfor maka akan diperoleh bahan semikonduktor jenis-p berdampingan dengan semikonduktor jenis-n seperti pada gambar di bawah ini. Pertemuan jenis-p dengan jenis-n itu dinamakan pn-junction Di pn-junction elektron-elektron menyeberang dari sisi-n untuk mengisi hole di sisi-p. Proses ini hanya terjadi pada daerah di sekitar junction dan kejadian ini menimbulkan potensial negatip pada sisi-p dan potensial positip pada sisi-n. Karena jenis-p berdekatan dengan jenis-n di junction, beberapa elektron bebas dari sisi-n tertarik melintasi junction untuk mmengisi hole pada sisi-p. Kedua pembawa muatan (elektron dan hole) dikatakan diffuse (berdifusi) melintasi junction, yaitu mengalir dari bagian dengan konsentrasi pembawa muatan yang tinggi ke bagian dengan konsentraasi yang rendah. Elektron-elektron bebas yang melintasi junction menimbulkan ion-ion negatip pada sisi-p dengan jalan memberikan pada atom-atom satu elektron lebih banyak dari pada jumlah total protonnya. Elektron-elektron juga meninggalkan ion-ion positip (atom-atom dengan elektron satu lebih sedikit dari pada jumlah proton) pada sisi-n. Sebelum pembawa muatan itu berdifusi melintasi junction baik bahan jenis-n maupun bahan jenis-p keduanya sama-sama netral secara elektrik. Tapi, begitu ion-ion negatip terbentuk pada junction sisi-p, sisi-p menjadi berpotensial negatip. Dengan cara yang sama, ion-ion positip terbentuk pada sisi-n yang menjadikan sisi-n berpotensial positip. Potensial negatip pada sisi-p cenderung menolak elektron-elektron selanjutnya yang berusaha melintasi junction dari sisi-n, potensial positip pada sisi-n cenderung menolak setiap hole selanjutnya yang mau melintas dari sisi-p. Jadi, difusi pendahuluan pembawa muatan menimbulkan yang dinamakan barrier potensial pada junction. Lihat gambar di atas. Barrier potensial ini negatip pada sisi-p dan positip pada sisi-n, cukup besar untuk menghindari setiap gerakan elektron atau hole selanjutnya melintasi junction. Pemindahan pembawa-pembawa muatan dan pembentukan resultan barrier potensial terbentuk ketika proses manufaktur. Dengan mengetahui kerapatan doping, muatan elektron, dan suhu, dimungkinkan meghitung besar barrier potensial. Barrier potensial pada suhu kamar adalah 0,3 volt untuk germanium junction dan 0,7 volt untuk silikon. Gerakan pembawa-pembawa muatan melintasi junction meninggalkan suatu lapisan pada setiap sisi yang kosong dari pembawa-pembawa muatan. Gambar depletion region ini seperti pada gambar berikut ini. Kerapatan doping yang sama Pada sisi-n, depletion region terdiri dari atom-atom impuriti donor yang telah kehilangan elektron bebas yang terkait dengan atom-atom itu dan telah menjadi bermuatan positip. Pada sisi-p, depletion region terdirin dari atom-atom impuriti akseptor yang telah menjadi bermuatan negatip dengan jalan kehilangan hole yang terkait dengan atomatom itu (yaitu hole diissi elektron). Pada masing-masing sisi junction, jumlah atom impuriti yang sama terlibat di dalam depletion region. Bila dua blok bahan mempunyai kerapatan doping yang sama, lapisanlapisan depletion pada masing-masing sisi junction mempunyai ketebalan yang sama, seperti gambar ini. Jika sisi-p yang lebih heavily doped dari pada sisi-n, seperti pada gambar di atas, penetrasi depletion region lebih jauh ke dalam sisi-n agar dapat mencakup jumlah atom impuriti pada masing-masing sisi junction. Sebaliknya, jika sisi-n yang paling heavily doped, penetrasi depletion region lebih dalam ke bahan jenis-p. Potensial barrier pada junction berlawanan dengan arah aliran elektron dari sisi-n dan aliran hole dari sisi-p. Karena elektron-elektron itu pembawa muatan mayoritas dalam bahan jenis-n and hole adalah pembawa muatan mayoritas bahan jenis-p ternyata potensial barrier itu berlawanan dengan dengan arus pembawa muatan mayoritas. Juga, elekktron-elektron bebas yang ditimbulkan oleh energi termal pada sisip tertarik melintasi potensial barrier positip ke sisi-n karena elektron-elektron itu bermuatan negatip. Demikian juga, hole yang ditimbulkan energi termal pada sisi-n tertarik ke sisi-p melintasi potensial barrier negatip di junction. Elektron-elektron pada sisi-p dan hole pada sisi-n itu pembawa muatan minoritas. Karena itu, potensial barrier membantu aliran pembawa muatan minoritas melintasi junction. Reverse-Biased Junction Jika tegangan bias eksternal positip dipasang pada sisi-n dan negatip dipasang pada sisi-p dari pn-junction, elektron-elektron dari sisi-n ditarik ke terminal positip tegangan bias dan hole dari sisi-p ditarik ke terminal negatip tegangan bias. hole dari atom-atom impuriti dalam sisi-p junction tertarik menjauhi junction dan elektron-elektron ditarik keluar dari atom-atomnya dalam sisi-n dari junction tertarik menjauhi junction. Bila suatu reverse bias dipasang pada sebuah pn-juction, depletion region (daerah kosong pembawa muatan) menjadi semakin lebar dan tegangan barrier semakin besar. Hanya ada arus reverse yang sangat kecil mengalir melintasi junction Dengan demikian depletion region menjadi semakin lebar, potensial barrier semakin besar mengikuti kenaikan besarnya tegangan terpasang. Dengan potensial barrier semakin besar, maka tidak ada kemungkinan arus pembawa muatan mayoritas mengalir menlintasi junction. Dalam hal ini, junction itu dikatakan menjadi reverse biased. Meskipun tidak ada kemungkinan arus pembawa muatan mayoritas mengalir melintasi junction dalam keadaan reverse biased, pembawa-pembawa muatan minoritas yang timbul pada kedua sisi junction masih dapat melintasi junction. Elektron-elektron pada sisi-p ditarik melintasi juction ke potensial positip pada sisi-n. Hole-hole pada sisi-n bisa mengalir melintasi ke potensial negatip pada sisi-p. Forward-Biased Junction Misalkan sekarang tegangan bias eksternal dipasang dengan polaritas seperti gambar berikut ini: positip pada sisi-p dan negatip pada sisi-n. Hole pada sisi-p, sebagai partikel bermuatan positip ditolak oleh terminal positip tegangan bias dan hole bergerak menuju junction. Demikian pula, elektron-elektron pada sisi-n ditolak oleh terminal negatip tegangan bias dan bergerak menuju junction. Akibatnya, lebar depletion region berkurang dan potensal barrier juga berkurang. Bila forward bias dipasang pada pn-juction maka depletion region menjadi sempit, potensial barrier berkurang dan menimbulkan arus yang relatip besar mengalir Jika, tegangan bias yang dipasang itu dinaikkan mulai dari nol, potensial barrier menjadi semakin kecil secara progresip sampai potensial barrier itu lenyap dengan efektip dan pembawa muatan dengan mudah melintasi junction. Elektron-elektron dari sisi-n ditarik melintasi ke terminal positip dari tegangan bias dan hole-hole bergerak dari sisi-p ditarik melintas ke terminal negatip dari tegangan bias. Jadi, timbul arus pembawa muatan mayoritas, junction disebut menjadi forwad biased. (Bahan Semikonduktor) *Diode Diode adalah komponen aktif dua kutub yang pada umumnya bersifat semikonduktor, yang memperbolehkan arus listrik mengalir ke satu arah (kondisi panjar maju) dan menghambat arus dari arah sebaliknya (kondisi panjar mundur). Diode dapat disamakan sebagai fungsi katup di dalam bidang elektronika. Diode sebenarnya tidak menunjukkan karakteristik kesearahan yang sempurna, melainkan mempunyai karakteristik hubungan arus dan tegangan kompleks yang tidak linier dan seringkali tergantung pada teknologi atau material yang digunakan serta parameter penggunaan. Beberapa jenis diode juga mempunyai fungsi yang tidak ditujukan untuk penggunaan penyearahan. Awal mula dari diode adalah peranti kristal Cat's Whisker dan tabung hampa (juga disebut katup termionik). Saat ini diode yang paling umum dibuat dari bahan semikonduktor seperti silikon atau germanium. Sejarah Walaupun diode kristal (semikonduktor) dipopulerkan sebelum diode termionik, diode termionik dan diode kristal dikembangkan secara terpisah pada waktu yang bersamaan. Prinsip kerja dari diode termionik ditemukan oleh Frederick Guthrie pada tahun 1873[1]Sedangkan prinsip kerja diode kristal ditemukan pada tahun 1874 oleh peneliti Jerman, Karl Ferdinand Braun[2]. Pada waktu penemuan, peranti seperti ini dikenal sebagai penyearah (rectifier). Pada tahun 1919, William Henry Ecclesmemperkenalkan istilah diode yang berasal dari di berarti dua, dan ode (dari ὅδος) berarti "jalur". Diode Foto dari diode semikonduktor Simbol Tipe Komponen aktif Kategori Semikonduktor (diode kristal) Tabung hampa (diode termionik) Penemu Frederick Guthrie (1873) (diode termionik) Karl Ferdinand Braun (1874) (diode kristal)