Magnitudo Bolometrik Berbagai magnitudo yang telah kita bicarakan belum bisa menggambarkan sebaran energi pada spektrum bintang, karena magnitudo ini hanya diukur pada λ tertentu saja. Untuk itu didefinisikan magnitudo bolometrik (mbol) yaitu magnitudo bintang yang diukur dalam seluruh λ. Rumus Pogson untuk magnitudo semu bolometrik dituliskan sebagai, mbol = -2,5 log Ebol + Cbol . . . . . . . . . (4-14) Fluks bolometrik E = DND - 2006 L 4d2 tetapan Magnitudo mutlak bolometrik diberi simbol Mbol Magnitudo mutlak bolometrik mempunyai arti penting karena kita dapat memperoleh informasi mengenai energi total yang dipancarkan suatu bintang per detik (luminositas) yaitu dari rumus, Mbol – Mbol = -2,5 log L/L . . . . . . . . (4-15) Mbol : magnitudo mutlak bolometrik bintang Mbol : magnitudo mutlak bolometrik Matahari = 4,75 L L DND - 2006 : Luminositas bintang : Luminositas Matahari = 3,83 x 1033 erg/det Magnitudo bolometrik sukar ditentukan karena beberapa panjang gelombang tidak dapat menembus atmosfer Bumi. Bintang yang panas sebagian besar energinya dipancarkan pada panjang gelombang ultraviolet, sedangkan bintang yang dingin, sebagian besar energinya dipancarkan pada panjang gelombang inframerah. Keduannya tidak dapat menembus atmosfer Bumi. Magnitudo bolometrik bintang-bintang panas dan dingin ini ditentukan secara teori, atau penentuannya dilakukan di luar atmosfer Bumi. DND - 2006 Cara lain adalah cara tidak langsung, yaitu dengan memberikan koreksi pada magnitudo visualnya. Magnitudo visual adalah, V = -2,5 log EV + CV Magnitudo bolometrik adalah, mbol = -2,5 log Ebol + Cbol Dari dua persamaan ini diperoleh, V - mbol = -2,5 log EV / Ebol + C Atau V – mbol = BC . . . . . . . . . . . . . . . . . (4-16) BC disebut koreksi bolometrik (bolometric correction) yang harganya bergantung pada temperatur atau warna bintang DND - 2006 Koreksi bolometrik dapat juga dituliskan sebagai, mv – mbol = BC . . . . . . . . . . . . . . (4-17) mv adalah magnitudo visual Dalam magnitudo mutlak koreksi bolometrik dituliskan sebagai, Mv – Mbol = BC DND - 2006 . . . . . . . . . . . . . . (4-18) Untuk bintang yang sangat panas atau sangat dingin, sebagian besar energinya dipancarkan pada daerah ultraviolet atau inframerah, hanya sebagian kecil saja dipancarkan pada daerah visual. koreksi bolometriknya besar Untuk bintang yang temperaturnya sedang, seperti Matahari, sebagian besar energinya dipancarkan dalam daerah visual hingga perbedaan antara mbol dan V kecil. koreksi bolometriknya mencapai harga terkecil. Koreksi bolometrik bergantung pada warna bintang ! DND - 2006 Hubungan antara BC dengan B-V 2,00 Koreksi bolometrik yang minimum (BC = 0) terjadi pada harga B – V = 0,30 BC 1,50 Untuk bintang lainnya, apabila B – V diketahui, maka BC dapat ditentukan 1,00 Bintang Deret Utama Contoh, bintang Vega harga B – V = 0, Jadi harga koreksi bolometriknya adalah BC = 0,15 Bintang Maharaksasa 0,00 0,00 -0,20 0,00 0,40 B-V DND - 2006 0,80 1,20 Tabel 4.1. Temperatur efektif dan koreksi bolometrik untuk bintang-bintang Deret Utama dan Bintang Maharaksasa. Bintang B - V Deret Utama Teff BC Bintang Maharaksasa Teff B-V Bintang Deret Utama Teff BC BC Bintang Maharaksasa Teff BC -0,25 24500 2,30 26000 2,20 0,30 7450 0 6800 -0,100 -0,23 21000 2,15 23500 2,05 0,40 6800 0 6370 -0,090 -0,20 17700 1,80 19100 1,72 0,50 6310 0,03 6020 -0,070 -0,15 14000 1,20 14500 1,12 0,60 5910 0,07 5800 -0,003 -0,10 11800 0,61 12700 0,53 0,70 5540 0,12 5460 0,003 -0,05 10500 0,33 11000 0,14 0,80 5330 0,19 5200 0,100 0,00 9480 0,15 9800 -0,01 0,90 5090 0,28 4980 0,190 0,10 8530 0,04 8500 -0,09 1,00 4840 0,40 4770 0,300 0,20 7910 7440 -0,10 1,20 4350 0,75 4400 0,590 DND - 2006 0 Temperatur Effektif Bintang Pers. (2-29) : L = 4 R2 Tef 4 L E = Pers. (2-30) : 4d2 R R E= d R = d 2 Tef4 . (4-19) . . . . . . (4-20) Radius sudut bintang d Subtitusikan pers. (4-20) ke pers. (4-19) diperoleh, E = 2 Tef4 DND - 2006 . . . . . . . . . . . . (4-21) R d R = 2 . . . . . . . . . . . . . . (4-22) Garis tengah sudut Subtitusikan pers. (4-22) ke pers. (4-21) : E = 2 Tef4 diperoleh, E= Untuk Matahari : DND - 2006 E = 2 2 2 2 Tef4 . . . . . . . . . . (4-23) Tef4 . . . . . . . . . . (4-24) Bandingkan fluks bintang dengan fluks Matahari : Fluks bintang : E = FluksMatahari : E = 2 2 2 Tef4 2 Tef4 Tef = Tef 1/2 E E 1/4 Jika diambil logaritmanya, maka diperoleh, log (Tef /Tef) = 0,25 log (E /E) + 0,5 log (/) . . . . (4-25) DND - 2006 Dengan menggunakan rumus Pogson, didapatkan, mbol - mbol = - 2,5 log (E/E) . . . . . . . . . (4-26) Apabila pers. ini disubtitusikan ke pers. (4-25) : log (Tef /Tef) = 0,25 log (E /E) + 0,5 log (/) akan diperoleh, log Tef = log Tef 0,1 (mbol - mbol) + 0,5 (log log ) . . . . . . . . . (4-27) DND - 2006 Untuk Matahari diketahui, Tef = 5785 K, mbol = 26,79 dan = 1920” Jika harga-harga ini dimasukan ke pers. (4-27) : log Tef = log Tef - 0,1(mbol mbol ) + 0,5 (log log ) akan diperoleh, log Tef = 2,73 – 0,10 mbol – 0,50 log . . (4-28) dinyatakan dalam detik busur Jadi jika δ dan mbol dapat ditentukan maka Tef dapat dicari. DND - 2006 Jika Tef sudah dapat ditentukan, maka dengan menggunakan pers. (2-29) : L = 4 R2 Tef 4 ditentukan dari δ dapat dicari Atau mana saja yang duluan bisa ditentukan, maka yang lainnya dapat dicari. DND - 2006 Contoh: 1. Vega adalah bintang deret utama kelas A0 dengan Mv = 0,58. Tentukanlah Mbol dan Luminositasnya. Jawab: Koreksi Bolometrik Vega adalah, BC = 0,15 Mbol = 4,75 Dari pers. (4-18) : Mv – Mbol = BC diperoleh, Mbol = 0,58 – 0,15 = 0,43 Dari pers. (4-15) : Mbol – Mbol = -2,5 log L/L diperoleh, Mbol – Mbol 0,43 – 4,75 Log L/L = = = 1,73 2,5 2,5 Jadi, L = 53,46 L DND - 2006 2. Dari hasil pengukuran, diameter sudut bintang Vega adalah 3,24 x 103 detik busur, parallaksnya adalah p = 0”,133 dan koreksi bolometriknya BC = 0,15. Jika diketahui Mv = 0,58 tentukanlah, a. Temperatur efektifnya b. Radiusnya c. Dari nilai yang diperoleh dari butir a dan b, tentukan-lah Luminositasnya. Bandingkan hasilnya dengan contoh 1. Jawab: δ = 3,24 x 103 detik busur = 1,57 x108 radian p = 0,133 detik busur, DND - 2006 BC = 0,15 Mv = 0,58 a) p = 1/d d = 1/p = 1/0,133 = 7.52 pc = 2,32 x 1018 cm Rumus modulus jarak (pers. 4-9) untuk magnitudo bolometrik adalah, mv = -5 + 5 log 7.52 + 0,58 mv – Mv = -5 + 5 log d = – 0,04 Dari pers. (4-17) : mv – mbol = BC mbol = – 0,19 Dari pers. (4-28) : log Tef = 2,726 – 0,1mbol – 0,5 log diperoleh, log Tef = 2,726 – 0,1(– 0,19) – 0,5 log (3,24 x 103) Tef = 9766 K DND - 2006 R b) = d = 2 δ d (1,57 x 10 8) (2,32 x 1019) = R= 2 2 = 1,82 x 1011 cm = 12,62 R c) Luminositas bintang dapat ditentukan dari pers. L = 4 p R2 Tef 4 L = 4 (1,82 x 1011)2 (5,67 x 10-5) (9766)4 = 2,15 x 1035erg/s = 56,08 L Dari contoh 1, L = 53,46 L DND - 2006 Soal Latihan : 1. Dari pengamatan diperoleh bahwa magnitudo semu sebuah bintang adalah mv = 10,4 dan kereksi bolometriknya BC = 0,8. Jika parallaks bintang tersebut adalah p = 0”,001, tentukan luminositasnya. 2. Sebuah bintang mempunyai Tef = 8700 K, Mbol = 1,6 dan mbol = 0,8. Tentukanlah jarak, radius dan luminositas bintang tersebut. DND - 2006 Soal Latihan : 3. Magnitudo semu visual bintang Aql adalah 0,78, temperatur efektifnya adalah 8400 K. Jika parallaks bintang ini adalah 0”,198 dan diameter sudutnya 2,98 x 10-3 detik busur, tentukanlah : a. Koreksi bolometrik dan magnitudo mutlak bolometrik bintang tersebut. b. Luminositas dan radius bintang. DND - 2006 Penyerapan (Absorpsi) Cahaya Bintang Oleh Atmosfer Bumi Sebelum sampai ke permukaan Bumi, cahaya yang berasal dari benda-benda langit akan melewati atmosfer Bumi. Materi yang berada di atmosfer Bumi, akan menyerap cahaya tersebut sehingga cahaya yang diterima di Bumi menjadi lebih redup. Oleh karena itu pengamatan magnitudo bintang dari permukaan Bumi harus dikoreksi terhadap penyerapan ini. DND-2006 Perhatikan gambar berikut : Cahaya bintang merambat melalui atmosfer dan membentuk sudut terhadap arah zenit. disebut jarak zenit (sudut zenit pengamat) Pada saat cahaya bintang melalui atmosfer bumi (jarak s), sebagian cahaya tersebut diserap dan sebagian lagi disebarkan ke arah lain. Atmosfer atas x s Permukaan Bumi DND-2006 Zenit P (pengamat) Proses penyerapan ini dinyatakan oleh koefisien absorpsi yang diukur per cm dan sangat bergantung pada panjang gelombang. Intensitas cahaya bintang pada waktu melewati elemen jarak ds akan berkurang sebesar : Atmosfer atas Zenit dx ds x s Permukaan Bumi DND-2006 P dE = E ds . . . . . . . . . . . . . . . . (4-29) Tanda negatif berarti fluks berkurang dengan bertambahnya jarak Fluks yang diterima di bumi. Integrasikan pers. (4-29) dari E0 (fluks yang diamati di atas atmosfer) sampai E (fluks yang diamati di bumi) dan ds dari s sampai 0. Eλ E0λ DND-2006 0 dE = ds E s 0 E ln = ds E0 s 0 0 E = exp ds E0 E = E0λ exp ds s s . . . . . . . . . (4-30) 0 Definisikan tebal optis atmosfer bumi sepanjang garis s. τλ = ds . . . . . . . . . (4-31) s Subtitusikan pers. (4-31) ke pers. (4-30) diperoleh, E = E0λ e τ . . . . . . . . . . . . . (4-32) fluks yang diamati di bumi DND-2006 fluks yang diamati di atas atmosfer Misalkan m0 = magnitudo yang diamati di atas atmosfer m = magnitudo yang diamati di bumi Dari rumus Pogson (pers. 4-1) diperoleh, moλ – mλ = - 2,5 log (Eoλ/Eλ) . . . . . . . . . .(4-33) Subtitusikan pers. (4-30) : E = Eoλ e τ ke pers. (4-33) diperoleh, moλ – mλ = - 2,5 log (eτ ) moλ – mλ = - 2,5 τλ log e atau, mλ – moλ = 1,086 τλ . . . . . . . . . . .(4-34) Persamaan di atas mengatakan bahwa cahaya bintang pada waktu melewati atmosfer bumi dilemahkan sebesar 1,0856 τλ DND-2006 Karena (jarak zenit) selalu berubah dengan berubahnya waktu pengamatan, maka harga ekstingsi atmosfer (pengurangan intensitas cahaya bintang karena diserap dan disebarkan oleh atmosfer bumi) juga berubah terhadap waktu pengamatan. Apabila kita menggunakan bintang standar sepanjang waktu pengamatan, maka ekstingsi dapat ditentukan sebagai fungsi waktu; hasilnya dapat digunakan pada bintang yang kita amati. Untuk ketelitian yang tinggi, bintang standar harus berada di dekat bintang program, dalam hal ini, diperlukan bintang standar yang banyak. DND-2006 Menentukan Koefisien Absorpsi Andaikan atmosfer bumi plan paralel sehingga pembelokkan cahaya bintang oleh atmosfer bumi dapat diabaikan. Zenit sifat-sifat atmosfer bumi hanya bergantung pada ketinggian dari permukaan bumi (jadi koefisien absorpsi di titik A akan sama dengan di titik B) DND-2006 Atmosfer atas A’ A B dx ds x s Permukaan Bumi P Perhatikan gambar berikut : ds = sec dx . . . . . . . . . . . . . . . (4-35) dx Subtitusikan pers. (4-35) ke ds 0 pers. (4-29)Atmosfer : τλ = ds atas 0 0 s diperoleh, τλ = λ sec dx = sec λ s s Zenit B A dx . (4-36) dx . . . . . . ds x s Pada arah zenit, = 0, jadi pers. (4-36) dapat dituliskan menjadi 0 τoλ Permukaan = Bumi dx . . . . . . .P. . . . . . (4-37) s DND-2006 Subtitusikan Pers. (4-37) 0 : τoλ = dx s 0 τλ = τoλ sec . .(4-38) ke pers. (4-36) : τλ = sec dx s Selanjutnya subtitusikan pers. (4 -38) ke pers. (4-34) : mλ – mo = 1,086 τλ diperoleh, DND-2006 mλ – mo = 1,086 τoλ sec . . . . . . . . . (4-39) Untuk menentukan τoλ, bintang standard paling sedikit harus diamati dalam dua posisi. Biasanya sebelum pengamatan terhadap bintang program dan sesudahnya. Posisi bintang program sewaktu diamati Posisi ke-2 Posisi ke-1 bintang standar bintang standar Zenit 2 1 P DND-2006 Misalkan m1 magnitudo bintang standar pada waktu pengamatan pertama (t1), dan 1 jarak zenitnya. m2 magnitudo bintang standar pada waktu pengamatan kedua (t2), dan 2 jarak zenitnya. Dari pers. (4-39) diperoleh, mλ1 – mo = 1,086 τoλ sec 1 mλ2 – mo = 1,086 τoλ sec 2 mλ1 – m2 = 1,086 τo (sec 1 – sec 2). . . . . . . . . (4-40) DND-2006 atau τ o = m1 – m2 1,086 (sec 1 – sec 2) mλ1, m2, 1 dan 2 dapat diamati . . . . . . . . . . . . (4-41) τoλ dapat ditentukan Nilai τoλ ini selanjutnya bisa digunakan ke pers. (4-39) untuk bintang-bintang program. Pers. (4-39) : moλ - mλ = 1,086 τoλ sec dapat dicari dapat diamati DND-2006 dapat diamati ditentukan dari pers. (4-41) Contoh : 1. Sebuah bintang diamati dengan sebuah teropong yang ada di sebuah observatorium. Pada waktu bintang tersebut berada jarak zenit 35o, magnitudo semunya adalah 5,8, sedangkan pada waktu jarak zenitnya 15o, magnitudo semunya adalah 5,5. Berapakah magnitudo semu binatang tersebut apabila diamati di luar atmosfer bumi. DND-2006 Penyerapan (Absorpsi) Cahaya Bintang Oleh Materi Antar Bintang Ruang antar bintang tidak hampa. tetapi dipenuhi dengan materi antar bintang (MAB) Pada waktu melewati MAB ini, cahaya bintang mengalami pelemahan, karena sebagian cahaya bintang tersebut diserap oleh MAB. Oleh karena itu, magnitudo bintang yang diamati di Bumi, harus dikoreksi terhadap penyerapan/absorpsi ini. Eagle Nebula (M16) DND-2006 Proses penyerapan cahaya bintang oleh MAB pada prinsipnya hampir sama dengan proses penyerapan oleh atmosfer Bumi. Misalkan adalah koefisien absorpsi dalam cm-1 yang bergantung pada . Ketebalan optis antara bumi dengan bintang pada jarak s adalah (lihat pers. 4-31) : 0 τλ = ds . . . . . . . . . . . . . (4-42) s DND-2006 Akibat absorpsi oleh MAB ini, maka fluks yang diamati di Bumi (di luar atmosfer Bumi) adalah (lihat penentuan pers. 4-30) E = Eoλ e τ fluks yang diamati di luar atmosfer bumi . . . . . . . . . . . . . (4-43) fluks yang diamati sebelum melewati MAB Akibat penyerapan oleh MAB ini, magnitudo bintang di lemahkan sebesar (lihat penentuan pers. 4-34) DND-2006 mλ – m0λ = 1,086 τλ . . . . . . . . . . . . . (4-44) magnitudo di luar atmosfer bumi magnitudo sebelum melewati MAB Δ m = mλ – m0λ = Aλ . . . . . . . . . . . . . . . . . (4-45) disebut besaran absorpsi untuk panjang gelombang visual, pers. (4-45) menjadi, Δ mv = mv – m0v = Av . . . . . . . . . . . . . . . . . (4-46) Dengan demikian, persamaan Pogson harus dikoreksi terhadap absorpsi ini, sehingga persamaan Pogson (pers. 4-9) dapat dituliskan menjadi, m – M = -5 + 5 log d + Av . . . . . . . . . . . . (4-47) DND-2006 Untuk pengamatan dalam dua panjang gelombang yang berbeda yaitu 1 dan 2, Pers. (4-45) : m – mo = A dapat dituliskan menjadi, (m1 – mo 1 ) – (m 2 – mo 2 ) = Aλ1– A 2 atau (m 1 – m 2 ) – (m 1 – m 2 )o = A 1– A 2 disebut Ekses Warna dan diberi simbol E Jadi : E 12= (m1 m 2 ) (m1 m 2 )o = A 1 A 2 . . . . (4-48) DND-2006 Selanjutnya definisikan perbandingan absorpsi sbb: R= Maka Aλ 1 . . . . . . . . . . . . . . . (4-49) Eλ 12 A 1 = R Eλ12 . . . . . . . . . . . . . . (4-50) Untuk sistem UBV , ekses warna dituliskan sebagai EBV = E(B - V) = (B - V) - (B - V)o . . . . . . (4-51) dan DND-2006 AV = R EBV . . . . . . . . . . . . . (4-52) Untuk MAB yang normal , harga R = 3,2 sehingga : AV = 3,2 EBV . . . . . . . . . . . . . . . (4-53) Makin besar harga R, maka absorpsi disebabkan oleh MAB akan semakin besar. Pada umumnya, untuk MAB : mB = 1,31 mV mU = 1,53 mV mB - mV = (B - V) = 0,31 mV mU - mB = (U - B) = 0,22 mV DND-2006 yang Dari hubungan ini diperoleh, (U - B) = 0,72 (B - V) atau E(U - B) E(B - V) = EUB EBV = 0,72 . . . . . . . . . . . (4-54) dapat digunakan untuk mengoreksi absorpsi yang disebabkan oleh MAB, Absorpsi cahaya bintang oleh MAB disebut juga sebagai efek pemerahan (reddening) karena akibat absorpsi, cahaya bintang menjadi lebih merah DND-2006 Untuk menentukan efek pemerahan suatu bintang, dapat digunakan diagram dua warna sebagai berikut : Buat diagram antara (U-B) dan (B-V) untuk bintangbintang yang tidak mengalami absorpsi 1.2 arah pemerahan, ditentukan dari 0.8 E(U - B) (U B)O 0.4 E(B - V) 0.0 0.4 0.8 1.2 DND-2006 0. 4 0.0 0.4 0.8 (B V)O 1.2 = 0,72 Jika kita mempunyai indeks warna (U B) dan (B V) suatu bintang hasil pengamatan, maka indeks warna bintang tersebut kita plotkan dalam diagran dua warna tersebut. 1.2 A’ 0.8 A (U B)O 0.4 B’’’ B’’ 0.0 B’ 0.4 0.8 1.2 DND-2006 B 0.4 0.0 0.4 0.8 (B V)O 1.2 Tugas : Buat diagram dua warna dg menggunakan data warna intrinsik bintang sebanyak mungkin (Cari sendiri datanya). Selanjutnya cari paling sedikit 5 buah bintang hasil pengamatan, kemudian tentukan magnitudo intrinsik bintang tersebut dengan menggunakan diagram dua warna yang anda buat. DND-2006 Soal Latihan 1. Dari hasil pengamatan terhadap sebuah bintang diperoleh, B = 4,53 dan V = 4,42, Apabila warna instrinsik bintang ini sudah diketahui yaitu (B – V)o = 0,25, dan magnitudo mutlaknya Mv = 2,8 tentukanlah : a. Magnitudo visual intrinsiknya b. Jarak sebenarnya bintang ini (misalkan konstanta absorpsinya R = 3,2) Lanjut ke Bab V Kembali ke Daftar Materi DND-2006