sifat – sifat ruang vektor atas lapangan

advertisement
SIFAT – SIFAT
RUANG VEKTOR ATAS LAPANGAN
Dosen Pengampu :
Prof. Dr. Sri Wahyuni
DISUSUN OLEH:
Nama
: Muh. Zaki Riyanto
Nim
: 02/156792/PA/08944
Program Studi : Matematika
JURUSAN MATEMATIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS GADJAH MADA
DAERAH ISTIMEWA YOGYAKARTA
2007
1
Sebelum melangkah lebih jauh untuk membahas sifat – sifat ruang vektor,
perlu diberikan terlebih dahulu beberapa definisi dan teorema yang mendasarinya.
Pembaca diharapkan telah memahami beberapa konsep strukur aljabar seperti grup,
gelanggang dan lapangan. Diberikan suatu himpunan V dan suatu lapangan F.
Elemen dari V disebut vektor dan elemen dari F disebut skalar.
Ruang vektor mempunyai dua operasi biner, yaitu “+” dan “.” yang masing –
masing menotasikan operasi penjumlahan dua vektor dan operasi perkalian antara
suatu vektor dan skalar. Berikut diberikan definisi dari ruang vektor.
DEFINISI 1:
Himpunan V disebut ruang vektor (vector space) atas lapangan F jika
terhadap operasi biner “+” dan “.” memenuhi aksioma – aksioma di bawah ini. Untuk
setiap u , v, w ∈ V dan k , l ∈ F ,
1) u + v ∈ V ,
2) u + v = v + u ,
3) u + (v + w) = (u + v) + w ,
4) terdapat suatu elemen 0 ∈ V sedemikian sehingga u + 0 = u ,
5) terdapat −u ∈ V sedemikian sehingga u + (−u ) = 0 ,
6) k .u ∈ V ,
7) untuk suatu skalar 1 ∈ F ,1.u = u ,
8) k .(u + v) = k .u + k .v ,
9) (k + l ).u = k .u + l.u ,
10) (kl ).u = k .(l.u ) .
© 2007 oleh Muh. Zaki Riyanto – email: [email protected] – http://zaki.web.ugm.ac.id
2
Aksioma 1 – 5 menunjukkan bahwa (V , + ) merupakan grup abelian (grup
yang komutatif) terhadap operasi penjumlahan vektor. Aksioma 4 menunjukkan
adanya vektor nol yaitu 0 ∈ V yang menjadi elemen identitas terhadap operasi
penjumlahan. Aksioma 5 menunjukkan adanya elemen invers untuk setiap vektornya
yaitu vektor −u . Aksioma 6 menunjukkan bahwa V tertutup terhadap operasi
perkalian skalar. Aksioma 8 dan 9 menunjukkan sifat distributif. Dan aksioma 10
menunjukkan bahwa operasi perkalian skalar bersifat assosiatif.
CONTOH 1:
Diberikan M m×n (
)
himpunan semua matriks berukuran m × n atas
dan lapangan
dari bilangan – bilangan real terhadap operasi “+” dan “.”. Jika didefinisikan:
⊕ : operasi penjumlahan matriks
: operasi perkalian skalar dengan matriks,
maka M m×n (
)
merupakan ruang vektor atas lapangan
.
TEOREMA 1:
Misalkan V adalah suatu ruang vektor atas lapangan F, u vektor pada V dan
sebuah skalar k ∈ F . Maka
1) 0.u = 0 .
2) k .0 = 0 .
3) (−1).u = −u .
4) Jika k .u = 0 , maka k = 0 atau u = 0 .
© 2007 oleh Muh. Zaki Riyanto – email: [email protected] – http://zaki.web.ugm.ac.id
3
DEFINISI 2:
Subset W dari suatu ruang vektor V disebut subruang V jika W merupakan
ruang vektor terhadap operasi yang sama pada ruang vektor V.
Berikut ini deberikan sebuah teorema yang dapat digunakan untuk
menunjukkan bahwa suatu subset dari ruang vektor itu merupakan subruang dari
ruang vektor tersebut. Jadi, untuk menunjukkan bahwa subset tersebut adalah
subruang tidak harus menunjukkan ke sepuluh aksioma di atas (definisi 1) berlaku.
TEOREMA 2:
Jika W adalah subset tidak kosong dari suatu ruang vektor V, maka W
merupakan subruang V jika dan hanya jika dipenuhi sifat-sifat di bawah ini
1) untuk setiap u , v ∈ V , maka u + v ∈ W ,
2) untuk setiap k ∈ F dan u ∈ W , maka k .u ∈ W .
Setiap ruang vektor pada V mempunyai paling sedikit dua subruang, yaitu V
sendiri dan himpunan {0} yang elemennya hanya vektor nol saja, subruang ini sering
disebut dengan subruang nol.
TEOREMA 3:
Jika V ruang vektor atas lapangan F, dan U, W subruang dari V, maka
1) U ∩ W subruang dari V.
2) U + W = {u + w : u ∈ U , w ∈ W } subruang dari V.
© 2007 oleh Muh. Zaki Riyanto – email: [email protected] – http://zaki.web.ugm.ac.id
4
Perhatikan sistem persamaan linear berikut.
a11 .x1 + a12 .x2 + ... + a1n .xn = b1
a21.x1 + a22 .x2 + ... + a2 n .xn = b2
am1.x1 + am 2 .x2 + ... + amn .xn = bm
s1
atau, dalam notasi matriks, Ax = b. Suatu vektor s =
s2
pada
n
disebut dengan
sn
vektor penyelesaian (solution vector) dari sistem persamaan tersebut jika
x1 = s1 , x2 = s2 ,..., xn = sn merupakan penyelesaiannya. Dapat ditunjukkan bahwa
himpunan semua vektor penyelesaian dari sistem homogen tersebut merupakan
subruang dari
n
, dan disebut dengan ruang penyelesaian (solution space).
DEFINISI 3:
Suatu vektor w disebut kombinasi linear dari vektor – vektor v1 , v2 ,..., vr jika
vektor tersebut dapat dinyatakan dalam bentuk
w = k1.v1 + k2 .v2 + ... + kr .vr
dengan k1 , k2 ,..., kr adalah skalar.
DEFINISI 4:
Misal V ruang vektor atas lapangan F, dan S = {v1 , v2 ,..., vr } subset V.
Himpunan W yang elemennya terdiri dari semua kombinasi linear dari vektor –
vektor di S disebut himpunan yang dibangun oleh v1 , v2 ,..., vr (dibangun oleh S), dan
v1 , v2 ,..., vr membangun/pembangun W, dinotasikan dengan W = span( S ) .
© 2007 oleh Muh. Zaki Riyanto – email: [email protected] – http://zaki.web.ugm.ac.id
5
TEOREMA 4:
Jika V ruang vektor atas lapangan F dan S = {v1 , v2 ,..., vr } subset V, maka
1) W = span( S ) subruang V.
2) W merupakan subruang terkecil yang memuat S, yaitu jika terdapat W’
subruang dari V dan S subset W’, maka W subset W’.
3) W = span( S ) =
{U : U subruang V dan S ⊂ U }
yaitu irisan semua subruang
dari V yang memuat S.
TEOREMA 5:
Misal
V
ruang
vektor
atas
lapangan
F,
dan
S = {v1 , v2 ,..., vr } ,
S ′ = {w1 , w2 ,..., wr } subset – subset V. Maka span( S ) = span( S ′) jika dan hanya jika
untuk setiap i, 1 ≤ i ≤ r , berlaku wi ∈ span( S ) dan vi ∈ span( S ′) .
DEFINISI 5:
Misal V ruang vektor atas lapangan F, dan S = {v1 , v2 ,..., vr } subset V.
Himpunan S dikatakan bebas linear jika
k1.v1 + k2 .v2 + ... + kn .vn = 0
hanya
mempunyai penyelesaian k1 = k2 = ... = kn = 0 . Jika terdapat penyelesaian lain yang
tidak nol, maka himpunan S dikatakan tidak bebas linear.
TEOREMA 6:
Misal S = {v1 , v2 ,..., vr } adalah himpunan vektor – vektor di
n
. Jika r > n ,
maka S tidak bebas linear.
© 2007 oleh Muh. Zaki Riyanto – email: [email protected] – http://zaki.web.ugm.ac.id
6
TEOREMA 7:
Misal V ruang vektor atas lapangan F, S subset V dengan S ≥ 2 , maka
berlaku :
1) S tidak bebas linear jika dan hanya jika terdapat paling sedikit satu vektor di S
yang dapat disajikan sebagai kombinasi linear dari vektor – vektor lain di S.
2) S bebas linear jika dan hanya jika tidak ada vektor dari S yang merupakan
kombinasi linear dari vektor – vektor yang lain di S.
TEOREMA 7:
Misal V ruang vektor atas lapangan F, S subset V dengan S < ∞ . Jika S
memuat vektor nol, maka S tidak bebas linear.
DEFINISI 6:
Misal V ruang vektor atas lapangan F dan S = {v1 , v2 ,..., vr } subset V. Jika S
bebas linear dan span(S) = V, maka S disebut basis untuk V.
TEOREMA 8:
Misal V ruang vektor atas lapangan F dan S = {v1 , v2 ,..., vn } basis untuk V dan
S ′ = {w1 , w2 ,..., wm } subset V.
1) Jika m > n , maka S ′ tidak bebas linear.
2) Jika m < n , maka span( S ′) ≠ V .
3) Jika S ′ = {w1 , w2 ,..., wm } basis untuk V, maka n = m.
© 2007 oleh Muh. Zaki Riyanto – email: [email protected] – http://zaki.web.ugm.ac.id
7
DEFINISI 7:
Dimensi dari suatu ruang vektor V atas lapangan F, ditulis dim(V)
didefinisikan sebagai banyaknya vektor dalam basis untuk V. Dimensi dari ruang
vektor nol didefinisikan dengan 0.
TEOREMA 9:
Misal V ruang vektor atas lapangan F, S subset tak kosong dari V.
1) Jika S bebas linear dan v ∈ V , v ∉ span( S ) , maka S ∪ {v} bebas linear.
2) Jika v ∈ S dan v dapat disajikan sebagai kombinasi linear dari vektor –
vektor yang lain di S, maka span ( S − {v} ) = span( S ) .
TEOREMA 10:
Misal V ruang vektor atas lapangan F dengan dim(V) = n dan
S = {v1 , v2 ,..., vn } subset V, maka S basis untuk V jika span(S) = V atau S bebas linear.
DAFTAR PUSTAKA
Anton, Howard, 2000, Elementary Linear Algebra: Eight Edition, John Willey and
Sons, Inc., New York.
Vanstone, Scott A. and van Oorschot, Paul C., 1989, An Introduction to Error
Correcting Codes
with Applications, Kluwer Academic Publishers,
Massachusetts, USA.
© 2007 oleh Muh. Zaki Riyanto – email: [email protected] – http://zaki.web.ugm.ac.id
Download