sarana berfikir ilmiah

advertisement
MATEMATIKA DAN STATISTIK SEBAGAI
SARANA BERFIKIR ILMIAH
Pendahuluan
Perkembangan ilmu dan filsafat diawali dari rasa ingin tahu , kemudian
meningkatnya rasa ingin tahu, lalu kebiasaan penalaran yang radikal dam
divergen yang kemudian terbagi dua yaitu berkembangnya logika (Deduktif) dan
Induktif, selanjutnya gabungan logika deduktif dan induktif yaitu proses Logika,
hipothetico dan verifikasi, terakhir adalah berkembangnya kreativitas.
Berdasarkan perkembangan ilmu abad 20 menjadikan manusia sebagai
mahluk istimewa dilihat dari kemajuan berimajinasi. Konsep terbaru filsapat
abad 20 di dasarkan atas dasar fungsi berfikir, merasa, cipta talen dan kreativitas.
Ilmu merupakan pengetahuan yang di dapatkan lewat metode ilmiah.
Untuk melakukan kegiatan ilmiah secara baik perlu sarana berfikir, yang
memungkinkan dilakukannya penelaahan ilmiah secara teratur dan cermat.
Sarana ilmiah pada dasarnya merupakan alat membantu kegiatan ilmiah dalam
berbagai langkah yang harus ditempuh. Tujuan mempelajari sarana ilmiah adalah
untuk memungkinkan kita melakukan penelaahan ilmiah secara baik, sedangkan
tujuan mempelajari ilmu dimaksudkan untuk mendapatkan pengehahuan yang
memungkinkan untuk bisa memecahkan masalah sehari-hari.
Ditinjau dari pola berfikirnya, maka maka ilmu merupakan gabungan
antara pola berfikir deduktif dan berfikir induktif, untuk itu maka penalaran
ilmiah menyadarkan diri kepada proses logika deduktif dan logika induktif
.Penalaran ilmiah mengharuskan kita menguasai metode penelitian ilmiah yang
pada hakekatnya merupakan pengumpulan fakta untuk mendukung atau menolak
hipotesis yang diajukan. Kemampuan berfikir ilmiah yang baik harus didukung
oleh penguasaan sarana berfikir ini dengan baik pula. Salah satu langkah kea rah
penguasaan itu adalah mengetahui dengan benar peranan masing-masing sarana
berfikir tersebut dalam keseluruhan berfikir ilmiah tersebut.
Berdasarkan pemikiran ini, maka tidak sukar untuk dimengerti mengapa
mutu kegiatan keilmuan tidak mencapai taraf yang memuaskan sekiranya sarana
berfikir ilmiahnya memang kurang dikuasai
Untuk dapat melakukan kegiatan ilmiah dengan baik, maka diperlukan
sarana yang berupa bahasa, logika, matematika dan statistik.
1
2
Bagaimana mungkin seorang bisa melakukan penalaran yang cermat,
tanpa menguasai struktur bahasa bahasa yang tepat.
Bagaimana seseorang bisa melakukan generalisasi tanpa menguasai
statistic?
Memang betul tidak semua masalah membutuhkan analisa statisti, namun
hal ini bukan berarti, bahwa kita tidak peduli terhadap statistik sama sekali dan
berpaling kepada cara-cara yang justru tidak bersifat ilmiah.
A. Matematika
1. Matematika sebagai bahasa
Matematika adalah bahasa yang melambangkan serangkaian makna dari
pernyataan yang ingi disampaikan.Lambang-lambang matematika bersifat
“Artifisial” yang baru mempunyai arti setelah sebuah makna diberikan
kepadanya.Bila kita mempelajari kecepatan jalan kaki seseorang anak maka
obyek “kecepatan jalan kaki seorang anak” dapat diberi lambang dengan x.
dalam hal ini x hanya mempunyai satu arti yaitu kecepatan jalan kaki seorang
anak. Bila dihubungkan dengan dengan obyek lain umpanya “jarak yang
ditempuh seoang anak” (y). maka dapat dibuat lambang hubungan tersebut
sebagai z = y/x, di mana z melambangkan waktu berjalan kaki seorang anak.
Pernyataan z = y/x kiranya jelas : Tidak mempunyai konotasi emosional dan
hanya mengemukakan informasi mengenai hubungan x, y dan z, artinya
matematika mempunyai sifat yang jelas, spesifik dan informative dengan tidak
menimbulkan konotasi yang bersifat emosional.
2. sifat kuantitatif dari matematika
Dengan bahasa verbal bila kita membandingkan dua obyek yang berlainan
umpamanya Gajah dan semut, maka hanya bisa mengatakan gajah lebih besar
dari semut, kalau ingin menelusuri lebih lanjut berapa besar gajah
dibandingkan dengan
semut, maka kita mengalami kesukaran dalam
mengemukakan hubungan itu, biia ingin mengetahui secara eksak berapa besar
gajah bila dibandingkan dengan semut, maka dengan bahasa verbal tidak dapat
mengatakan apa-apa.
Matematika mengembangkan konsep pengukuran, lewat pengukuran dapat
mengetahui dengan tepat berapa panjang. Bahasa verbal hanya mampu
3
mengemukakan pernyataan yang bersifat kualitatif, kita mengetahui bahwa
sebatang logam bila dipanaskan akan memanjang, tetapi tidak bisa mengatakan
berapa besar pertambahan panjang logamnya.
Untuk itu matematika mengembangkan konsep pengukuran, lewat
pengukuran, maka dapat mengetahui dengan tepat berapa panjang sebatang
logam dan berapa pertambahannya bila dipanaskan. dengan mengetahui hal ini
maka pernyataan ilmiah yang berupa pernyataan kualitatif seperti sebatang
logam bisa dipanaskan akan memanjang: dapat diganti dengan pernyataan
matematika yang lebih eksak umpamanya :
P1 = P0 (1 +ñ)
P1 pajang logam pada temperature t. P0 merupalam panjang logam pada
temperature nol dan n merupakan koefesiansi pemuai logam tersebut.
3. matematika : Sarana berfikir deduktif.
4. Perkembangan matematika
5. Beberapa aliran dalam filsafat matematika
6. Matematika dan poradabannya.
B. Statistik :
Dengan memasyarakatnya berfikir ilmiah, memungkinkan suatu hari
berfikir statistik akan merupakan keharusan bagi manusia seperti membaca dan
menulis.
1. Statistik dan cara berfikir induktif.
Ilmu secara sederhana dapat didefinisikan sebagai pengetahuan yang
telah teruji kebenarannya. Semua penyataan ilmiah adalah bersifat faktual, di
mana konsekuensinya dapat diuji dengan baik dengan jalan mempergunakan
panca indera, meupun dengan mempergunakan alat-alat yang membantu
panca indera tersebut. Pengujian secara empiris merupakan salah satu mata
rantai dalam metode ilmiah yang membedakan ilmu dari pengetahuan
pengetahuna lainnya. Pengujian merupakan suatu proses pengumpulan fakta
yang relevan dengan hipitesa yang diajukan. Sekiranya hipotesa itu didukung
oleh fakta-fakta empiris maka pernyataan hipotesis tersebut diterima atau
disahkan kebenarannya. Sebaliknya jika hipotesis tersebut bertentangan
dengan kenyataan maka hipotesa itu ditolak.
4
Pengujian mengharuskan untuk menarik kesimpulan yang bersifat
umum dari kasus-kasus yang bersifat individual. Umpamanya jika kita ingin
mengetahui berapa tinggi rata-rata anak umur 10 tahun di sebuah tempat,
maka nilai tinggi rata-rata anak yang dimaksud itu merupakan suatu
kesimpulan umum yang ditarik dalam kasus-kasus anak umum 10 tahun di
tempat itu. Jadi dalam hal ini kita menarik kesimpulan berdasarkan logika
induktif. Di pihak lain maka penyusunan hipotesis merupakan penarikan
kesimpulan yang bersifat khas dari pernyataan yang bersifat umum dengan
mempergunakan deduksi.
Penarikan kesimpulan tidak sama dan tidak boleh dicampur adukan,
Logika deduktif berpaling kepada matematika sebagai sarana penalaran
penarikan kesimpulan, sedangkan logika induktif berpaling kepada statistik.
Statistik merupakan pengetahuan untuk melakukan penarikan kesimpulan
induktif secara lebih seksama.
.
Download