Mekanika Fluida Kuliah Mekanika Fluida Gaya pada bidang terendam Ir. Djoko Luknanto, M.Sc., Ph.D. 3/14/2005 Jack la Motta 1 Bidang Datar muka air O h0 h p F = Ap0 y Gaya pada pintu: dF = p dA p harus terbagi merata p tekanan hidrostatika p = hγ p = (y sin α) γ dy dA pintu air/benda terendam air G α y 3/14/2005 Djoko Luknanto y0 P yP x dF = γ sin α × ydA F = ∫ dF = γ sin α ∫ ydA = γ sin α × Ay0 = ( y0 sin α )γ × A = h0γ × A y0 = jarak pusat berat pintu (G (G) p0 = tekanan hidrostatika di G A = luas pintu ∫ ydA = momen statis bidang A yP = jarak pusat tekanan pintu (P (P) F = p0 × A y0 = ∫ ydA = ∫ ydA A ∫ dA 2 1 Mekanika Fluida Besar dan Pusat Gaya Besar Gaya dF = γ sin α × ydA Pusat Gaya Fy P = ∫ ydF = ∫ ypdA F = ∫ dF = γ sin α ∫ ydA = ∫ yhγdA = γ ∫ y ( y sin α )dA = γ sin α × Ay0 = ( y0 sin α )γ × A = γ sin α ∫ y 2 dA = h0γ × A = p0 × A F = p0 × A y0 = yP = ∫ ydA = ∫ ydA A ∫ dA γ sin α ∫ y 2 dA F γ sin α ∫ y dA = γ sin α ∫ y 2 dA = ∫ y dA = I 2 = F = besar gaya hidrostatika h0 = jarak vertikal pusat berat pintu (G (G) y0 = jarak pusat berat pintu (G (G) yP = jarak pusat tekanan pintu (P (P) ∫ ydA = momen statis bidang A ∫ y2dA = momen inersia bidang A 3/14/2005 A( y0 sin α )γ Ap0 2 Ay0 S 2 = I 0 + Ay0 I = y0 + 0 Ay0 S y P = y0 + I0 S Jack la Motta 3 Segi 4: Luas dan Momen Statis y Luas: y =+ h / 2 y =+ h / 2 y =− h / 2 y =− h / 2 A= dy dA = bdy x h ∫ dA = ∫ bdy = b[ y ] +h / 2 −h / 2 = bh Pusat Berat: Ay0 = y =+ h / 2 y =+ h / 2 y =− h / 2 y =− h / 2 ∫ ydA = ∫ bydy +h / 2 b 3/14/2005 Djoko Luknanto 1 ⎤ ⎡1 ⎤ ⎡1 = b⎢ y 2 ⎥ = b⎢ h2 − h2 ⎥ = 0 8 ⎦ ⎣ 2 ⎦ −h / 2 ⎣8 y0 = 0 Jack la Motta 4 2 Mekanika Fluida Segi 4: Momen Inersia di Pusat Berat Momen Inersia thd sb-x: y I0 = y =+ h / 2 ∫ y dA = ∫ by dy 2 y =− h / 2 dy dA = bdy x h y =+ h / 2 2 b 3/14/2005 y =− h / 2 +h / 2 ⎡1 ⎤ = b⎢ y 3 ⎥ ⎣ 3 ⎦ −h / 2 1 ⎤ ⎡1 = b⎢ h3 + h3 ⎥ 24 ⎦ ⎣ 24 1 I 0 = bh 3 12 Jack la Motta 5 Segi 4: Momen Inersia Ix G pusat berat segi 4 Momen Inersia Ix y Ix = dy x Djoko Luknanto ⎤ ⎥ ⎦ y0 − h / 2 b ⎡⎛ h⎞ ⎛ h⎞ ⎢⎜ y0 − ⎟ − ⎜ y0 − ⎟ 3 ⎢⎣⎝ 2⎠ ⎝ 2⎠ = 2 2 b ⎡⎛ 3 3hy0 3h 2 y0 h 3 ⎞ ⎛ 3 3hy0 3h 2 y0 h 3 ⎞⎤ + + ⎟⎟ − ⎜⎜ y0 − + − ⎟⎟⎥ ⎢⎜⎜ y0 + 3 ⎣⎢⎝ 2 4 8⎠ ⎝ 2 4 8 ⎠⎦⎥ 3 3 ⎤ ⎥ ⎥⎦ 2 2 b ⎡ 3hy0 h 3 3hy0 h3 ⎤ + + + ⎥ ⎢ 3⎣ 2 8 2 8⎦ 1 2 I x = bh 3 + bhy0 12 2 I x = I 0 + Ay0 = b 3/14/2005 y0 + h / 2 3 = G y0 ⎡1 ∫ y dA = b⎢⎣ 3 y y = y0 − h / 2 dA = bdy h y = y0 + h / 2 2 Jack la Motta 6 3 Mekanika Fluida Segitiga 1 A = bh 2 Luas: Pusat Berat: Momen Inersia, I0 h y0 = 1 h 3 G h/3 b/2 b/2 3/14/2005 I0 = 1 3 bh 36 Jack la Motta 7 Lingkaran 1 πD 2 4 Luas: A = Pusat Berat: y 0 Momen Inersia, I0 G = D 1 D 2 r 1 I0 = πD 4 64 3/14/2005 Djoko Luknanto Jack la Motta 8 4 Mekanika Fluida Setengah Lingkaran Luas: A = Pusat Berat: Momen Inersia, I0 r G y0 1 2 πr 2 y0 = 4r 3π I 0 = 0,1102r 4 3/14/2005 Jack la Motta 9 Bidang Lengkung muka air D C h dF α dFx dFy α B dA A 3/14/2005 Djoko Luknanto Gaya dF selalu tegak lurus bidang kontak dA Nilai dF = hγ dA Komponen x-y bid. kontak dAx = dA cos α dAy = dA sin α Komponen x-y gaya dF dFy = hγ dA cos α dFx = hγ dA sin α Jack la Motta 10 5 Mekanika Fluida Gaya pada bidang lengkung muka air Ax D C Fy h h0 dF Ay dFy α dFx α B dA G Fx ϕ A 2 F = Fx + Fy ϕ = arctan 3/14/2005 Djoko Luknanto Fy Fx 2 F Komponen x gaya dF dFx= dF sin α = hγ dA sin α = γ hdAy Fx = γ ∫hdAy = γ h0Ay Komponen y gaya dF dFy= dF cos α = hγ dA cos α = γ hdAx Fy = γ ∫hdAx = γ V Jack la Motta 11 6