PENYELESAIAN PERSAMAAN LINIER SIMULTAN ANNISA PUSPA KIRANA, S.KOM, M.KOM PERSAMAAN LINIER SIMULTAN Persamaan linier simultan adalah suatu bentuk persamaan-persamaan yang secara bersama-sama menyajikan banyak variabel bebas Bentuk persamaan linier simultan dengan m persamaan dan n variabel bebas aij untuk i=1 s/d m dan j=1 s/d n adalah koefisien atau persamaan simultan xi untuk i=1 s/d n adalah variabel bebas pada persamaan simultan PERSAMAAN LINIER SIMULTAN Penyelesaian persamaan linier simultan adalah penentuan nilai xi untuk semua i=1 s/d n yang memenuhi semua persamaan yang diberikan. AX = B Matrik A = Matrik Koefisien/ Jacobian. Vektor x = vektor variabel vektor B = vektor konstanta. a11 a 21 ... a m1 a12 a 22 ... am2 ... a1n x1 b1 ... a 2 n x 2 b2 ... ... ... ... ... a mn x n bn PERSAMAAN LINIER SIMULTAN Persamaan Linier Simultan atau Sistem Persamaan Linier mempunyai kemungkinan solusi : Tidak mempunyai solusi Tepat satu solusi Banyak solusi AUGMENTED MATRIX Matrik yang merupakan perluasan matrik A dengan menambahkan vector B pada kolom terakhirnya, dan dituliskan: Augmented (A) = [A B] a11 a 21 ... a m1 a12 a 22 ... am2 a13 a 23 ... am3 ... a1n ... a 2 n ... ... ... a mn b1 b2 ... bm CONTOH 1 : Seorang pembuat boneka ingin membuat dua macam boneka yaitu boneka A dan boneka B. Kedua boneka tersebut dibuat dengan menggunakan dua macam bahan yaitu potongan kain dan kancing. Boneka A membutuhkan 10 potongan kain dan 6 kancing, sedangkan boneka B membutuhkan 8 potongan kain dan 8 kancing. Permasalahannya adalah berapa buah boneka A dan boneka B yang dapat dibuat dari 82 potongan kain dan 62 kancing ? CONTOH 1 Permasalahan ini dapat dimodelkan dengan menyatakan : x = jumlah boneka A y = jumlah boneka B Untuk setiap bahan dapat dinyatakan bahwa: Potongan kain 10 untuk boneka A + 8 untuk boneka B = 82 Kancing 6 untuk boneka A + 8 untuk boneka B = 62 Atau dapat dituliskan dengan : 10 x + 8 y = 82 6 x + 8 y = 62 Penyelesaian dari permasalahan di atas adalah penentuan nilai x dan y yang memenuhi kedua persamaan di atas. CONTOH 2 : Perhatikan potongan peta yang sudah diperbesar (zoom) sebagai berikut : 3 4 2 1 Perhatikan bahwa pada ke-4 titik tersebut dihubungkan dengan garis lurus, sehingga tampak kasar. Untuk menghaluskannya dilakukan pendekatan garis dengan kurva yang dibentuk dengan fungsi pendekatan polinomial. Dari fungsi polinomial yang dihasilkan kurva dapat digambarkan dengan lebih halus. CONTOH 2 : 4 titik yang ditunjuk adalah (2,3), (7,6), (8,14) dan (12,10). 4 titik ini dapat didekati dengan fungsi polinom pangkat 3 yaitu : y ax3 bx 2 cx d Bila nilai x dan y dari 4 titik dimasukkan ke dalam persamaan di atas akan diperoleh model persamaan simultan sebagai berikut : Titik 1 Titik 2 Titik 3 Titik 4 3=8a+4b+2c+d 6 = 343 a + 49 b + 7 c + d 14 = 512 a + 64 b + 8 c + d 10 = 1728 a + 144 b + 12 c + d Nilai a, b, c dan d adalah penyelesaian dari permasalahan di atas. CONTOH 2 : Setelah nilai a, b, c dan d diperoleh maka persamaan polinomialnya didapatkan dan dengan menggunakan step x yang lebih kecil dapat digambarkan grafiknya dengan lebih halus. THEOREMA 4.1. Suatu persamaan linier simultan mempunyai penyelesaian tunggal bila memenuhi syarat-syarat sebagai berikut. Ukuran persamaan linier simultan bujursangkar, dimana jumlah persamaan sama dengan jumlah variable bebas. Persamaan linier simultan non-homogen dimana minimal ada satu nilai vector konstanta B tidak nol atau ada bn 0. Determinan dari matrik koefisien persamaan linier simultan tidak sama dengan nol. METODE ANALITIK Metode grafis Aturan Crammer Invers matrik METODE NUMERIK Metode Eliminasi Gauss Metode Eliminasi Gauss-Jordan Metode Iterasi Gauss-Seidel METODE ELIMINASI GAUSS Metode Eliminasi Gauss merupakan metode yang dikembangkan dari metode eliminasi, yaitu menghilangkan atau mengurangi jumlah variable sehingga dapat diperoleh nilai dari suatu variable bebas matrik diubah menjadi augmented matrik : a11 a 21 ... a n1 a12 ... a1n a 22 ... a 2 n ... ... an2 ... ... a nn b1 b2 ... bn METODE ELIMINASI GAUSS Ubah matrik menjadi matrik segitiga atas atau segitiga bawah dengan menggunakan OBE (Operasi Baris Elementer). a11 a 21 a31 ... a n1 a12 a13 ... a1n a 22 a 23 ... a 2 n a32 ... a33 ... ... a3n ... ... an2 a n 3 ... a nn b1 b2 b3 ... bn c11 0 0 ... 0 c12 c13 ... c1n c 22 c 23 ... c 2 n 0 ... c33 ... ... c3n ... ... 0 0 ... c nn d1 d 2 d3 ... d n OPERASI BARIS ELEMENTER Metode dasar untuk menyelesaikan Sistem Persamaan Linier adalah mengganti sistem yang ada dengan sistem yang baru yang mempunyai himp solusi yang sama dan lebih mudah untuk diselesaikan Sistem yang baru diperoleh dengan serangkaian step yang menerapkan 3 tipe operasi. Operasi ini disebut Operasi Baris Elementer 1. Multiply an equation through by an nonzero constant. 2. Interchange two equation. 3. Add a multiple of one equation to another. METODE ELIMINASI GAUSS Sehingga penyelesaian dapat diperoleh dengan: dn xn c nn x n 1 1 c n 1,n 1 c n 1, n x n d n 1 ..................................... 1 d 2 c23 x3 c24 x4 ... c2 n xn x2 c 22 1 d1 c12 x2 c13 x3 ... c1n xn x1 c11 CONTOH : Selesaikan sistem persamaan berikut: x1 x 2 x3 6 x1 2 x 2 x3 2 2 x1 x 2 2 x3 10 Augmented matrik dari persamaan linier simultan tersebut : 1 1 1 6 1 2 1 2 2 1 2 10 CONTOH : B2 B1 Lakukan operasi baris elementer B3 2B1 B3 B2 1 6 1 1 0 1 2 4 0 1 0 2 6 1 1 1 0 1 2 4 0 0 2 6 CONTOH : Penyelesaian : 6 x3 3 2 1 x 2 4 (2)3 2 1 1 x1 6 2 3 1 1 ECHELON FORMS This matrix which have following properties is in reduced row-echelon form (Example 1, 2). 1. If a row does not consist entirely of zeros, then the first nonzero number in the row is a 1. We call this a leader 1. 2. If there are any rows that consist entirely of zeros, then they are grouped together at the bottom of the matrix. 3. In any two successive rows that do not consist entirely of zeros, the leader 1 in the lower row occurs farther to the right than the leader 1 in the higher row. 4. Each column that contains a leader 1 has zeros everywhere else. A matrix that has the first three properties is said to be in row-echelon form (Example 1, 2). A matrix in reduced row-echelon form is of necessity in row-echelon form, but not conversely. EXAMPLE 1 form: reduced row-echelon 2 0 1 ROW-ECHELON & REDUCED FORM 0 1 ROW-ECHELON 1 0 0 4 1 0 0 0 1 0 7 , 0 1 0 , 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 3 0 0 , 0 0 0 0 0 0 row-echelon form: 1 4 3 7 1 1 0 0 1 2 6 0 0 1 6 2 , 0 1 0 , 0 0 1 1 0 0 0 1 5 0 0 0 0 0 0 0 1 EXAMPLE 2 MORE ON ROW-ECHELON AND REDUCED ROW-ECHELON FORM All matrices of the following types are in row-echelon form ( any real numbers substituted for the *’s. ) : 1 0 0 0 * * * 1 1 * * 0 , 0 1 * 0 0 0 1 0 * * * 1 1 * * 0 , 0 1 * 0 0 0 0 0 0 * * * 0 1 * * , 0 0 0 0 0 0 0 0 0 1 * * * * * * * * 0 0 1 * * * * * * 0 0 0 1 * * * * * 0 0 0 0 1 * * * * 0 0 0 0 0 0 0 1 * All matrices of the following types are in reduced row-echelon form ( any real numbers substituted for the *’s. ) : 1 0 0 0 0 0 0 1 1 0 0 0 , 0 1 0 0 0 0 1 0 0 0 * 1 1 0 * 0 , 0 1 * 0 0 0 0 0 0 * 1 * 0 0 0 0 0 * 0 * , 0 0 0 0 0 1 * 0 0 0 * * 0 * 0 0 1 0 0 * * 0 * 0 0 0 1 0 * * 0 * 0 0 0 0 1 * * 0 * 0 0 0 0 0 0 0 1 * CONTOH SOLUSI DARI SISTEM PERS LINIER Anggaplah ini adalah matrik dari Sistem Persamaan Linier yang telah direduksi dengan bentuk row echelon. 1 0 0 5 (a) 0 1 0 2 0 0 1 4 Solution (a) 5 x y -2 z 4 EXAMPLE 3 SOLUTIONS OF FOUR LINEAR SYSTEMS (B1) 1 0 0 4 1 (b) 0 1 0 2 6 0 0 1 3 2 Solution (b) 4 x4 - 1 x1 x2 2 x4 6 x3 3x4 2 leading variables free variables EXAMPLE 3 SOLUTIONS OF FOUR LINEAR SYSTEMS (B2) x1 - 1 - 4 x4 x 2 6 - 2 x4 x3 2 - 3 x4 Free variabel kita misalkan dengan t. Sehingga selanjutnya dapat kita tentukan leading variabelnya. Sistem Persamaan Linier menghasilkan banyak solusi x1 1 4t , x2 6 2t , x3 2 3t , x4 t EXAMPLE 3 SOLUTIONS OF FOUR LINEAR SYSTEMS (C1) 1 0 (c) 0 0 6 0 0 4 2 0 1 0 3 1 0 0 1 5 2 0 0 0 0 0 Solution (c) 1. Pada baris ke-4 semuanya nol sehingga persamaan ini dapat diabaikan x1 6 x2 4 x5 - 2 x3 3x5 1 x4 5 x5 2 EXAMPLE 3 SOLUTIONS OF FOUR LINEAR SYSTEMS (C2) Solution (c) 2. Selesaikan leading variabel dengan free variabel 3. Free variabel kita misalkan dengan t (sembarang value). Sehingga Sistem Persamaan Linier menghasilkan banyak solusi x1 - 2 - 6 x2 - 4 x5 x3 1 - 3x5 x4 2 - 5 x5 x1 - 2 - 6 s - 4t , x2 s x3 1 - 3t x4 2 - 5t , x4 t EXAMPLE 3 SOLUTIONS OF FOUR LINEAR SYSTEMS (D) 1 0 0 0 (d) 0 1 2 0 0 0 0 1 Solution (d): Persamaan terakhir pada Sistem Persamaan Linier 0 x1 0 x2 0 x3 1 Karena persamaan ini tidak konsisten, maka Sistem ini tidak mempunyai solusi EXAMPLE 3 SOLUTIONS OF FOUR LINEAR SYSTEMS (D) 1 0 0 0 (d) 0 1 2 0 0 0 0 1 Solution (d): the last equation in the corresponding system of equation is 0 x1 0 x2 0 x3 1 Since this equation cannot be satisfied, there is no solution to the system. We shall give a step-by-step elimination procedure that can be used to reduce any matrix ELIMINATION METHODS (1/7) to reduced row-echelon form. 0 0 2 0 7 12 2 4 10 6 12 28 2 4 5 6 5 1 ELIMINATION METHODS (2/7) Step1. Locate the leftmost column that does not consist entirely of zeros. 0 0 2 0 7 12 2 4 10 6 12 28 2 4 5 6 5 1 Leftmost nonzero column Step2. Interchange the top row with another row, to bring a nonzero entry to top of the column found in Step1. 2 4 10 6 12 28 0 0 2 0 7 12 2 4 5 6 5 1 The 1th and 2th rows in the preceding matrix were interchanged. ELIMINATION METHODS (3/7) Step3. If the entry that is now at the top of the column found in Step1 is a, multiply the first row by 1/a in order to introduce a leading 1. 1 2 5 3 6 14 0 0 2 0 7 12 2 4 5 6 5 1 The 1st row of the preceding matrix was multiplied by 1/2. Step4. Add suitable multiples of the top row to the rows below so that all entires below the leading 1 become zeros. 14 1 2 5 3 6 0 0 2 0 7 12 0 0 5 0 17 29 -2 times the 1st row of the preceding matrix was added to the 3rd row. ELIMINATION METHODS (4/7) Step5. Now cover the top row in the matrix and begin again with Step1 applied to the submatrix that remains. Continue in this way until the entire matrix is in row-echelon form. 14 1 2 5 3 6 0 0 2 0 7 12 0 0 5 0 17 29 14 1 2 5 3 6 0 0 1 0 7 6 2 0 0 5 0 17 29 Leftmost nonzero column in the submatrix The 1st row in the submatrix was multiplied by -1/2 to introduce a leading 1. ELIMINATION METHODS (5/7) 1 2 5 3 6 14 0 0 1 0 7 6 2 1 0 0 0 0 2 1 Step5 (cont.) 1 2 5 3 6 0 0 1 0 7 2 0 0 0 0 12 14 6 1 1 2 5 3 6 0 0 1 0 7 2 0 0 0 0 1 14 6 2 -5 times the 1st row of the submatrix was added to the 2nd row of the submatrix to introduce a zero below the leading 1. The top row in the submatrix was covered, and we returned again Step1. Leftmost nonzero column in the new submatrix The first (and only) row in the new submetrix was multiplied by 2 to introduce a leading 1. The entire matrix is now in row-echelon form. ELIMINATION (6/7) Step6. Beginning with las nonzeroMETHODS row and working upward, add suitable multiples of each row to the rows above to introduce zeros above the leading 1’s. 1 2 5 3 6 14 0 0 1 0 0 1 0 0 0 0 1 2 1 2 5 3 0 2 0 0 1 0 0 1 0 0 0 0 1 2 7/2 times the 3rd row of the preceding matrix was added to the 2nd row. -6 times the 3rd row was added to the 1st row. 1 2 0 3 0 7 0 0 1 0 0 1 5 times the 2nd row was added to the 1st row. 0 0 0 0 1 2 The last matrix is in reduced row-echelon form. ELIMINATION METHODS (7/7) Step1~Step5: the above procedure produces a row-echelon form and is called Gaussian elimination. Step1~Step6: the above procedure produces a reduced row-echelon form and is called Gaussian-Jordan elimination. Every matrix has a unique reduced row-echelon form but a row-echelon form of a given matrix is not unique. ALGORITMA METODE ELIMINASI GAUSS METODE ELIMINASI GAUSS JORDAN Metode ini merupakan pengembangan metode eliminasi Gauss, hanya saja augmented matrik, pada sebelah kiri diubah menjadi matrik diagonal a11 a 21 a31 ... a n1 a12 a13 ... a1n a 22 a 23 ... a 2 n a32 ... a33 ... ... a3n ... ... an2 a n 3 ... a nn b1 b2 b3 ... bn 1 0 0 ... 0 d1 ... 0 d 2 ... 0 d 3 ... ... ... ... 1 d n 0 0 ... 0 1 0 0 1 ... ... 0 0 Penyelesaian dari persamaan linier simultan diatas adalah nilai d1,d2,d3,…,dn dan atau: x1 d1 , x2 d 2 , x3 d 3 ,...., xn d n CONTOH : Selesaikan persamaan linier simultan: x1 x 2 3 2 x1 4 x 2 8 Augmented matrik dari persamaan linier simultan 1 1 3 2 4 8 Lakukan operasi baris elementer Penyelesaian persamaan linier simultan : x1 = 2 dan x2 = 1 1 1 3 B2 2b1 0 2 2 1 1 3 B 2 / 2 0 1 1 1 0 2 B1 B2 0 1 1 CONTOH : x y 2z 9 2 x 4 y 3z 1 3x 6 y 5 z 0 1 1 2 9 2 4 3 1 3 6 5 0 B2-2B1 B2-2B1 x y 2z 9 2 y 7 z 1 7 3x 6 y 5 z 0 9 1 1 2 0 2 7 17 3 6 5 0 B3-3B1 B3-3B1 EXAMPLE 3 USING ELEMENTARY ROW OPERATIONS(2/4) x y 2z 9 2 y 7 z 17 3 y 11z 27 ½ B2 9 1 1 2 0 2 7 17 0 3 11 27 ½ B2 x y 2z 9 y 72 z 172 3 y 11z B3-3B2 0 9 1 1 2 0 1 7 17 2 2 0 3 11 27 B3-3B2 EXAMPLE 3 USING ELEMENTARY ROW OPERATIONS(3/4) x y 2z 9 y 72 z 172 -2 B3 9 172 32 9 y 72 z 172 B1- B2 z 3 12 z 32 1 1 2 0 1 7 2 0 0 12 x y 2z -2 B3 1 1 2 0 1 7 2 0 0 1 9 172 3 B1- B2 EXAMPLE 3 USING ELEMENTARY ROW OPERATIONS(4/4) x 112 z 35 2 B2 + 7/2 B3 y y 72 z 172 z 3 1 0 112 7 0 1 2 0 0 1 3 35 2 17 2 1 x B1 - 11/2 B3 B2 + 7/2 B3 B1 - 11/2 B3 Solusi x = 1, y=2 dan z=3 2 z 3 1 0 0 1 0 1 0 2 0 0 1 3