PERTEMUAN X PERKALIAN JARAK DUA VEKTOR SUDUT ANTARA DUA VEKTOR PROJEKSI & KOMPONEN DUA VEKTOR PERKALIAN DUA VEKTOR 2 jenis perkalian dua vektor : a. Dot Product b. Cross Product DOT PRODUCT Lambang : u . v Hasil : skalar Definisi 1 (jika diketahui sudut antara 2 vektor ): Jika u dan v adalah vektor di ruang 2 atau ruang 3, dan adalah sudut di antara u dan v, maka hasil kali titik (dot product) atau hasil kali dalam Euclidis ( Euclidean inner product ) u.v didefinisikan oleh : u.v u v cos θ, jika u, v 0 u.v 0, jika u, v 0 Definisi 2 (Jika tidak diketahui sudut diantaranya ): Untuk u=(u1,u2) dan v=(v1,v2) maka : u.v = u1 v1 + u2 v2 Untuk u=(u1,u2,u3) dan v=(v1,v2,v3) maka : u.v = u1 v1 + u2 v2+ u3.v3 TEOREMA Jika v adalah vektor di R2 atau R3, maka : v.v v atau v v.v 2 TEOREMA Jika u,v dan w adalah vektor di R2 atau R3 dan k adalah skalar, maka : a. u . v = v. u b. u. (v (v + w ) = u.v + u.w c. k (u.v (u.v)) = (k u) .v .v = u . (kv (kv) d. v .v > 0 jika v 0 dan v.v = 0 jika v=0 CROSS PRODUCT Digunakan khusus untuk vektor di R3 Lambang : u x v Hasil : vektor Definisi : u u x v v 2 2 u u , v v 3 1 3 1 u u , v v 3 1 3 1 u v 2 2 TEOREMA a. b. c. d. e. f. g. h. i. Jika u dan v adalah vektor di R3 maka : u . (u (u x v) = 0 v. (u x v) = 0 u x v = - (v x u ) u x (v (v + w) = (u (u x v) + ( u x w) (u+v) x w=( =(u u x w) + ( v x w) k (u (u x v)=(k u) x v=u x kv kv u x 0 =0 x u = 0 u x u =0 u . (v x w) = w. (u x v ) = v. (w x u) SUDUT ANTARA 2 VEKTOR Jika u dan v adalah vektor tak nol, dan adalah sudut antara vektor u dan v, maka : u.v cos θ u v TEOREMA Jika u dan v adalah vektor vektor tak nol dan adalah sudut di antara kedua vektor tersebut, maka : lancip, jika dan hanya jika u.v 0 tumpul, jika dan hanya jika u.v 0 = /2 , jika dan hanya jika u.v = 0 PROJ (U,V) & KOMP (U,V) Dot product, berguna bila diinginkan untuk menguraikan vektor ke dalam penjumlahan dua vektor yang saling tegak lurus. Perhatikan gambar di bawah ini : w2 u w1 v Jika u dan v adalah vektor vektor tak nol dalam R2 atau R3, maka u dapat dituliskan : u = w1 + w2 di mana w1 adalah kelipatan skalar dari v, dan w2 tegak lurus kepada v. Dikatakan : w1 adalah projeksi ortogonal dari u pada v w2 adalah komponen dari u yang ortogonal kepada v Menentukan vektor w1 dan w2 : Karena w1 adalah kelipatan skalar dari v, maka dapat ditulis dalam bentuk w1 = kv kv . Jadi : u = w1 + w2 = kv + w2 Dengan definisi dari dot product maka didapatkan : u.v = (kv + w2).v = k v + w2.v Karena w2 tegak lurus kepada v, maka diperoleh w2.v = 0 sehingga pers menjadi : 2 k u.v v 2 dan karena w1 = kv, maka didapat : w 1 proj u.v v 2 v u.v (u, v) v 2 v yaitu projeksi ortogonal u pada v Dengan substitusi u = w1 + w2 untuk mendapatkan w2 maka didapat rumus berikut : u.v w u v v 2 2 yaitu komponen dari u yang tegak lurus pada v Jadi : u.v Proj(u, v) v v 2 u.v Komp (u, v) u v v 2