MODEL MATEMATIKA SIR (SUSCEPTIBLES, INFECTION, RECOVERY) UNTUK PENYEBARAN WABAH PENYAKIT PADA SUATU POPULASI TERTUTUP Muhamad Zaki Riyanto NIM: 02/156792/PA/08944 E-mail: [email protected] http://zaki.math.web.id Dosen Pembimbing: Dr. Lina Aryati, MS Pendahuluan Kejadian penularan wabah penyakit yang terjadi pada suatu populasi dapat dimodelkan ke dalam bentuk matematis, salah satunya adalah model SIR (Susceptibles, Infection, Recovery). Model SIR dikembangkan pertama kali untuk mengetahui laju penyebaran dan kepunahan suatu wabah penyakit dalam suatu populasi tertutup dan bersifat epidemik. Model SIR Tanpa Kelahiran dan Kematian Model SIR yang pertama menggunakan asumsi sebagai berikut : 1. Penyakit dapat disembuhkan, tidak menyebabkan kematian. 2. Hanya menular melalui kontak langsung dengan penderita. 3. Seseorang yang pernah sembuh dari penyakit tersebut tidak akan terserang lagi, karena telah mempunyai kekebalan. 4. Populasi tetap (tidak ada kelahiran dan kematian). 5. Tidak ada masa inkubasi apabila terjadi proses penularan. 6. Masa terjangkit yang cukup lama. Copyright © 2008 http://zaki.math.web.id 1 Selanjutnya, misalkan : S = Ukuran subpopulasi yang rentan terserang penyakit I = Ukuran subpopulasi yang terinfeksi dan dapat menularkan penyakit ke suatu subpopulasi lainnya yang rentan tertular. R = Ukuran subpopulasi yang sembuh dari penyakit dan telah mempunyai kekebalan. t = Waktu Diasumsikan : 1. Laju kesembuhan α konstan. 2. Laju penularan penyakit β konstan. Sesuai dengan permisalan dan asumsi di atas, maka model SIR dapat digambarkan sebagai berikut. β α S → I →R Gambar 1. Model SIR tanpa kelahiran dan kematian Dengan demikian, dapat diperoleh model matematis berikut : dS = − β SI , dt dI = β SI − α I , dt dR = α I ............................................................................. (1) dt Proses suatu subpopulasi terinfeksi membutuhkan waktu yang dipengaruhi saat terjadi kontak antara subpopulasi yang rentan dengan subpopulasi yang terinfeksi berlangsung. Untuk mengetahui tingkat penyebaran penyakit saat terjadi kontak digunakan basic reproduction ratio (Ro), yaitu laju pertumbuhan awal yang menyatakan Copyright © 2008 http://zaki.math.web.id 2 nilai harapan (ekspektasi) jumlah kasus terserang setelah terjadi kontak terhadap kasus sebelum terjadi kontak. Berdasarkan sistem persamaan (1) di atas dapat diperoleh bahwa nilai basic reproduction ratio-nya adalah Ro = βN . α Model SIR dengan Kelahiran dan Kematian Model SIR dikembangkan lebih lanjut berdasarkan asumsi-asumsi yang telah dibuat pada model SIR pertama, tetapi ada perbedaan yaitu dengan asumsi bahwa dalam populasi terjadi proses kelahiran dan kematian. Selanjutnya, misalkan 1. Laju kematian µ konstan. 2. Laju kelahiran δ konstan. Model SIR kedua ini dapat digambarkan sebagai berikut. δ β α → S → I →R ↓µ ↓µ ↓µ Gambar 2. Model SIR dengan kelahiran dan kematian Berdasarkan asumsi dan permisalan di atas, dapat diperoleh model matematis sebagai berikut. dS = δ − β SI − µ S , dt dI = β SI − µ I − α I , dt dR = α I − µ R ............................................................................. (2) dt Copyright © 2008 http://zaki.math.web.id 3 Selanjutnya, dapat diperoleh bahwa nilai basic reproduction ratio-nya adalah Ro = βN . µ +α Kestabilan Sistem Perhatikan sistem persamaan di bawah ini. dS = δ − β SI − µ S , dt dI = β SI − µ I − α I .................................................................... (3) dt Akan diselidiki kestabilan sistem persamaan (3) di atas. Misalkan f ( S , I ) = δ − β SI − µ S g ( S , I ) = β SI − µ I − α I Maka untuk I ≠ 0 diperoleh titik kesetimbangan ( S , I ) = ( N ,0 ) , dengan N = δ . µ Selanjutnya dilakukan linearisasi pada persamaan (3) di atas. Diketahui : ∂f ( S , I ) ∂S ∂f ( S , I ) ∂I ∂g ( S , I ) ∂S ∂g ( S , I ) ∂I = = = = ∂ (δ − β SI − µ S ) ∂S ∂ (δ − β SI − µ S ) ∂I = βI −µ , = βS , ∂ ( β SI − µ I − α I ) ∂S ∂ ( β SI − µ I − α I ) ∂I = βS , = β S − µ −α . Diperoleh matriks Jacobian pada ( S , I ) = ( N ,0 ) , yaitu −µ 0 (J ) = Copyright © 2008 http://zaki.math.web.id −β N . β N − µ − α 4 Sehingga diperoleh sistem persamaan linear berikut. dS dt − µ = dI 0 dt −β N S . β N − µ − α I Dapat dilihat bahwa pada sistem persamaan (3) di atas, titik kesetimbangan ( S , I ) = ( N ,0 ) , dengan N= δ βN stabil asimtotik jika dan hanya jika Ro = < 1. µ α +µ Jika sistem persamaan (3) di atas mempunyai titik kesetimbangan (equilibrium) ( S , I ) = ( S , I ) dengan 1. I > 0 , maka : S 1 = . N Ro 2. I = µ ( Ro − 1) ada, jika Ro > 1 . β Selanjutnya, jika berlaku kesetimbangan S 1 µ βN = , I = ( Ro − 1) dan Ro = , maka titik N Ro β α +µ ( S , I ) = ( N ,0 ) stabil asimtotik. Rata-rata Lama Infeksi Untuk menentukan rata-rata lama waktu infeksi, digunakan fungsi density. Diasumsikan bahwa proporsi kematian dan terinfeksi sama, dan sistem dalam keadaan setimbang. Selanjutnya, misalkan : PS (a ) : Probabilitas seseorang yang rentan untuk tetap hidup dan belum terinfeksi walaupun telah terjadi kontak dengan individu yang terinfeksi pada umur a tahun. PI (a ) : Probabilitas seseorang yang rentan terinfeksi dan tetap hidup setelah terjadi kontak dengan individu terinfeksi pada umur a tahun. k : Laju infeksi (konstan). Copyright © 2008 http://zaki.math.web.id 5 Perhatikan gambar berikut ini. k S →I ↓µ ↓µ Gambar 3. Dapat dibentuk model laju probabilitas rentan dan laju probabilitas terinfeksi sebagai berikut. dPS = − kPS − µ PS = − ( k + µ ) PS , PS (0) = 1 , da dPI = kPS − µ PI , PI (0) = 0 ........................................................................ (4) da Dari persamaan pertama pada sistem persamaan (4) di atas, diperoleh dPS = − ( k + µ ) PS = − ( k + µ ) da . da Jika kedua ruas diintegralkan, diperoleh dPS ∫ da = ∫ − ( k + µ ) da ⇔ ln P S = − ( k + µ ) a + ln c . Jadi, diperoleh PS = e−( k + µ ) a . Dengan demikian, nilai probabilitas individu terinfeksi pada umur a tahun adalah kPS = ke −( k + µ ) a . Selanjutnya, diperoleh rata-rata lama terinfeksi pada umur a tahun, yaitu Copyright © 2008 http://zaki.math.web.id 6 ∞ ∞ ∫ akPS (a)da a = 0 ∞ ∫ ake = ∫ kP (a)da 0 ∞ 0 −( k − µ ) a da 0 ∫ ae 0 ∞ ∫e −( k − µ ) a −( k − µ ) a da da 0 ∞ = ∞ da = ∫ ke S −( k − µ ) a a e −( k + µ ) a − 2 − ( k + µ ) ( k + µ ) 0 ∞ e −( k + µ ) a −(k + µ ) 0 1 ( k + µ )2 = = 1 (k + µ ) 1 . (k + µ ) Karena k = β I , maka diperoleh a = 1 = βI +µ 1 µ β β = ( Ro − 1) + µ 1 . µ Ro Jadi, dalam keadaan setimbang, maka rata-rata lama infeksi penyakit adalah a= 1 1 = . µ + k µ Ro Daftar Pustaka Diekmann, O and Heesterbeek, J.A.P, 2000, Mathematical Epidemology of Infectious Diseases: Model Building, Analysis and Interpretation, John Wiley, New York Copyright © 2008 http://zaki.math.web.id 7