Bab 1 Bab 2 2.1 2.2 2.3 2-4 2.5 2-6 2-7 2.8 2.9 2.10 2.11 Masalah Dua Benda Momentum linier, momentum sudut, momen dan gaya Potensial bola padat Persamaan gerak dua titik massa Orbit dalam bentuk polar Ilustrasi : 1.7-1 Gerak roket dengan orbit yang berubah 1.7-2 Aplikasi Hukum Harmonik untuk menentukan massa planet 1.7-3 Gerak satelit melewati meridian pengamat 1.7-4 Gerak Sputnik 1.7-5 Satelit yang berubah lintasan 1.7-6 Problem tentang elongasi maksimum dan minimum 1.7-7 Problem tentang keubahan orbit akibat tekanan radiasi Matahari 1.7-8 Problem tentang kecepatan dan periode orbit berbentuk elips 1.7-9 Problem gerak dibawah pengaruh gaya sentral yang berbanding terbalik dengan jarak pangkat-4 1.7-10 Problem gerak satelit yang diganggu oleh tekanan radiasi matahari dan gaya gravitasi asteroid 1.7-11 Problem tentang lepasnya galaksi 1.7-12 Rumor tentang terlihatnya Mars sebesar Bulan Soal Latihan I-2 I-5 I-7 I-12 I-23 I-23 I-26 I-27 I-28 I-29 I-31 I-32 I-33 I-34 I-36 I-38 I-39 I-40 Orbit Dalam Ruang Pernyataan persamaan lintasan Algoritma Newton-Raphson(f(E),f’(E),E0,, M dan E) Contoh Kasus Menentukan Elemen Orbit Algoritma ( 0 , ti , i , i , Ri , Li ) i= 1,2 Ilustrasi Orbit parabolic Hari Julian (Julian Day) Transformasi Kalender Gregorian ke Julian Day Transformasi Penanggalan Julian Day ke Gregorian Day II-2 II-4 II-5 II-10 II-14 II-18 II-20 II-22 II-23 II-25 Ilustrasi II-28 Studi Kasus 1. Komet dalam orbit parabola Studi Kasus 2. Menentukan massa bintang ganda visual II-28 II-29 2.12 Studi Kasus 3. Menentukan periode dari luas daerah yang disapu Studi Kasus 4. Menentukan definisi 1 satuan astronomi pada saat asteroid mendekati Bumi Studi Kasus 5. Menentukan paralak trigonometri dari dua tempat di Bumi Ragam Soal Latihan II-32 II-32 II-34 II-35 Bab 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 Masalah Tiga Benda (Three Body Problem) Persamaan Gerak Energi dan Momentum Sudut Masalah Tiga Benda Terbatas Kriteria Tisserand Peran konstanta Tisserand Untuk Sistem Matahari –Planet-Komet Menentukan Titik Lagrange Tinjauan Persamaan Ekipotensial Untuk Berbagai Kasus Radius bola Hill Aplikasi Prinsip Tiga Benda Terbatas Pada Explorasi Angkasa Luar 3.9-1 Misi International Sun and Earth Explorer (ISEE) 3.9-2 Perangkat Ilmiah 3.9-3 Advanced Composition Explorer (ACE) 3.9-4 Wilkinson Microwave Anisotropy Probe (WMAP) 3.9-5 Solar and Heliospheric Observatory(SOHO) A. Near Loss of SOHO B. Scientific Objectives C. Instrumentasi D. Kontributor Instrumentasi E. Referensi Tambahan III-1 III-3 III-5 III-8 III-10 III-11 III-15 III-22 III-24 III-24 III-26 III-27 III-28 III-29 III-32 III-33 III-33 III-35 III-35 Bab 4 4.1 4.2 4.3 4.4 4.5 4.6 Phenomena Gaya Pasang Surut Gaya Pasang Surut Hitung ketinggian permukaan laut akibat gaya pasang surut Stabilitas Gaya Pasang Surut Bentuk Umum Pernyataan Limit Roche Satelit berwujud cairan (Fluida) Dampak gaya pasang surut di berbagai planet IV-1 IV-5 IV-9 IV-11 IV-15 IV-17 Bab 5 5.1 Presesi dan Nutasi Presesi V-1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 Efek Presesi Nutasi Nutasi pada Bumi Persamaan Gerak Euler untuk Benda Kaku Hukum II Newton, untuk gerak rotasi Variasi lintang Pitching, yawing dan rolling Sudut Eulers dan pers gerak Gambar 1- 1 Gambar 1- 2 Daftar Gambar Titik massa m bergerak dalam pengaruh gaya sentral yang berpusat pada titik O Perpindahan titik massa m dari posisi S0 ke posisi S V-2 V-2 V-3 V-3 V-6 V-9 V-10 V-12 I-2 I-3 Gambar 1- 3 Irisan seperdelapan bola padat. Potensial bola padat M terhadap titik massa m. Massa total M, se-olah olah terkonsentrasi pada pusat bola. I-5 Gambar 1- 4 Dua titik massa m1 dan m2 pada posisi r1 dan r2 . Titik P menyatakan pusat massa sistim dan r jarak m1 dan m2 I-7 Gambar 1- 5 Kedudukan titik massa m1 dan m2 dalam sistim koordinat Kartesis. Dalam hal m1 >> m2 sebagai pusat koordinat dapat dipilih titik massa m1. 9 Gambar 1- 6 Gerak m2 melintasi m1 dalam berbagai bentuk lintasan (a) lingkaran, (b) parabola, (c) elips dan (d) hiperbola. Massa bergerak melintasi dalam pengaruh gaya sentral yang mengarah ke massa I-14 Gambar 1- 7 Lintasan roket dari permukaan Bumi bergerak menuju Bulan dalam bentuk lintasan setengah elips. Gerak roket dianggap taat pada kaedah hukum Kepler. Bumi bergerak mengitari Matahari. Bulan bergerak mengelilingi Bumi, sekaligus berputar pada porosnya (rotasi). I-18 Gambar 1- 8 Profil desain orbit yang dinyatakan oleh eksentrisitas versus I-20 kecepatan dalam kilometer/detik untuk mencapai Bulan. Gambar 1- 9 Gambar 1- 10 Gambar 1- 11 Gambar 2- 1 Gambar 2- 2 Gambar 2- 3 Gambar 2- 4 Gambar 2- 5 Gambar 2- 6 Gambar 2- 7 Gambar 2- 8 Gambar 2- 9 Gambar 2-10 Gambar 2- 11 Gambar 2- 12 Gambar 2- 13 yang dibutuhkan roket Ilustrasi perubahan momentum sebuah roket yang bergerak dengan gaya dorong. Jumlah massa yang hilang sebagai fungsi ketinggian satelit dari permukaan Bumi untuk berbagai kecepatan dorong. Periode dalam jam versus jarak satelit dalam satuan jejari Bumi. Orbit anggota Tata Surya relatif terhadap bidang ekliptika dengan Matahari sebagai salah satu titik api lintasan berbentuk elips. Ilustrasi orbit elips dan lintasan bantu Kepler (lingkaran putus-putus dengan jejari, a) Flowchart solusi persamaan Kepler. Dalam hal proses tidak konvergen Diagram lintasan Mars, gerak wahana yang dianggap sebagai titik massa m dan orbit Bumi. Wahana berpindah orbit dari orbit lingkaran ke orbit lingkaran yang lebih besar. Konfigurasi planet Mars (merah) dan Bumi (biru). Jarak Mars dari Bumi dapat dihitung dengan rumus kosinus Posisi m dalam sistem kartesis XYZ. m1 menyatakan matahari dan m, menunjukkan wahana. Lintasan titik massa m dalam ruang. Sumbu x mengarah pada titik vernal ekuinok (posisi matahari terbit tanggal 21 Maret). Konversi posisi ekuatorial heliosentrik ke tata koordinat ekuatorial geosentrik. Konversi koordinat ekliptika heliosentrik ke sistem koordinat ekliptika geosentrik. Kedudukan planet P1 dan P2 pada bola langit. Segitiga bola dan bidang ekliptika. Panjang busur A dapat dihitung dengan menggunakan sifat segitiga bola. Aplikasi rumus Napier dalam segitiga bola untuk menghitung elemen orbit dan analoginya pada hubungan i, , dan suatu lintasan pada segitiga bola. Ilustrasi komet yang melintasi Matahari dalam orbit parabola Flowchart konversi penanggalan Gregorian Day ke Julian I-22 I-25 I-29 II-1 II-2 II-5 II-6 II-7 II-8 II-9 II-10 II-12 II-13 II-14 II-21 II-24 Gambar 2- 14 Gambar 2- 15 Gambar 2- 16 Gambar 2- 17 Gambar 2- 18 Gambar 3- 1 Gambar 3- 2 Gambar 3- 3 Gambar 3- 4 Gambar 3- 5 Gambar 3- 6 Gambar 3- 7 Gambar 3- 8 Day. Flowchart konversi penanggalan Julian Day ke Gregorian Day. Lintasan parabola sebuah komet, P titik perihelion sedangkan A titik sembarang pada orbit, p menyatakan lotus rectum, q jarak perihelion dan hubungannya adalah p=2q Untuk mengukur jarak Eros ditentukan sudut SAE dan sudut SBE dengan satu bintang standar, S, dan bintang akan terlihat sejajar baik dari titik A maupun titik B Geometri posisi Bumi dan Eros pada saat pengamatan dalam hal ini S menyatakan Matahari, B-Bumi dan E- Eros Efek projeksi kedudukan asteroid pada bola langit relatif terhadap bintang latar belakang. Sistem tiga benda dalam koordinat kartesis x,y,z. Didefinisikan , sedangkan adalah vektor posisi massa ke-i Sistim 3 benda dalam sistem kartesis yang berotasi dengan kecepatan sudut sebesar, = t. Titik P1 lokasi M dan P2 lokasi m sedangkan massa ketiga, m' yang dapat diabaikan terhadap kedua massa yang lain berada di titik P. Jarak P1 ke P2 diambil sebagai satu satuan, terletak pada sumbu x. Sumbu z tegak lurus bidang layar. Momentum sudut terdiri dari komponen dalam sumbu , sumbu dan sumbu Momentum sudut L, benda infinitesimal dalam sistem koordinat yang berotasi, sebagai fungsi ascending node dan inklinasi, i mempunyai arah dalam sumbu bidang orbit adalah bidang - dalam tata koordinat (,, ). Gerak tiga benda dalam dua dimensi. Massa m' dapat diabaikan terhadap massa m dan M Pada titik Lagrange berlokasi massa yang dapat diabaikan terhadap massa Bumi dan massa Bulan. Jarak Bumi-Bulan a sedangkan x jarak titik Lagrange ke Bumi, r1 jarak pusat massa ke Bumi. Titik Lagrange L1 terletak diantara M dan m akan memenuhi syarat x2 > L1 > x1 Titik Lagrange L2 memenuhi syarat L2 > x2 Jika m jauh II-27 II-28 II-33 II-34 II-35 III-1 III-5 III-8 III-10 III-12 III-16 III-18 III-18 Gambar 3- 9 Gambar 3- 10 Gambar 3- 11 Gambar 3- 12 Gambar 3- 13 Gambar 3- 14 Gambar 3- 15 Gambar 3- 16 Gambar 4- 1 Gambar 4- 2 Gambar 4- 3 Gambar 4- 4 Gambar 4- 5 lebih kecil dari M maka menurut (3.66) dan (3.67) posisi L1 dan L2 berjarak sama dari massa m. Titik Lagrange L3 memenuhi syarat L3 < x1 Tanda panah menunjukkan bertambahnya potensial disekelilingi titik-titik Lagrange. Pada posisi titik Lagrange massa m' relatif diam, baru bisa bergerak meninggalkannya bila diberikan gaya ganggu sehingga kesetimbangan gravitasional berubah (http://wikipedia.org) Konfigurasi titik-titik Lagrange dalam bidang orbit M dan m Permukaan berkecepatan nol untuk asteroid 4179 Toutatisn Konstanta Tisserand T=3 ISEE (International Sun Earth Explorer) ACE (Advanced Composition Explorer) Profil lintasan WMAP disekitar titik Lagrange L2 sistem Bumi Matahari.Objek yang ditempatkan pada posisi ini akan dapat dijaga orientasinya terhadap Bumi dan Matahari. Satelit lain yang ditempatkan pada titik L2 adalah Planck, Herschel Space Observatory, Gaia probe, dan James Webb Space Telescope. Gerak tiga dimensi SOHO, untuk keperluan monitoring, sumbu X harus selalu mengarah. Ke Matahari (http://sohowww.nascom.nasa.gov/operations/SOHOconv.gi f) Gaya gravitasi oleh Bulan pada titik A,A’,B dan C mengarah ke pusat Bulan. selisih gaya terhadap titik C adalah sama pada A dan A’. Asumsi Bumi berbentuk bola sempurna mengakibatkan pada titik B, gaya yang sejajar terhadap garis hubung Bumi-Bulan CD akan saling meniadakan Akibat gravitasi bumi menyebabkan Bulan menjadi tidak bulat sempurna, ada benjolan yang mengarah ke Bumi. Gaya gravitasi bulan menarik benjolan bumi ke arah yang berlawanan dengan rotasi, akibatnya rotasi bumi diperlambat. Pasang surut di Bumi dua kali pasang dan dua kali surut setiap harinya Gerak titik massa m1 dan m2 dibawah kontrol gravitasi titik massa M. Panorama cincin Saturnus di potret pada tanggal 17 Agustus III-19 III-20 III-21 III-24 III-25 III-27 III-29 III-32 IV-1 IV-4 IV-5 IV-9 IV-18 Gambar 4- 6 Gambar 5- 1 Gambar 5- 2 Gambar 5- 3 Gambar 5- 4 Gambar 5- 5 Gambar 5- 6 Gambar 5- 7 Gambar 5- 8 Gambar 5- 9 Tabel 1- 1 Tabel 1- 2 1987 warna coklat diperkuat. Foto diambil oleh Cassini dari jarak 8,9 juta kilometer oleh wahana Cassini. Fenomena Gaya pasang surut pada benda langit atas, ilustrasi artis. Bawah ilustrasi gaya pasang surut yang memecah komet P/Shoemaker-Levy 9 pada tahun 1992.Tengah dan kanan ilustrasi artis, pecahnya komet periodik P/Shoemaker-Levy 9 ketika mendekati Jupiter pada tahun 1992. Seluruh pecahan menumbuk Jupiter pada musim panas 1994. Gerak presesi, meyebabkan arah kutub utara terhadap langit berubah seiring waktu Perbedaan antara presesi (P) dan nutasi (N) Sudut Euler- Sumbu xyz adalah tetap ditandai dengan warna biru, sumbu XYZ system yang berotasi, ditunjukkan oleh warna merah. Garis nodal diberi label N ditunjukkan dengan warna hijau. Titik massa dengan i=1,2, .. n dalam koordinat kartesis x,y dan z Titik massa mj dengan koordinat (x,y,z). Koordinat (x,y,υz) adalah projeksi mj ke garis l, dengan bilangan arah (,,υ). Tiga titik massa yang bergerak pada bidang xy. Bidang xy berotasi terhadap Kecepatan sudut diuraikan dalam komponen sumbu (1), sumbu (2) dan sumbu (3) Definisi sudut Euler untuk sistim 3 benda Rotasi gerak dalam sudut . Nutasi gerak dalam arah sudut dan presesi gerak dalam arah sudut . Gerak ini identik dengan gerak gasing . Daftar Tabel Kecepatan roket untk menuju Bulan dalam berbagai nilai eksentrisitas Rasio mf /m0 untuk berbagai kecepatan dorong Vg dalam km/det. IV-19 V-1 V-3 V-4 V-5 V-6 V-9 V-12 V-13 V-14 I-20 I-24 Tabel 2- 1 Tabel 2- 2 Tabel 2- 3 Tabel 2- 4 Tabel 2- 5 Tabel 2- 6 Tabel 2- 7 Tabel 3- 1 Tabel 3- 2 Tabel 3- 3 Tabel 3- 4 Tabel 3- 5 Tabel 3- 6 Tabel 3- 7 Tabel 4- 1 Tabel 4- 2 Tabel 4- 3 Tabel 4- 4 Tabel 4- 5 Jarak wahana dan anomali benar untuk berbagai saat pengamatan Posisi koordinat polar objek pada tahun 1960 Posisi kartesis objek pada tahun 1960 Eleman orbit objek Informasi tentang bintang ganda visual ADS 1733 Iterasi untuk mencari paralak, magnitude absolut bolometric dan massa bintang berdua ADS 1733. Proses dihentikan ketika presesi relative dicapai pada decimal kedua. Informasi tentang bintang ganda visual Centauri, Cas dan Hyd II-7 Permukaan Mesh dan kontur dari berbagai nilai µ dan C untuk Zero Surface Velocity Titik Lagrange dalam sistem Bumi-Bulan ( = 0,01215 ). Jarak Bumi-Bulan dinyatakan dalam satu satuan [LD] Titik Lagrange dalam sistem Matahari-Bumi (=3,004× 10-6 ) dan Matahari-Jupiter (=999×10-6 =0,001) Data dan informasi tentang 4179 Toutatis (diunduh dari http://neo.jpl.nasa.gov, tanggal 14 Jan 2005 Informasi tambahan lainnya adalah Data dan Informasi Solar and Heliospheric Observatory (SOHO) Instrumentasi yang dibawa serta fungsinya III-12 Konstanta f untuk berbagai model Rapat massa dan jari-jari primary untuk limit Roche Jarak limit Roche untuk satelit benda kaku dan satelit fluida Radius orbit (r) versus limit Roche (d) untuk benda kaku dan cair (fluida) Cincin Saturnus dan radiusnya IV-12 IV-15 IV-15 IV-16 II-18 II-18 II-20 II-31 II-31 II-37 III-21 III-22 III-23 III-23 III-30 III-30 IV-17