Bacaan Warga KSA Pengantar Analisis Real Introduction to real analysis Dikumpulkan dari berbagai sumber oleh: Abu Abdillah KOMUNITAS STUDI ALKWARIZMI UNAAHA 2013 PERSEMBAHAN Untuk bahan bacaan warga KSA (Komunitas Studi Al Khwarizmi). Pesan Janganlah kesibukan duniamu melalaikan untuk menuntut ilmu Agama, ingatlah bahwa yang wajib ‘ain bagi kalian adalah menuntut ilmu Agama. ii Komunitas Studi Al Khwarizmi Abu Abdillah KATA PENGANTAR B uku ini ditulis dalam rangka pengadaan buku ajar mata kuliah Analisis Real I dan II, yang merupakan mata kuliah wajib. Buku ini berisi materi yang diperuntukan bagi mahasiswa yang telah mengambil mata Kalkulus I dan Kalkulus II. Topik-topik dalam buku ini sebenarnya sudah dikenal oleh mahasiswa yang telah mengambil kedua mata kuliah tersebut. Hanya saja, materi pada buku ini lebih abstrak, teoritis, dan mendalam. Materi pada buku ini merupakan materi dasar analisis real. Analisis real merupakan alat yang esensial, baik di dalam berbagai cabang dari matematika maupun bidang ilmu-ilmu lain, seperti fisika, kimia, dan ekonomi. Mata kuliah Analisis I adalah gerbang menuju mata kuliah yang lebih lanjut, baik di dalam maupun di luar jurusan Matematika. Jika mata kuliah ini dapat dipahami dengan baik maka mahasiswa mempunyai modal yang sangat berharga untuk memahami mata kuliah lain. Diharapkan, setelah mempelajari materi pada buku ini, mahasiswa mempunyai kedewasaan dalam bermatematika, yang meliputi antara lain kemampuan berpikir secara deduktif, logis, dan runtut, serta memiliki kemampuan menganalisis masalah dan mengomunikasikan penyelesaiannya secara akurat dan rigorous. Buku ini terdiri dari lima bab. Bab I membahas tentang aljabar himpunan, fungsi, dan induksi matematika. Sebagaimana kita ketahui bahwa materi pada bab ini adalah materi penunjang pemahaman pada bab-bab selanjutnya, maka diharapkan para pembaca dan pengajar tidak mengabaikan penyampaian bab I ini. Bab II membahas tentang himpunan bilangan real. Di dalamnya, dibicarakan tentang sifat aljabar (lapangan), sifat terurut, dan sifat kelengkapan dari himpunan bilangan real. Kemudian, dibahas tentang himpunan bagian dari himpunan bilangan real yang iii Komunitas Studi Al Khwarizmi Abu Abdillah dikonstruksi berdasarkan sifat terurutnya, yang disebut sebagai interval. Dijelaskan pula tentang representasi desimal dari bilangan real dan menggunakannya untuk membuktikan Teorema Cantor. Selanjutnya, bab III berisi tentang barisan bilangan real, yang meliputi definisi dan sifat-sifat barisan, Teorema Bolzano-Weierstrass, kriteria Cauchy, barisan divergen, dan sekilas tentang deret tak hingga. Kemudian, bab IV mendiskusikan tentang definisi limit fungsi (termasuk limit sepihak, limit di tak hingga, dan limit tak hingga) dan sifat-sifatnya. Lalu, bab V membahas kekontinuan fungsi, yang meliputi definisi fungsi kontinu dan sifat-sifatnya, fungsi kontinu pada interval, kekontinuan seragam, serta fungsi monoton dan fungsi invers. Buku ini masih dalam proses pengembangan dan tentunya masih jauh dari sempurna. Untuk itu, penulis membuka diri terhadap saran dan kritik dari pembaca, demi semakin baiknya buku ini sebagai buku ajar mata kuliah wajib Analisis I. Unaaha, April 2013 Penulis, Abu Abdillah iv Komunitas Studi Al Khwarizmi Abu Abdillah DAFTAR ISI PERSEMBAHAN ............................................................................... ii KATA PENGANTAR ......................................................................... iii DAFTAR ISI ....................................................................................... v BAB I PENDAHULUAN 1.1 Aljabar Himpunan ........................................................... 1 1.2 Fungsi ............................................................................... 8 1.3. Induksi Matematika ......................................................... 17 BAB II HIMPUNAN BILANGAN REAL 2.1 Sifat Aljabar dari R .......................................................... 27 2.2 Sifat Terurut dari R ......................................................... 29 2.3. Sifat Kelengkapan dari R ............................................... 38 2.4. Interval ............................................................................. 48 2.5 Representasi Desimal dari Bilangan Real .................... 51 BAB III BARISAN BILANGAN REAL 3.1 Definisi Barisan Bilangan real ....................................... 54 3.2 Sifat-Sifat Barisan Bilangan Real .................................. 57 3.3 Teorema Bolzano-Weierstrass ....................................... 64 3.4 Kriteria Cauchy ............................................................... 65 3.5 Barisan Divergen ............................................................ 68 3.6 Deret Tak Hingga ............................................................ 71 BAB IV LIMIT FUNGSI v 4.1 Titik Timbun ..................................................................... 80 4.2 Definisi Limit Fungsi ....................................................... 81 4.3 Teorema Limit Fungsi ..................................................... 84 Komunitas Studi Al Khwarizmi Abu Abdillah BAB V KEKONTINUAN FUNGSI 5.1 Definisi Fungsi Kontinu .................................................. 89 5.2 Sifat-Sifat Fungsi Kontinu .............................................. 92 5.3 Fungsi Kontinu pada Interval ......................................... 94 5.4 Kekontinuan Seragam .................................................... 97 5.5 Fungsi Monoton dan Fungsi Invers ............................... 100 DAFTAR PUSTAKA vi Komunitas Studi Al Khwarizmi Abu Abdillah BAB I HIMPUNAN BILANGAN REAL P ada bab ini, kita akan membahas beberapa prasyarat yang diperlukan untuk mempelajari analisis real. Bagian 1.1 dan 1.2 kita akan mengulang sekilas tentang aljabar himpunan dan fungsi, yang keduanya merupakan perkakas penting untuk semua cabang matematika. Pada bagian selanjutnya yakni bagian 1.3 kita akan mengulas mengenai induksi matematika. Sebagaimana kita ketahui bahwa induksi matematika berhubungan dengan sifat dasar sistem bilangan asli yang akan sering kita gunakan pada pembuktian beberapa masalah khusus dalam bab selanjutnya. 1.1 ALJABAR HIMPUNAN Bila A menyatakan suatu himpunan, maka untuk suatu unsur x kita akan menuliskannya menjadi x A, ■ untuk menyatakan x suatu unsur di A , x anggota A , atau x termuat di A , atau A memuat x . Selanjutnya bila kita ingin menyatakan bahwa x suatu unsur yang bukan di A maka dapat kita tuliskan menjadi: x A, ■ Selanjutnya bila A dan B keduanya adalah himpunan sehingga untuk setiap unsur x A mengakibatkan x B ( setiap unsur di A juga unsur di B ), maka kita katakan A termuat di B , atau B memuat A , atau A suatu subhimpunan dari B , dan kita menuliskannya dengan: A B atau B A , ■ Bila A B dan terdapat unsur di B yang bukan anggota A maka kita katakan A subhimpunan sejati dari B . 1 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) 1.1.1. Definisi Kesamaan Dua Himpunan Dua buah himpunan A dan B dikatakan sama bila keduanya memuat unsur yang sama. Dengan kata lain untuk setiap unsur x anggota himpunan A maka x juga merupakan anggota himpunan B , dan juga sebaliknya untuk setiap unsur y anggota himpunan B maka y juga merupakan anggota himpunan A . Selanjutnya kedua buah himpunan A dan B dikatakan sama maka kita menuliskannya dengan: AB ■ Untuk menunjukkan bahwa A B , kita harus menunjukkan bahwa A B dan B A . Suatu himpunan dapat ditulis dengan mendaftar anggota-anggotanya, atau dengan menyatakan sifat keanggotaannya. Kata “sifat keanggotaan” memang menimbulkan keragu-raguan, akan tetapi bila P menyatakan sifat keanggotaan (yang tak bias maknanya) maka suatu himpunan x yang memenuhi P akan kita tuliskan dengan cara: x P (x ) ■ Notasi diatas kita baca: “himpunan semua x yang memenuhi (sedemikian sehingga) P ”. Bila perlu untuk menyatakan subhimpunan S yang memenuhi P , maka kita dapat menuliskannya dalam bentuk: x S P (x ) ■ Beberapa himpunan tertentu akan banyak digunakan dalam buku ini, dan akan kita tuliskan dengan penulisan standar yakni sebagai berikut: Himpunan bilangan asli, N 1, 2,3,... Himpunan bilangan bulat Ζ 0,1,1,2, 2,... m m, n , n 0 n Himpunan bilangan rasional Q Himpunan bilangan real, R 2 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Contoh-contoh: 1. Himpunan x N x 2 3x 2 0 , menyatakan himpunan bilangan asli yang memenuhi persamaan kuadrat x 2 3 x 2 0 . Karena yang memenuhi hanya x 1 dan x 2 , maka himpunan tersebut dapat juga dituliskan menjadi 1,2 . 2. Terkadang formula dapat pula digunakan untuk menyingkat penulisan himpunan. Sebagai contoh himpunan bilangan genap positif sering dituliskan dengan y N 2 x y 2 x , x N . cara x N , dari pada kita menuliskannya Operasi Himpunan Pada bagian ini kita akan mendefinisikan aturan untuk membangun (mengkonstruksi) himpunan baru dari himpunan yang sudah ada. 1.1.2. Definisi a. Bila A dan B keduanya adalah himpunan, maka irisan (interseksi) dari A dan B dituliskan dengan A B , merupakan himpunan yang unsur-unsurnya adalah anggota himpunan A dan juga merupakan anggota himpunan B . A B x x A dan x B ■ b. Gabungan dari himpunan A dan B adalah himpunan yang unsurnya paling tidak termuat di salah satu dari himpunan A atau B . Gabungan dari himpunan A dan B dituliskan dengan A B . A B x x A atau x B ■ 1.1.3. Definisi Himpunan yang tidak mempunyai anggota disebut dengan himpunan kosong, dituliskan dengan atau . Bila himpunan A dan B dua himpunan yang tidak mempunyai unsur bersama (yaitu, A B ), maka A dan B dikatakan saling asing atau disjoin. 3 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) 1.1.4. Teorema Misalkan A, B dan C sebarang himpunan, maka: a) A A A, A A A Idempoten b) A B B A, A B B A Komutatif A B C A B C , A B C A B C c) Asosiatif d) A B C A B A C , A B C A B A C Distributif. Bukti teorema diatas diserahkan kepada pembaca! Dimungkinkan juga untuk menunjukkan bahwa bila A1 , A2 ,..., An merupakan koleksi himpunan, maka terdapat sebuah himpunan, maka terdapat sebuah himpunan A yang memuat unsur yang merupakan unsur semua himpunan A j , j 1,2,..., n ; dan terdapat sebuah himpunan B yang unsurnya paling tidak unsur dari suatu A j , j 1,2,..., n . Dengan menanggalkan kurung, kita tuliskan dengan A A1 A2 ... An B B1 B2 ... Bn Untuk mempersingkat penulisan, A dan B di atas sering dituliskan dengan n A Aj j 1 n B Aj j 1 4 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) 1.1.5. Definisi Misalkan A dan B suatu himpunan, maka komplemen dari B relatif terhadap A , dituliskan dengan A \ B (baca “ A minus B ”) adalah himpunan yang unsurunsurnya adalah semua unsur di A tetapi bukan anggota B . Dibeberapa buku ditulis menggunakan notasi A B atau A B . A \ B x x A dan x B Seringkali A tidak dinyatakan secara ■ eksplisit, karena sudah dimengerti/disepakati. Dalam situasi begini A \ B sering dituliskan dengan C A . 1.1.6. Teorema Misalkan A, B, C sebarang himpunan, maka A \ ( B C ) ( A \ B) ( A \ C ) , A \ ( B C ) ( A \ B) ( A \ C ) . Bukti: Kita akan membuktikan kesamaan pertama dan meninggalkan bagian kedua pada pembaca sebagai bahan latihan. Untuk menunjukkan ditunjukkan A \ ( B C ) ( A \ B) ( A \ C ) , adalah: berarti A \ (B C ) ( A \ B) ( A \ C ) yang harus dan A \ (B C ) ( A \ B) ( A \ C ) Akan ditunjukkan A \ ( B C ) ( A \ B ) ( A \ C ) Ambil sebarang x A \ ( B C ) , maka x A dan x B C , ini berarti bahwa x di A tetapi x bukan unsur B atau C , karenanya x di A tetapi x tidak di B dan x di A tetapi x tidak di C , sehingga dapat dituliskan x A \ B dan x A \ C , hal ini berarti bahwa x A \ B A \ C , sehingga terbuktilah bahwa A \ ( B C ) ( A \ B ) ( A \ C ) Akan ditunjukkan A \ ( B C ) ( A \ B ) ( A \ C ) 5 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Ambil sebarang y ( A \ B) ( A \ C ) , maka y A \ B dan y A \ C , maka y A tetapi y B dan y A tetapi y C . Jadi y A tetapi bukan anggota dari B atau C . Akibatnya y A dan y B C , ini berarti y A \ ( B C ) , sehingga terbukti bahwa A \ ( B C ) ( A \ B ) ( A \ C ) . Dari dua bukti diatas dapat disimpulkan bahwa A \ ( B C ) ( A \ B) ( A \ C ) . Produk (hasil kali) kartesius Berikut ini kita definisikan produk kartesius yang akan kita gunakan pada pembahasan tentang fungsi pada bagian selanjutnya. 1.1.7. Definisi Bila A dan B keduanya adalah himpunan-himpunan tak kosong, maka produk kartesius dari A dan B yang selanjutnya akan kita tuliskan menggunakan notasi A B adalah himpunan pasangan berurut a, b dengan a A dan b B A B a, b a A dan b B ■ Sehingga bila A 1, 2,3 dan B 4,5, maka A B 1,4 , 1,5, 2,4 , 2,5, 3,4 , 3,5 Latihan 1.1. 1. Gambarkan diagram yang menyatakan masing-masing himpunan pada Teorema 1.1.4 2. Buktikan teorema 1.1.4. 3. Buktikan bahwa A B jika dan hanya jika A B A . 4. Tunjukkan bahwa himpunan D yang unsur-unsurnya merupakan unsur dari tepat satu himpunan A atau B diberikan oleh D A \ B B \ A . 6 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Himpunan D ini sering disebut selisih simetris dari A dan B . Nyatakan dalam diagram. 5. Tunjukkan bahwa selisih simetris D pada soal nomor 4, juga diberikan oleh: D A B \ A B 6. Jika A B tunjukkan B A \ A \ B 7. Diberikan himpunan A dan B , tunjukkan bahwa A B dan A \ B saling asing dan bahwa A A B A \ B . 8. Diberikan sebarang himpunan A dan B , tunjukkan A B A \ A \ B . 9. Bila A1 , A2 ,..., An suatu tunjukkan bahwa E koleksi himpunan, dan E sebarang himpunan, n n n n j 1 j 1 j 1 j 1 n n j 1 j 1 A j E A j , dan E A j E A j . 10. Mengacu pada soal nomor 9 tunjukkan bahwa E n n j 1 j 1 A j E A j , dan E A j E A j . 11. Mengacu pada soal nomor 9 buktikan hukum de morgan n n n n j 1 j 1 j 1 j 1 E \ A j E \ A j , E \ A j E \ A j Catatan bila E \ A j dituliskan dengan C A j , maka kesamaan diatas mempunyai bentuk n n n n C A j C A j , C A j C A j j 1 j 1 j 1 j 1 12. Misalkan J suatu himpunan dan untuk setiap j J , A j termuat di E . Tunjukkan bahwa C A j C A j , C A j C A j jJ jJ jJ jJ 7 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) 13. Bila B1 dan B 2 subhimpunan dari B dan B B1 B2 tunjukkan bahwa A B A B1 A B2 1.2 FUNGSI Pada bagian ini kita akan membahas gagasan fundamental suatu fungsi atau pemetaan. Selanjutnya akan kita ketahui bahwa fungsi merupakan suatu jenis khusus dari himpunan, walaupun terdapat visualisasi lain yang sering lebih bersifat sugesti. Pada bagian terakhir ini kita akan banyak membahas mengenai jenis-jenis fungsi, tetapi sedikit lebih abstrak dibandingkan bagian ini. Bagi matematikawan abad terdahulu kata “fungsi” biasanya berarti formula tertentu, seperti f x x 2 3x 5 yang bersesuaian dengan masing-masing bilangan real x dan bilangan lain f x . Mungkin juga seseorang memunculkan kontroversi, apakah nilai mutlak h x x dari suatu bilangan real merupakan “fungsi sejati” atau bukan. Selain itu definisi x diberikan pula yakni: x, bila x 0 x x, bila x 0 Dengan berkembangnya matematika, semakin jelas bahwa diperlukan definisi fungsi yang lebih umum. Juga semakin penting untuk kita membedakan fungsi sendiri dengan nilai fungsi itu. Disini akan mendefinisikan suatu fungsi dan hal ini akan kita lakukan dalam dua tahap. 8 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Definisi pertama: suatu fungsi f dari himpunan A ke himpunan B adalah aturan korespodensi yang memasangkan masing-masing unsur x di A secara tunggal dengan unsur f x di B . Definisi di atas mungkin saja tidak jelas, dikarenakan tidak jelasnya makna frase “aturan korespondensi”. Untuk mengatasi hal ini kita akan mendefinisikan fungsi dengan menggunakan himpunan seperti yang telah dibahas pada bagian sebelumnya. Berikut ini adalah definisi yang mungkin saja dapat membuat kita kehilangan kandungan intuitif dari definisi terdahulu, tetapi kita dapatkan kejelasan. Ide dasar pendefinisian berikut ini adalah memikirkan gambar dari suatu fungsi; yaitu, suatu korelasi dari pasangan berurut. Bila kita perhatikan tidak setiap koleksi pasangan berurut merupakan gambar suatu fungsi, karena sekali unsur pertama dalam pasangan berurut diambil, unsur keduanya ditentukan secara tunggal. Gambar 1.1 Gambar grafik sebuah fungsi 1.2.1. Definisi Misalkan A dan B himpunan, suatu fungsi dari A ke B adalah himpunan pasangan berurut di f di A B sedemikian sehingga untuk masing- 9 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) masing a A terdapat b B yang tunggal dengan a, b , a, b' f , maka b b' . Himpunan A dari unsur-unsur pertama dari f disebut daerah asal “domain” dari f , dan dituliskan D f . Sedangkan unsur-unsur dari B yang menjadi unsur kedua di f disebut “range” dari f dan dituliskan dengan R f . Notasi f : A B Menunjukkan bahwa f suatu fungsi dari A ke B ; akan sering kita katakan bahwa f suatu pemetaan dari A ke B atau f memetakan dari A ke dalam B . Bila a, b f , sering ditulis dengan: b f a Pembatasan dan Perluasan Fungsi Bila f suatu fungsi dengan domain D f dan D1 suatu subhimpunan dari D f , sehing kali bermanfaat untuk mendefinisikan fungsi baru f1 dengan domain D1 dan f1 x f x untuk setiap x D1 . Fungsi f1 ini disebut pembatasan fungsi f pada D1 . Sehingga menurut definisi 1.2.1, kita mempunyai f1 a, b f a D1 Terkadang kita tuliskan f1 f D1 untuk menyatakan pembatasan fungsi f pada himpunan D1 . Konstruksi yang serupa untuk gagasan perluasan. Bila suatu fungsi g dengan domain D g dan D2 D g , maka sebarang fungsi g 2 dengan domain D2 sedemikian sehingga g 2 x g x untuk setiap x D g disebut perluasan g pada himpunan D2 . 10 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Bayangan Langsung dan Bayangan Invers 1.2.2. Definisi Misalkan f : A B suatu fungsi dengan domain A dan range B . Bila E subhimpunan A , maka bayangan langsung dari E terhadap f adalah subhimpunan f E dari A yang diberikan oleh f E f x : x E Bila H subhimpunan B , maka bayangan invers dari H terhadap f adalah subhimpunan f 1 H dari A , yang diberikan oleh f 1 H x A : f x H Jadi bila diberikan himpunan E A, maka titik y1 B di bayangan langsung f E jika dan hanya jika terdapat paling tidak sebuah titik x1 E sedemikian sehingga y1 f x1 . Secara sama bila diberikan H B , titik x 2 A di dalam bayangan invers f 1 H jika dan hanya jika y f x 2 di H . 1.2.3. Contoh a. Misalkan f : R R didefinisikan dengan f x x 2 . Bayangan langsung adalah himpunan f E y 0 y 4 . Bila G y 0 y 4 , maka bayangan invers G adalah himpunan f G x 2 x 2. Jadi f f E E . himpunan E x 0 x 2 1 1 G G . Tetapi bila H y 1 y 1, Disatu pihak kita mempunyai f f 1 H x 0 x 1 H maka kita peroleh f f 1 b. Misalkan f : A B , dan G , H subhimpunan dari B kita akan tunjukkan bahwa f 11 1 G H f 1 G f 1 H Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) f Pada buku ini kita akan bahas meninggalkan f i. 1 G H 1 G H yang f 1 f 1 G f 1 H sebaliknya dan yakni G f 1 H sebagai latihan bagi pembaca. Akan dibuktikan f 1 G H Ambil sebarang x f 1 f 1 G H , G f 1 H ini berarti bahwa f x G H , hal ini mengakibatkan f x G dan f x H , sehingga ini mengakibatkan x f 1 G dan x f 1 H , G f H karena itu x f 1 1 bukti selesai. ii. Bukti sebaliknya diserahkan pada pembaca. Sifat-sifat Fungsi 1.2.4. Definisi Suatu fungsi f : A B dikatakan injektif atau satu-satu bila untuk setiap x1 , x 2 A demikian sehingga x1 x 2 mengakibatkan f x1 f x 2 . Bila f satu-satu, kita katakan f suatu injeksi. Secara ekivalen, f injektif jika dan hanya jika f x1 f x 2 mengakibatkan x1 x 2 untuk setiap x1 , x 2 A . 1.2.5. Definisi Suatu fungsi f : A B dikatakan surjektif atau memetakan A pada B bila f A B . Bila f surjektif, maka kita sebut f suatu surjeksi. Secara ekivalen, f : A B surjektif bila R f B , yaitu untuk setiap y B terdapat x A sedemikian sehingga f x y . Dalam pendefinisian fungsi, penting untuk menentukan domain dan himpunan dimana nilainya diambil. Sekali hal ini ditentukan, maka dapat menanyakan apakah fungsi tersebut surjektif atau tidak. 12 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) 1.2.6. Definisi Suatu fungsi f : A B dikatakan bijektif bila bersifat injektif dan surjektif. Bila suatu fungsi f bijektif, kita sebut f suatu bijeksi. Fungsi-Fungsi Invers Bila f : A B suatu fungsi dari A ke B , (karenanya, subhimpunan khusus dari A B ), maka pasangan berurut B A diperoleh dengan saling menukar unsur pertama dan kedua di f . Secara umum hasil penukaran tersebut bukanlah fungsi. Tetapi bila f injektif, maka penukaran ini menghasilkan fungsi yang disebut invers dari f . 1.2.7. Definisi Misalkan f : A B suatu fungsi injektif dengan domain A dan R f di B . Bila g b, a B A a, b f , maka g suatu fungsi injektif dengan D g R f dan range A . Fungsi g disebut fungsi invers dari f dan dituliskan f 1 . Dalam penulisan fungsi yang standar, fungsi f sebagai berikut: x f 1 y jika dan hanya jika 1 berelasi dengan f y f x . 1.2.8. Contoh Suatu fungsi f x x dengan D f x R x 1 bersifat injektif x 1 (buktikan f suatu injeksi untuk latihan pembaca). Selanjutnya kita akan peroleh invers dari f adalah dirinya sendiri (bukti diserahkan pada pembaca) 13 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Fungsi Komposisi Sering kita ingin mengkomposisikan dua buah fungsi dengan mencari f x terlebih dahulu, kemudian menggunakan g untuk memperoleh g f x , akan tetapi hal ini bisa dilakukan bila f x ada didalam domain g . Jadi kita harus mengasumsikan bahwa R f D g 1.2.9. Definisi Untuk fungsi f : A B dan g : B C , komposisi g f adalah fungsi dari A ke C yang didefinisikan dengan g f x g f x untuk setiap x A . 1.2.10. Teorema Bila f : A B dan g : B C fungsi dan H suatu subhimpunan dari C . 1 Maka f g H g 1 f 1 H g 1 f 1 H . 1.2.11. Teorema Bila f : A B dan g:BC keduanya bersifat injektif, maka komposisi g f juga bersifat injektif. (Bukti teorema diberikan sebagai latihan bagi pembaca) Barisan Fungsi dengan Ν sebagai domain memainkan aturan yang sangat khusus dalam analisis, yang akan kita perkenalkan daalam konsep barisan berikut ini. 1.2.12. Definisi Suatu barisan dalam himpunan S adalah suatu fungsi yang domannya himpunan bilangan asli Ν dan rangenya termuat di S . Untuk barisan X : Ν S , nilai X di n Ν sering ditulis dengan x n daripada x n , dan nilainya sering kita sebut suku ke- n barisan tersebut. Barisan itu sendiri sering dituliskan dengan x n n Ν atau lebih sederhana dengan x n . 14 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Sebagai contoh, barisan di R yang dituliskan dengan dengan fungsi X : Ν R dengan X n n n Ν sama artinya n. Penting sekali untuk membedakan antara barisan x n n Ν dengan nilainya x n n Ν , yang merupakan subhimpunan dari S . Suku barisan harus dipandang mempunyai urutan yang diinduksi dari urutan bilangan asli, sedangkan range dari barisan hanya merupakan subhimpunan dari S . Sebagai contoh, suku-suku dari barisan 1 n n Ν berganti-ganti 1 dan 1 , tetapi range dari barisan tersebut adalah 1,1, memuat dua unsur dari R Latihan 1.2. 1. Misalkan A B x R 1 x 1 dan subhimpunan R dari R , apakah himpunan ini fungsi? 2. Misalkan f fungsi fungsi pada R yang didefinisikan dengan f x x 2 , dan E x R 1 x 0 dan F x R 0 x 1 tunjukkan bahwa E F 0 dan f E F 0. Sementara f E f F y R 0 x 1 . Disini f E F adalah subhimpunan sejati dari f E f F . Apa yang terjadi bila 0 dibuang dari E dan F ? 3. Bila E dan F seperti soal nomor 2. Tentukan E \ F dan f E \ f F dan tunjukkan bahwa f E \ F f E \ f F salah! 4. Tunjukkan bahwa bila f : A B dan E , F subhimpunan dari A , maka f E F f E f F dan f E F f E f F . 5. Tunjukkan bila f : A B , dan G , H subhimpunan dari B , maka f 15 1 G H f 1 G f 1 H dan f 1 G H f 1 G f 1 H Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) 6. Misalkan f didefinisikan dengan f x x 2 , x R . Tunjukkan bahwa x 1 f bijektif dari R pada y : 1 y 1. 7. Untuk a, b R dengan a b , tentukan bijeksi dari A x a x b pada B y 0 y 1 . 8. Tunjukkan bahwa bila f 1 f E E . f : A B bersifat injektif dari E A , maka Berikan suatu contoh untuk menunjukkan kesamaan tidak dipenuhi bila f tidak injektif. 9. Tunjukkan bahwa bila f : A B bersifat surjektif, dan H B , maka H H . f f 1 Berikan satu contoh untuk menunjukkan kesamaan tidak dipenuhi bila f tidak surjektif. 10. Buktikan bila f : A B suatu injeksi, maka f 1 b, a a, b R suatu fungsi dengan domain R f . Kemudian buktikan bahwa f invers dari f 1 1 injektif dan f . 11. Misalkan f : A B x D f dan f f injektif, tunjukkan bahwa f 1 y y 1 f x x untuk setiap untuk setiap y R f . 12. Berikan contoh dua buah fungsi f : A B , f : A B dari f : A B pada f : A B sehingga f : A B , tetapi f : A B 13. Buktikan teorema 1.2.10 dan 1.2.11 14. Misalkan f , g fungsi dan g f x x untuk semua x di D f . Tunjukkan bahwa f injektif dan R f D f dan R g D g . 15. Misalkan f , g fungsi dan dan g f x x untuk semua x di D f dan f g y untuk semua y di D g . buktikan bahwa g f 16 1 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) 1.3 INDUKSI MATEMATIKA Induksi matematika merupakan metode pembuktian penting yang akan sering digunakan dalam buku ini. Metode ini digunakan untuk menguji kebenaran suatu pernyataan yang diberikan dalam suku-suku bilangan asli. Walaupun kegunaannya terbatas pada masalah tertentu, tetapi induksi matematika sangat dibutuhkan disemua cabang matematika. Karena banyak bukti induksi matematika sangat diperlukan disemua cabang matematika. Karena banyak bukti induksi mengikuti urutan formal argumen yang sama, kita akan sering menyebutkan “hasilnya mengikuti induksi matematika” dan meninggalkan bukti lengkapnya kepada pembaca. Dalam bagian ini kita akan membahas prinsip induksi matematika dan memberi beberapa contoh untuk mengilustrasikan bagaimana proses bukti induksi. Kita akan mengasumsikan kebiasaan (pembaca) dengan himpunan bilangan asli Ν 1,2,3,... Dengan operasi matematika penjumlahan dan perkalian seperti biasa dan dengan arti suatu bilangan kurang dari bilangan lain. Kita juga akan mengasumsikan sifat fundamental dari Ν berikut ini 1.3.1. Sifat urutan dengan baik di Ν Setiap subhimpunan tak kosong dari Ν mempunyai unsur terkecil. Pernyataan yang lebih detail dari sifat ini sebagai berikut: bila S sub himpunan dari Ν dan S , maka terdapat unsur m S sedemikian sehingga m k untuk setiap k S . Dengan berdasar sifat urutan dengan baik, kita akan menurunkan suatu versi prinsip induksi matematika yang dinyatakan dalam suku-suku subhimpunan dari Ν . Sifat yang dideskripsikan dalam versi ini kadang-kadang mengikuti turunan sifat Ν . 17 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) 1.3.2. Prinsip Induksi Matematika Misalkan S sub himpunan dari Ν yang mempunyai sifat: i. 1 S ii. Jika k S , maka k 1 S . Maka S Ν Bukti: Andaikan S Ν . Maka Ν \ S . Karenanya berdasar sifat urutan dengan baik, maka Ν \ S mempunyai unsur terkecil, sebut m . Karena 1 S , maka m 1 . Karena itu m 1 dengan m 1 juga bilangan asli. Karena m 1 m dan m unsur terkecil di N \ S , maka m 1 haruslah di S . Sekarang kita gunakan hipotesis (2) terhadap unsur k m 1 di S , yang berakibat k 1 m 1 1 m di S . Kesimpulan ini kontradiksi dengan pernyataan bahwa m tidak di S . Karena m diperoleh dengan pengandaian Ν \ S tidak kosong, kita dipaksa pada kesimpulan bahwa Ν \ S kosong. Karena itu kita telah buktikan bahwa S Ν . Prinsip induksi matematika sering dinyatakan dalam kerangka sifat atay pernyataan tentang bilangan asli. Bila P n berarti pernyataan tentang n Ν , maka P n benar untuk beberapa nilai n , tetapi belum tentu benar untuk yang lain. Sebagai contoh, bila P n pernyataan “ n 2 n ”, maka P 1 benar, sementara P n salah untuk semua n 1 , n N dalam konteks ini prinsip induksi matematika dapat dirumuskan sebagai berikut: Untuk setiap n Ν , misalkan P n pernyataan tentang n , misalkan bahwa a) P 1 benar b) Jika P k benar, maka P k 1 benar. Maka P n benar untuk semua n Ν . Dalam kaitannya dengan versi induksi matematika terdahulu yang diberikan pada 1.3.2, dibuat misalkan S n Ν P n benar maka kondisi (1) dan (2) pada 1.3.2 berturut-turut tepat bersesuaian dengan (a) dan (b). Kesimpulan S Ν bersesuaian dengan kesimpulan bahwa Pn benar untuk semua n Ν . 18 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Dalam (b) asumsi “jika P k benar” disebut hipotesis induksi. Disini, kita tidak memandang pada benar salahnya P k , tetapi hanya pada validitas implikasi “ jika P k benar, maka P k 1 benar”. 1.3.3. Contoh a. Untuk setiap n N , jumlah n pertama bilangan asli diberikan oleh 1 2 ... n 1 nn 1 2 Untuk membuktikan kesamaan ini, kita misalkan S himpunan n Ν , sehingga kesamaan tersebut benar. Kita harus membuktikan kondisi (1) dan (2) pada 1.3.2 dipenuhi. i. Bila n 1 , maka kita mempunyai P 1 : 1 1 .1.1 1 , jadi P1 benar 2 ii. Bila P k kita asumsikan benar yakni 1 1 2 ... k .k k 1 2 Bila kita tambahkan pada kedua ruas dengan k 1 ,maka menjadi: 1 1 2 ... k k 1 .k k 1 k 1 2 1 1 2 ... k k 1 k 1k 1 2 1 2 ... k k 1 1 k 2 k 1 2 1 2 ... k k 1 1 k 1k 2 2 1 2 ... k k 1 1 k 1k 1 1 2 Dari persamaan terakhir kita ketahui bahwa karena P k berimplikasi pada akibat P k 1 bernilai benar, sehingga terbukti bahwa: 1 2 ... n 19 1 nn 1 , untuk setiap n Ν 2 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) b. Untuk setiap n Ν , jumlah kuadrat dari n bilangan pertama asli adalah sebagai berikut: 12 2 2 ... n 2 nn 12n 1 6 Untuk membuktikan formula diatas, maka pertama-tama kita buktikan kebenaran formula diatas untuk n 1 , selanjutnya jika benar untuk n k , maka akan dibuktikan benar pula untuk n k 1 i. Bila n 1 , maka kita mempunyai P 1 : 1 11 12.1 1 6 1 , jadi 6 6 P1 benar ii. Bila P k kita asumsikan benar yakni 12 2 2 ... k 2 k k 12k 1 6 2 Bila kita tambahkan pada kedua ruas dengan k 1 ,maka menjadi: 2 12 2 2 ... k 2 k 1 k k 12k 1 2 k 1 6 k 2k 1 2 12 2 2 ... k 2 k 1 k 1 k 1 6 k 2k 1 6k 6 2 12 2 2 ... k 2 k 1 k 1 6 2k 2 k 6k 6 2 12 2 2 ... k 2 k 1 k 1 6 2k 2 7k 6 2 12 2 2 ... k 2 k 1 k 1 6 2k 2 7k 6 2 12 2 2 ... k 2 k 1 k 1 6 k 22k 3 2 12 2 2 ... k 2 k 1 k 1 6 k 1k 1 12k 1 1 2 12 2 2 ... k 2 k 1 6 20 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Hasil terakhir memiliki arti bahwa P k 1 bernilai benar sebagai implikasi dari P k yang bernilai benar, mengikuti induksi matematika, maka validitas formula diatas berlaku untuk setiap n Ν c. Diberikan a, b , kita akan buktikan pernyataan a b adalah faktor dari a n b n untuk setiap n Ν . Pertama-tama kita akan melihat untuk n 1 , maka kita ketahui bahwa pernyataan matematika bernilai benar karena a b adalah faktor dari a 1 b1 a b . Selanjutnya asumsikan bahwa pernyataan juga bernilai benar untuk n k , sehingga a b adalah faktor dari a k b k . Selanjutnya perhatikan bahwa: a a k 1 k 1 aa b k 1 a k 1 ab k ab k b k 1 b k 1 k b k b k a b Berdasarkan hipotesis maka kita ketahui bahwa a b faktor dari a a k b k , selain itu kita ketahui bahwa a b adalah faktor dari b k a b , sehingga dari sini kita simpulkan bahwa a b adalah faktor dari a k 1 b k 1 . Dengan induksi matematika dapat kita simpulkan bahwa a b adalah faktor dari a n b n untuk setiap n Ν d. Untuk setiap n Ν buktikanlah bahwa ketaksamaan berikut benar 2 n n 1! Untuk membuktikan, pertama kita lihat untuk n 1 yakni 21 1 1! 2 bernilai benar. Selanjutnya kita asumsikan bahwa 2 k k 1! . Dengan menggunakan fakta 2 k 2 , diperoleh: 2 k 1 2.2 k 2k 1! k 2 . k 1! k 2 ! k 1 1! 21 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Jadi, bila ketaksamaan tersebut berlaku untuk k , maka berlaku pula untuk k 1 . Karenanya dengan induksi matematika, kita simpulkan bahwa ketaksamaan tersebut benar untuk setiap n Ν . e. Bila r R , r 1 dan n Ν , maka 1 r r 2 ... r n 1 r n 1 1 r Ini merupakan jumlah n suku deret geometri. Untuk membuktikan kesamaan diatas, kita misalkan n 1 , maka kita mempunyai 1 r 1 r2 , jadi formula 1 r diatas benar untuk n 1 . Selanjutnya kita asumsikan benar untuk n k , 2 k sehingga 1 r r ... r kita tambahkan r k 1 1 r k 1 benar. Selanjutnya pada kedua ruas 1 r , sehingga menjadi: 1 r r 2 ... r k r k 1 1 r r 2 ... r k r k 1 1 r k 1 r k 1 1 r 1 r k 1 1 r r k 1 1 r k 1 r k 1 r k 2 1 r k 2 1 r 1 r 1 r 1 r 1 r 2 k 1 r r ... r r k 1 1 r k 11 1 r Hasil terakhir memiliki arti formula tersebut juga berlaku untuk n k 1 , sehingga mengikuti prinsip induksi matematika, maka formula tersebut benar untuk setiap n Ν . Pada sekolah menengah kita sudah diajarkan membuktikan kesamaan diatas tanpa menggunakan induksi matematika yakni: Misalkan S n 1 r r 2 ... r n , maka rS n r r 2 ... r n r n 1 , S n rS n 1 r r 2 ... r n r r 2 ... r n r n1 1 r S n 1 r n1 Sn 22 1 r n1 1 r Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) f. Penggunaan prinsip induksi matematika secara ceroboh dapat menghasilkan kesimpulan yang salah. Pembaca diharapkan mencari kesalahan pada “Bukti Teorema” berikut. Bila n sebarang bilangan asli dan bila maksimum dari dua bilangan asli p dan q adalah n , maka p q . (akibatnya bila p dan q dua bilangan asli sebarang, maka p q ). Bukti: Misalkan S sub himpunan dari bilangan asli sehingga pernyataan tersebut benar. maka 1 S , karena p, q di Ν dan maksimumnya 1 . Maka maksimum p 1 dan q 1 adalah k , karenanya p 1 q 1 , karena k S , dari sini kita simpulkan p q . Jadi k 1 S dan kita simpulkan bahwa pernyataan tersebut benar untuk setiap n Ν . g. Terdapat juga beberapa pernyataan yang benar untuk beberapa bilangan asli, tetapi tidak untuk semua. Sebagai contoh formula P n n 2 n 41 memberikan bilangan prima untuk n 1, 2,3,...,41 . Tetapi, P 1 bukan bilangan prima. Prinsip induksi matematika memiliki bentuk dalam versi lain yang kadangkadang sangat berguna. Sering disebut prinsip induksi kuat, walaupun sebenarnya ekivalen dengan versi terdahulu. 1.3.4. Prinsip Induksi Kuat. Misalkan S sub himpunan Ν sedemikian hingga 1 S , dan bila 1,2,..., k S maka k 1 S . Maka S Ν . Bukti ekivalensi prinsip induksi kuat dengan prinsip induksi matematika diserahkan pada pembaca sebagai bahan latihan. 23 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Latihan 1.3. Buktikan bahwa yang berikut ini berlaku untuk semua n Ν 1. 1 1 1 n ... 1.2 2.3 nn 1 n 1 1 2. 1 2 ... n nn 1 2 3 3 2 3 3. 12 2 2 3 ... 1 n 1 nn 1 2 4. n 3 5n dapat dibagi 6 5. 5 2 n 1 dapat dibagi 8 6. 5 n 4n 1 dapat dibagi 16. 7. Buktikan bahwa jumlah pangkat tiga dari bilangan asli berurutan, n, n 1, n 2 habis dibagi 9. 8. Buktikan bahwa n 2 n untuk semua n Ν 9. Tentukan suatu formula untuk jumlah 1 1 1 ... 2n 12n 1 1.3 3.5 Dan buktikan dugaan tersebut dengan menggunakan induksi matematika. (dugaan terhadap pernyataan matematika, sebelum dibuktikan sering disebut “Conjecture”) 10. Tentukan suatu formula untuk jumlah n buah bilangan ganjil pertama 1 3 ... 2n 1 Kemudian buktikan dugaan tersebut dengan menggunakan induksi matematika 24 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) 11. Buktikan variasi dari 1.3.2 berikut: misalkan S subhimpunan tak kosong dari Ν sedemikian sehingga untuk suatu n0 Ν berlaku (a) n0 S , dan (b) bila k 0 dan k S , maka k 1 S . Maka S memuat himpunan n Ν n n0 . 12. Buktikan bahwa 2 n n ! Untuk setiap n 4 , n Ν (lihat latihan 11). 13. Buktikan bahwa 2n 3 2 n 2 untuk setiap n 5 , n Ν (lihat latihan 11). 14. Untuk bilangan asli yang mana n 2 2 n ? Buktikan pernyataanmu (lihat latihan 11) 15. Buktikan bahwa 1 1 1 2 ... 1 n n untuk setiap n Ν . 16. Misalkan S sub himpunan dari N sedemikian sehingga (a) 2 k S untuk setiap k N , dan (b) bila k S , dan k 2 , maka k 1 S . Buktikan S Ν. 17. Misalkan barisan xn 2 xn didefinisikan sebagai berikut: x1 1 , x 2 2 , dan 1 xn 1 xn untuk n N . Gunakan prinsip induksi kuat 1.3.4. untuk 2 menunjukkan 1 x n 2 untuk setiap n Ν . 25 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) BAB II HIMPUNAN BILANGAN REAL B ab ini menjelaskan tentang hal-hal yang berkaitan dengan dengan sistem bilangan real sebagai suatu sistem matematika yang memiliki sifat-sifat sebagai suatu lapangan yang terurut dan lengkap. Yang dimaksud dengan sistem bilangan real sebagai suatu lapangan di sini adalah bahwa pada himpunan semua bilangan real R yang dilengkapi dengan operasi penjumlahan dan perkalian berlaku sifat-sifat aljabar dari lapangan. Sifat terurut dari R berkaitan dengan konsep kepositifan dan ketidaksamaan antara dua bilangan real, sedangkan sifatnya yang lengkap berkaitan dengan konsep supremum atau batas atas terkecil. Teorema-teorema dasar dalam kalkulus elementer, seperti Teorema Eksistensi Titik Maksimum dan Minimum, Teorema Nilai Tengah, Teorema Rolle, Teorema Nilai Rata-Rata, dan sebagainya, didasarkan atas sifat kelengkapan dari R ini. Sifat ini berkaitan erat dengan konsep limit dan kekontinuan. Dapat dikatakan bahwa sifat kelengkapan dari R mempunyai peran yang sangat besar di dalam analisis real. Bab ini terdiri dari beberapa sub bab. Sub bab 2.1 membahas sifat lapangan dari R . Sub bab 2.2 menjelaskan sifat terurut dari R , dan di dalamnya dibahas juga tentang konsep nilai mutlak. Pada sub bab 2.3 didiskusikan tentang sifat kelengkapan dari R . Pada sub bab ini dibahas mengenai sifat Archimedean dan sifat kerapatan dari himpunan bilangan rasional. Selanjutnya, sub bab 2.4, menjelaskan tentang interval, sebagai suatu himpunan bagian dari R yang dikonstruksi berdasarkan sifat terurut dari R . Yang terakhir, sub bab 2.5 membahas tentang representasi desimal dari bilangan real. Pada sub bab ini, juga dipaparkan bagaimana membuktikan Teorema Cantor dengan menggunakan konsep representasi desimal dari bilangan real ini. Teorema Cantor mengatakan bahwa himpunan R merupakan himpunan yang tak terhitung (uncountable). 26 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) 2.1 Sifat Aljabar dari R Sifat 2.1 (Sifat Aljabar dari R ). Pada himpunan bilangan real R yang dilengkapi operasi penjumlahan ( ) dan operasi perkalian ( ) berlaku sifat-sifat, terhadap operasi penjumlahan : T1. a b b a untuk setiap a, b R T2. a b c a b c T3. Terdapat elemen 0 R sedemikian sehingga 0 a a 0 a untuk setiap untuk setiap a, b, c R aR T4. Terdapat elemen a R sedemikian sehingga a a a a 0 untuk setiap a R terhadap operasi perkalian : K1. a b b a untuk setiap a, b R K2. a b c a b c untuk setiap a, b, c R K3. Terdapat elemen 1 R sedemikian sehingga 1 a a 1 a untuk setiap a K4. Terdapat elemen 1 / a R sedemikian sehingga 1/ a a a 1/ a 1 untuk setiap a R , dan a b c a b a c dan b c a b a c a untuk setiap a, b, c R . D. Sifat T1 dan K1 merupakan sifat komutatif, sifat T2 dan K2 merupakan sifat asosiatif, sifat T3 dan K3 menunjukkan eksistensi elemen identitas, dan sifat T4 dan K4 menunjukkan eksistensi elemen invers, berturut-turut masing-masing terhadap operasi penjumlahan dan perkalian. Yang terakhir, sifat D merupakan sifat distributif perkalian atas penjumlahan. Sifat T1-T4, K1-K4, dan D yang dipenuhi oleh semua elemen di R , menjadikan R dipandang sebagai suatu lapangan. 27 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Terkait dengan elemen identitas 0 (terhadap operasi penjumlahan) dan 1 (terhadap operasi perkalian), kita memiliki fakta bahwa kedua elemen ini merupakan elemen yang unik atau tunggal. Selain itu, perkalian setiap elemen di R dengan elemen 0 hasilnya adalah 0. Fakta-fakta ini, secara formal matematis, dapat direpresentasikan dalam teorema berikut ini. Teorema 2.2. a. Jika z, a R dan z a a maka z 0 . b. Jika u b b dengan u, b R dan b 0 maka u 1. c. a 0 0 untuk setiap a R . Bukti. a. Berdasarkan sifat T3, T4, T2, dan hipotesis z a a , z z 0 z a a z a a a a 0 . b. Berdasarkan sifat K1, K2, K3, dan hipotesis u b b , b 0 , u u 1 u b 1/ b u b 1/ b b 1/ b 1 . c. Berdasarkan sifat K3, D, dan T3, a a 0 a 1 a 0 a 1 0 a 1 a . ■ Berdasarkan a., diperoleh bahwa a 0 0 . Selain fakta di atas, kita juga memiliki fakta berikut ini. Teorema 2.3. a. Jika a, b R , a 0 , dan a b 1 maka b 1/ a . b. Jika a b 0 maka a 0 atau b 0 . Bukti. a. Berdasarkan sifat K3, K4, K2, dan hipotesis a 0 , dan a b 1 , b b 1 b a 1/ a b a 1/ a 1 1/ a 1/ a . b. Andaikan a 0 dan b 0 . Akibatnya, a b 1/ a b 1 . Berdasarkan hipotesis, yaitu a b 0 , dan Teorema 2.2.c., kita memiliki bahwa a b 1/ a b 0 1/ a b 0 , 28 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Terjadi kontradiksi di sini, yaitu antara pernyataan a b 1/ a b 1 dan a b 1/ a b 0 . Dengan demikian, haruslah bahwa a 0 atau b 0 .■ Teorema 2.3.a. mengatakan bahwa eksistensi invers dari suatu elemen di R adalah unik. Sedangkan Teorema 2.3.b. mengandung arti bahwa perkalian dua elemen tak nol di R tidaklah mungkin menghasilkan elemen nol. Di dalam himpunan bilangan real R dikenal pula operasi lain, yaitu operasi pengurangan ( ) dan pembagian ( : ). Jika a, b R maka operasi pengurangan didefinisikan dengan a b : a b sedangkan operasi pembagian didefinisikan dengan a : b : a 1/ b , b 0 . SIFAT TERURUT DARI R 2.2 Seperti yang telah disinggung pada pendahuluan bab ini, sifat terurut dari R berkaitan dengan konsep kepositifan dan ketidaksamaan antara dua bilangan real. Seperti apa kedua konsep tersebut? Di sini, kita akan membahasnya. Terlebih dahulu kita akan membahas konsep kepositifannya. Sifat 2.4 (Sifat Kepositifan). Terdapat himpunan bagian tak kosong dari R , yang dinamakan himpunan bilangan real positif R , yang memenuhi sifat-sifat : a. Jika a, b R maka a b R . b. Jika a, b R maka a b R . c. Jika a R maka salah satu diantara tiga hal, yaitu a R , a 0 , dan a R , pasti terpenuhi. Sifat 2.4.c. disebut juga sebagai sifat Trichotomy. Sifat ini mengatakan bahwa R dibangun oleh tiga buah himpunan yang disjoin. Tiga buah himpunan tersebut adalah himpunan a : a R yang merupakan himpunan bilangan real negatif, himpunan 0 , dan himpunan bilangan real positif R . Himpunan a : a R 29 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) bisa juga dituliskan dengan R . Jika a R maka a 0 dan a dikatakan sebagai bilangan real positif. Jika a R 0 maka a 0 dan a dikatakan sebagai bilangan real nonnegatif. Jika a R maka a 0 dan a dikatakan sebagai bilangan real negatif. Jika a R 0 maka a 0 dan a dikatakan sebagai bilangan real nonpositif. Penjumlahan k buah suku elemen 1 menghasilkan bilangan k . Himpunan bilangan k yang dikonstruksi dengan cara demikian disebut sebagai himpunan bilangan asli, dinotasikan dengan N . Himpunan N ini merupakan himpunan bagian dari himpunan R . Himpunan ini memiliki sifat fundamental, yakni bahwa setiap himpunan bagian tak kosong dari N memiliki elemen terkecil. Sifat yang demikian disebut sebagai sifat well-ordering dari N . Selanjutnya, jika kita ambil sembarang k N maka k N . Gabungan himpunan N , 0 , dan k : k N membentuk suatu himpunan yang disebut sebagai himpunan bilangan bulat, dinotasikan dengan Z . Himpunan bilangan asli N disebut juga sebagai himpunan bilangan bulat positif, dinotasikan dengan Z , sedangkan himpunan k : k Z disebut juga himpunan bilangan bulat negatif, dinotasikan dengan Z . Dari himpunan Z , kita bisa mengonstruksi bilangan dalam bentuk m / n , dengan n 0 . Bilangan real yang dapat direpresentasikan dalam bentuk yang demikian disebut sebagai bilangan rasional. Sebaliknya, bilangan real yang tidak dapat direpresentasikan dalam bentuk itu disebut sebagai bilangan irasional. Himpunan bilangan rasional dinotasikan dengan Q . Dapat dikatakan bahwa himpunan bilangan real R merupakan gabungan dua himpunan disjoin, himpunan bilangan rasional dan himpunan bilangan irasional. Bilangan 2 dan 0 merupakan contoh bilangan-bilangan rasional, dan dapat ditunjukkan bahwa 2 , akar dari persamaan x 2 2 , merupakan contoh bilangan irasional (lihat Bartle-Sherbert [1]). 30 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Sekarang, kita sampai kepada penjelasan tentang konsep ketidaksamaan antara dua bilangan real, sebagai salah satu konsep yang berkaitan dengan sifat terurut dari R . Definisi 2.5. Misalkan a, b R . a. Jika a b R maka a b atau b a . b. Jika a b R 0 maka a b atau b a . Sifat Trichotomy dari R mengakibatkan bahwa untuk sembarang a, b R berlaku salah satu dari a b , a b , atau a b . Selain itu, dapat ditunjukkan bahwa jika a b dan a b maka a b . Dari sifat terurut, dapat juga diperoleh fakta-fakta berikut ini. Teorema 2.6. Misalkan a, b, c R . a. Jika a b dan b c maka a c . b. Jika a b maka a c b c . c. Jika a b dan c 0 maka ac bc . Jika a b dan c 0 maka ac bc . d. Jika ab 0 maka a 0 dan b 0 , atau a 0 dan b 0 . e. Jika ab 0 maka a 0 dan b 0 , atau a 0 dan b 0 . Bukti Teorema 2.6.a-2.6.b menggunakan definisi 2.5 dan Teorema 2.6.d-2.6.e menggunakan sifat Trichotomy. Bukti Teorema tersebut ditinggalkan sebagai latihan bagi para pembaca. Jika kita mengambil sembarang a 0 maka 1 2 a 0 dan 0 12 a a . Hal ini mengandung arti setiap kita mengambil bilangan positif pasti selalu didapat bilangan positif lain yang lebih kecil daripadanya. Dengan kata lain, tidak terdapat bilangan positif yang terkecil. Pernyataan ini merupakan maksud dari teorema berikut ini. 31 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Teorema 2.7. Jika a R dan 0 a untuk setiap 0 maka a 0 . Bukti. Andaikan a 0 . Pilih 12 a . Kita peroleh 0 a . Pernyataan ini kontradiksi dengan hipotesis bahwa 0 a untuk setiap 0 . Dengan demikian, haruslah bahwa a 0 . ■ Sebelumnya kita telah dikenalkan dengan bilangan real nonnegatif, yaitu elemen dari himpunan R 0. Jika a 0 atau a 0 maka jelas bahwa a R 0 . Jika a 0 tentunya a 0 , sehingga a R 0 . Berdasarkan hal tersebut, akan didefinisikan apa yang disebut sebagai nilai mutlak dari suatu bilangan real. Nilai mutlak ini akan “me-nonnegatif-kan” bilangan-bilangan real. Definisi 2.8 (Nilai Mutlak). Nilai mutlak dari bilangan real a , dinotasikan dengan a , didefinisikan dengan a, a 0 a : a, a 0. Dari Definisi 2.8 tersebut tampak bahwa a 0 atau a adalah bilangan nonnegatif untuk setiap bilangan real a . Sebagai contoh, 1 1 , 0 0 , dan 2 2. Nilai mutlak dari bilangan-bilangan real ini memiliki sifat-sifat tertentu, di antaranya seperti yang tertuang dalam fakta berikut ini. Teorema 2.9. ab a b untuk setiap a, b R . a. b. Misalkan c 0 dan a R , a c jika dan hanya jika c a c . c. Misalkan c 0 dan a R , a c jika dan hanya jika a c atau a c . Bukti. 32 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) a. Jika a 0 atau b 0 maka ab 0 0 dan a b 0 . Jika a, b 0 maka ab 0 , a a , dan b b , sehingga ab ab dan a b ab . Jika a 0 dan b 0 maka ab 0 , a a , dan b b , sehingga ab ab dan a b a b ab . Untuk kasus a 0 dan b 0 , penyelesaiannya serupa dengan kasus sebelumnya. b. Misalkan a c . Untuk a 0 , kita peroleh a a c , sehingga didapat 0 a c . Untuk a 0 , kita peroleh a a c atau a c , sehingga didapat c a 0 . Dengan menggabungkan hasil dari kedua kasus tersebut, kita peroleh c a c . Untuk sebaliknya, misalkan c a c . Hal tersebut mengandung arti c a dan a c . Dengan kata lain, a c dan a c . Lebih sederhana, yang demikian dapat dituliskan sebagai a c . c. Misalkan a c . Untuk a 0 , kita peroleh a a c . Untuk a 0 , kita peroleh a a c atau a c . Dengan menggabungkan hasil dari kedua kasus tersebut, kita peroleh a c atau a c . Untuk sebaliknya, jika a c atau a c maka a c atau a c . Dengan kata lain, a c . ■ Perhatikan kembali sifat nilai mutlak yang terdapat pada Teorema 2.9. Untuk 2 2 yang bagian a., jika a b maka a a a a . Untuk bagian b., jika c a maka a a a . Selanjutnya, kita sampai kepada sifat nilai mutlak yang lain, yang dinamakan dengan Ketidaksamaan Segitiga. Ketidaksamaan ini mempunyai kegunaan yang sangat luas di dalam matematika, khususnya di dalam kajian analisis dan aljabar. 33 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Teorema 2.10 (Ketidaksamaan Segitiga). Jika a, b R maka a b a b dan kesamaan terjadi atau a b a b jika a kb , dengan k 0 . Bukti. Seperti yang telah dibahas sebelumnya, jika a, b R maka dapat diperoleh bahwa a a a dan b b b . Jika kedua ketidaksamaan ini kita jumlahkan maka a b a b a b atau a b a b . Bukti untuk ■ pernyataan berikutnya ditinggalkan sebagai latihan bagi para pembaca. Lebih jauh, sebagai konsekuensi dari Teorema 2.10, kita memiliki akibat berikut ini. Akibat 2.11. Jika a, b R maka a b a b dan a b a b . Bukti. Perhatikan bahwa a a b b . Dengan menggunakan ketidaksamaan segitiga, a a b b a b b atau a b a b . Dengan cara yang serupa dapat kita peroleh bahwa b b a a a b a . Akibatnya, b a a b atau a b a b . Akhirnya, kita memiliki a b a b a b atau a b a b . Selanjutnya, perhatikan bahwa a b a b a b a b , ■ berdasarkan ketidaksamaan segitiga. Selanjutnya, kita akan melihat bagaimana konsep terurut dari R ini diaplikasikan untuk menyelesaikan masalah-masalah ketidaksamaan. Contoh 2.12. Tentukan himpunan penyelesaian dari ketidaksamaan 4 x 2 6 . Penyelesaian. Perhatikan bahwa 4 x 2 4 x 2 6 4 x 2 2 6 2 4 x 8 x 2 . Tampak bahwa x x : x 2 . 34 ketidaksamaan 4x 2 6 dipenuhi oleh semua ■ Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Contoh 2.13. Cari semua penyelesaian dari ketidaksamaan x 2 x 6 . Penyelesaian. Perhatikan bahwa x 2 x 6 x 2 x 6 0 x 2 x 3 0 . Darinya kita peroleh bahwa x 2 0 dan x 3 0 , atau x 2 0 dan x 3 0 . Untuk kasus yang pertama kita dapatkan x 2 dan x 3 , atau dengan kata lain 2 x 3 . Untuk kasus yang kedua kita peroleh bahwa x 2 dan x 3 . Perhatikan bahwa pada kasus kedua tersebut tidak ada nilai x yang memenuhinya. Dengan demikian, ketidaksamaan x 2 x 6 dipenuhi oleh semua x x R : 2 x 3 . ■ Contoh 2.14. Selidiki apakah ketidaksamaan x2 2 2x 3 memiliki penyelesaian. Penyelesaian. Perhatikan bahwa x 2 2 2 x 3 x2 3 x 8 2 0 0. 2x 3 2x 3 2x 3 Yang demikian berarti 3x 8 0 dan 2 x 3 0 , atau 3x 8 0 dan 2 x 3 0 . Untuk kasus yang pertama kita peroleh x 8 / 3 dan x 3 / 2 . Namun hal itu tidak mungkin terjadi, artinya tidak ada x yang memenuhi. Untuk kasus yang kedua kita peroleh x 8 / 3 dan x 3 / 2 , atau dengan kata lain 8 / 3 x 3 / 2 . Jadi ketidaksamaan x2 2 2x 3 memiliki penyelesaian, dan himpunan semua penyelesaiannya x R : 8 / 3 x 3 / 2 . adalah ■ Contoh 2.15. Cari himpunan penyelesaian dari 2 x 1 5 . 35 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Penyelesaian. Berdasarkan Teorema 1.9.b., 5 2 x 1 5 atau 6 2 x 4 . Darinya kita peroleh 3 x 2 . Jadi himpunan penyelesaiannya adalah x R : 3 x 2 Bisa juga ketidaksamaan tersebut diselesaikan dengan cara lain. Perhatikan bahwa 2 x 1, jika x 1/ 2 2x 1 2 x 1 , jika x 1/ 2. Penyelesaiannya dibagi menjadi dua kasus, yaitu : Kasus I, x 1 / 2 . Kita peroleh 2 x 1 2 x 1 5 . Akibatnya, 2 x 4 atau x 2 . Pada kasus ini, himpunan penyelesaian dari 2 x 1 5 adalah x R : x 1 / 2 x R : x 2 x R : 1 / 2 x 2 l. Kasus II, x 1 / 2 . Kita peroleh 2 x 1 2 x 1 2 x 1 5 . Akibatnya, 2 x 6 atau x 3 . Pada kasus ini, himpunan penyelesaian dari 2 x 1 5 adalah x R : x 1 / 2 x R : x 3 x R : 3 x 1 / 2. Penyelesaian seluruhnya dari 2 x 1 5 adalah himpunan penyelesaian kasus I digabung dengan himpunan penyelesaian kasus II. Akibatnya, kita dapatkan himpunan penyelesaian keseluruhan 2x 1 5 dari x R : 3 x 2 . adalah ■ Contoh 2.17. Tentukan himpunan penyelesaian dari x x 1 2 . Penyelesaian. Sebelum melangkah jauh di dalam menyelesaikan ketidaksamaan tersebut, perhatikan bahwa x, jika x 0 x x, jika x 0 dan x 1, jika x 1 x 1 x 1 , jika x 1. Penyelesaiannya kita bagi menjadi tiga kasus terlebih dahulu, yaitu : 36 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Kasus I, x 1 . Kita peroleh x x dan x 1 x 1 x 1 . Akibatnya, x x 1 x x 1 2 atau 2 x 3 atau x 3 / 2 . Pada kasus ini, himpunan penyelesaian dari x x 1 2 adalah x R : x 3 / 2 x R : x 1 x R : 3 / 2 x 1. Kasus II, 1 x 0 . Kita peroleh x x dan x 1 x 1 . Akibatnya, x x 1 x x 1 2 atau 1 2 . Ketidaksamaan 1 2 dipenuhi oleh semua x R . Untuk kasus II, himpunan penyelesaian dari x x 1 2 adalah x R : 1 x 0 x R x R : 1 x 0. Kasus III, x 0 . Kita peroleh x x dan x 1 x 1 . Akibatnya, x x 1 x x 1 2 atau 2 x 1 atau x 1/ 2 . Untuk kasus III, himpunan penyelesaian dari x x 1 2 adalah x R : x 0 x R : x 1 / 2 x R : 0 x 1 / 2 . Dengan menggabungkan himpunan penyelesaian untuk kasus I, kasus II, dan kasus III, diperoleh seluruh nilai x R yang memenuhi ketidaksamaan x x 1 2. , yaitu x R : 3 / 2 x 1 / 2 . Contoh 2.18. Selidiki apakah ■ x 3 x 2 4 memiliki ketidaksamaan penyelesaian. Penyelesaian. Sebelum melangkah jauh di dalam menyelesaikan ketidaksamaan tersebut, perhatikan bahwa x 3, jika x 3 x3 x 3 , jika x 3. dan x 2, jika x 2 x2 x 2 , jika x 2. Penyelesaiannya kita bagi menjadi tiga kasus terlebih dahulu, yaitu : 37 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Kasus I, x 2 . Kita peroleh x 3 x 3 x 3 dan x 2 x 2 x 2 . Akibatnya, x 3 x 2 x 3 x 2 4 atau 2 x 3 atau x 3 / 2 . Untuk kasus ini, kita tidak mempunyai penyelesaian dari x 3 x 2 4 karena x R : x 3 / 2 x R : x 2 . Kasus II, 2 x 3 . Kita peroleh x 3 x 3 x 3 dan x2 x2 . Akibatnya, x 3 x 2 x 3 x 2 4 atau 5 4 . Pernyataan ini merupakan sesuatu yang mustahil. Jadi untuk kasus ini, kita tidak mempunyai penyelesaian. Kasus III, x 3 . Kita peroleh x3 x3 dan x2 x2 . Akibatnya, x 3 x 2 x 3 x 2 4 atau 2 x 5 atau x 5 / 2 . Untuk kasus ini, kita tidak mempunyai penyelesaian dari x 3 x 2 4 karena x R : x 3 x R : x 5 / 2 . Secara keseluruhan, kita tidak memiliki solusi untuk x3 x2 4. 2.3 ketidaksamaan ■ SIFAT KELENGKAPAN DARI R Pada subbab ini kita akan membahas sifat ketiga dari R , yaitu sifat kelengkapan. Seperti yang telah dikatakan pada pendahuluan bab ini, sifat kelengkapan berkaitan dengan konsep supremum atau batas atas terkecil. Untuk itu, kita akan bahas terlebih dahulu apa yang dimaksud dengan batas atas dari suatu himpunan bilangan real, dan kebalikannya, yaitu batas bawahnya. 38 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Definisi 2.19. Misalkan X adalah himpunan bagian tak kosong dari R . a. Himpunan X dikatakan terbatas atas jika terdapat a R sedemikian sehingga a x , untuk setiap x X . Bilangan real a yang demikian disebut sebagai batas atas dari X . b. Himpunan X dikatakan terbatas bawah jika terdapat b R sedemikian sehingga b x , untuk setiap x X . Bilangan real b yang demikian disebut sebagai batas bawah dari X . c. Himpunan X dikatakan terbatas jika X terbatas atas dan terbatas bawah. Himpunan X dikatakan tidak terbatas jika X tidak terbatas atas atau tidak terbatas bawah. Sebagai contoh, perhatikan himpunan x R : x 0 . Setiap elemen pada himpunan b R : b 0 merupakan batas bawah dari x R : x 0 . Setiap kita mengambil elemen x x R : x 0 maka selalu kita dapatkan bahwa x x 1 , sedangkan x 1 x R : x 0 . Yang demikian mengandung arti bahwa tidak ada aR sedemikian sehingga a x , untuk setiap x x R : x 0 . Jadi himpunan x R : x 0 terbatas bawah tetapi tidak terbatas atas, atau juga dapat dikatakan bahwa himpunan tersebut tidak terbatas. x R : x 1 . Himpunan a R : a 1 atas dari x R : x 1 . Tidak ada b R semua x x R : x 1, karena setiap kita Contoh lain, pandang himpunan merupakan koleksi semua batas sedemikian sehingga b x , untuk mengambil x x R : x 1 maka selalu dapat kita peroleh bahwa x 1 x , sedangkan x 1 x R : x 1 . Akibatnya, himpunan x R : x 1 tidak mempunyai batas bawah. Jadi himpunan x R : x 1 terbatas atas tetapi tidak terbatas bawah, atau juga dapat dikatakan bahwa himpunan tersebut tidak terbatas. Berdasarkan paparan sebelumnya, himpunan x R : 0 x 1 memiliki batas atas dan batas bawah, atau dengan kata lain himpunan tersebut merupakan 39 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) himpunan terbatas. Dari batas-batas bawahnya, kita dapat memilih batas bawah yang terbesar, yaitu elemen 0. Sedangkan dari batas-batas atasnya, kita dapat memilih batas atas yang terkecil, yaitu elemen 1. Berikut ini adalah definisi secara formal dari batas atas terkecil, disebut supremum, dan batas bawah terbesar, disebut infimum, dari suatu himpunan bilangan real. Definisi 2.20. Misalkan X adalah himpunan bagian tak kosong dari R . a. Misalkan X terbatas atas. Elemen a R dikatakan supremum dari X jika memenuhi syarat-syarat : (1) a adalah batas atas dari X (2) a v , untuk setiap v , batas atas dari X . b. Misalkan X terbatas bawah. Elemen b R dikatakan infimum dari X jika memenuhi syarat-syarat : (1) b adalah batas bawah dari X (2) b w , untuk setiap w , batas bawah dari X . Selanjutnya, mungkin timbul pertanyaan, apakah perbedaan antara supremum (infimum) dengan maksimum (minimum)? Contoh sebelumnya tentang himpunan x R : 0 x 1 , bisa menjadi ilustrasi untuk menjelaskan hal ini. Himpunan x R : 0 x 1 tidaklah mempunyai minimum dan maksimum, karena tidak ada m, M x R : 0 x 1 sedemikian sehingga m x dan M x , untuk setiap x x R : 0 x 1 . Sedangkan untuk supremum dan infimum, himpunan x R : 0 x 1 memilikinya, yaitu 1 dan 0, masing-masing secara berurutan. Elemen minimum dan maksimum haruslah elemen dari himpunan yang bersangkutan, tetapi elemen infimum dan supremum tidaklah harus demikian. Jadi elemen infimum dan supremum bisa termasuk atau tidak termasuk ke dalam himpunan yang bersangkutan. Himpunan x R : 0 x 1 memiliki infimum dan supremum, yaitu elemen 1 dan 0, yang termasuk ke dalam himpunan x R : 0 x 1. Selanjutnya, kita akan memberikan formulasi lain dari definisi supremum dan infimum pada definisi 2.20. Kita mulai dengan definisi supremum. Elemen a 40 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) adalah batas atas dari X ekuivalen dengan a x , untuk setiap x X . Pernyataan a v , untuk setiap v , batas atas dari X , mengandung arti bahwa jika z a maka z adalah bukan batas atas dari X . Jika z adalah bukan batas atas dari X maka terdapat xz X sedemikian sehingga xz z . Jadi kita mempunyai fakta bahwa jika z a maka terdapat x z X sedemikian sehingga xz z . Selanjutnya, jika diberikan 0 maka a a . Dengan menggunakan fakta sebelumnya, maka terdapat x X sedemikian sehingga x a . Jadi kita memperoleh fakta baru, yang ekuivalen dengan fakta sebelumnya, yaitu untuk setiap 0 terdapat x X sedemikian sehingga x a . Dengan demikian kita memperoleh fakta-fakta yang ekuivalen dengan definisi 2.20. Teorema 2.21. Elemen a R , batas atas dari X , himpunan bagian tak kosong dari R , adalah supremum dari X jika dan hanya jika apabila z a maka terdapat xz X sedemikian sehingga xz z . Teorema 2.22. Elemen a R , batas atas dari X , himpunan bagian tak kosong dari R , adalah supremum dari X jika dan hanya jika untuk setiap 0 terdapat x X sedemikian sehingga x a . Fakta-fakta serupa yang berkaitan dengan elemen infimum adalah sebagai berikut. Teorema 2.23. Elemen b R , batas bawah dari X , himpunan bagian tak kosong dari R , adalah infimum dari X jika dan hanya jika apabila z b maka terdapat xz X sedemikian sehingga xz z . Teorema 2.24. Elemen b R , batas bawah dari X , himpunan bagian tak kosong dari R , adalah infimum dari X jika dan hanya jika untuk setiap 0 terdapat x X sedemikian sehingga x b . 41 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Bukti Teorema 2.23 dan Teorema 2.24 ditinggalkan sebagai latihan bagi para pembaca. Selanjutnya, mungkin kita mempertanyakan apakah elemen supremum atau infimum tunggal atau tidak. Mari kita kaji masalah ini. Misalkan u, v R adalah supremum dari himpunan yang terbatas atas U . Untuk menunjukkan bahwa supremum dari U adalah tunggal, berarti kita harus menunjukkan bahwa u v . Untuk menunjukkannya, perhatikan bahwa u w dan v w , untuk setiap w , batas atas dari U . Karena u dan v juga batas atas dari U , kita memiliki u v dan v u . Yang demikian berarti u v atau supremum dari U adalah tunggal. Dengan mudah, dapat pula kita tunjukkan bahwa infimum dari suatu himpunan yang terbatas bawah juga tunggal. Berdasarkan semua penjelasan pada subbab ini, kita mempunyai suatu aksioma yang sangat esensial. Aksioma inilah yang dimaksud dengan sifat Kelengkapan dari R , atau biasa juga disebut sifat supremum dari . Aksioma 2.25 (Sifat Kelengkapan dari R ). Setiap himpunan bagian dari R yang terbatas atas memiliki supremum di R . Aksioma tersebut mengatakan bahwa R , digambarkan sebagai himpunan titiktitik pada suatu garis, tidaklah “berlubang”. Sedangkan himpunan bilanganbilangan rasional Q , sebagai himpunan bagian dari R yang juga memenuhi sifat aljabar (lapangan) dan terurut, memiliki “lubang”. Inilah yang membedakan R dengan Q . Karena tidak “berlubang” inilah, R , selain merupakan lapangan terurut, juga mempunyai sifat lengkap. Oleh karena itu, R disebut sebagai lapangan terurut yang lengkap. Penentuan supremum dari himpunan T : t Q : t 0, t 2 2 bisa dijadikan ilustrasi untuk menjelaskan terminologi “lubang” pada himpunan Q . Supremum dari T Q yaitu 2 , yang merupakan akar dari persamaan x 2 2 , bukanlah bilangan rasional. Bilangan 2 ini merupakan salah satu “lubang” pada Q . Maksudnya, supremum dari T Q adalah 42 2 yang bukan merupakan elemen dari Q . Sehingga dapat dikatakan Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) bahwa aksioma kelengkapan tidak berlaku pada Q . Tetapi jika kita bekerja pada R , yang demikian tidak akan terjadi. Sekarang, misalkan V adalah himpunan yang terbatas bawah, artinya terdapat l R sedemikian sehingga l x , untuk setiap x V . Darinya, kita memperoleh bahwa l x , untuk setiap x V . Dengan demikian, himpunan x : x V terbatas atas. Menurut Aksioma 2.25., himpunan supremum. Misalkan s adalah supremum dari x : x V x : x V . memiliki Yang demikian berarti s x , untuk setiap x V , dan s r , untuk setiap r , batas atas dari x : x V . Darinya, kita memiliki s x , untuk setiap x V , dan s r , untuk setiap r , batas atas dari x : x V . Dapat ditunjukkan bahwa r batas atas dari x : x V jika dan hanya jika r adalah batas bawah dari V . Jadi kita memiliki s x , untuk setiap x V , dan s t , untuk setiap t , batas bawah dari V , atau dengan kata lain, s adalah infimum dari himpunan V . Berdasarkan penjelasan tersebut, kita memiliki hal yang serupa dengan Aksioma 2.25, yaitu bahwa setiap himpunan bagian dari R yang terbatas bawah memiliki infimum di R . Contoh 2.26. Tentukan supremum dari himpunan S x R : x 1 . Penyelesaian. Kita klaim terlebih dahulu bahwa sup S , supremum dari S , adalah 1. Klaim kita benar jika dapat ditunjukkan bahwa : 1. Batas atas dari S adalah 1, atau x 1 , untuk setiap x S . 2. v 1 , untuk setiap v , batas atas dari S . Jelas bahwa 1 adalah batas atas dari S . Selanjutnya, misalkan v 1 . Perhatikan elemen 1/ 2 v / 2 . Dapat ditunjukkan bahwa v 1/ 2 v / 2 1 . Artinya, setiap elemen v 1 bukanlah batas atas dari S . Jelas bahwa v batas atas dari S jika dan hanya jika v 1 . Hal ini sekaligus menunjukkan bahwa 1 merupakan batas atas terkecil dari S . Dengan demikian, 1 merupakan supremum dari S . 43 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Selanjutnya, kita akan menggunakan Teorema 2.21 untuk menunjukkan 1 adalah supremum dari S . Jika v 1 , berdasarkan pembahasan tadi, dengan memilih sv 1/ 2 v / 2 , kita peroleh bahwa sv S dan v sv . Jadi 1 merupakan supremum dari S . Kita akan coba cara lain untuk menunjukkan bahwa 1 merupakan supremum dari S , seperti yang tertulis pada Teorema 2.22. Diberikan 0 . Di sini kita akan memilih apakah ada s S sedemikian sehingga 1 s (pemilihan s yang demikian tidaklah unik). Jika kita memilih s 1 / 2 maka kita memperoleh apa yang kita harapkan, karena jelas bahwa s 1 / 2 1 , atau dengan kata lain s S dan 1 s 1 / 2 . Yang demikian selalu mungkin untuk sembarang 0 yang diberikan. Jadi memang 1 adalah supremum dari S . ■ Contoh 2.27. Tentukan infimum dari I x R : x 0 . Penyelesaian. Kita klaim terlebih dahulu bahwa inf I , infimum dari I , adalah 0. Klaim kita benar jika dapat ditunjukkan bahwa : 1. Batas bawah dari I adalah 0, atau 0 x , untuk setiap x I . 2. w 0 , untuk setiap w , batas bawah dari I . Jelas 0 merupakan batas bawah dari I . Berikutnya, misalkan w 0 . Perhatikan bahwa 0 w / 2 w . Di sini w / 2 I . Artinya, jika w 0 maka w bukan batas bawah dari I . Jelas bahwa w 0 jika dan hanya jika w adalah batas bawah dari I . Hal ini sekaligus menunjukkan bahwa 0 adalah batas bawah terbesar dari I. Berikutnya, kita akan menggunakan Teorema 2.23 untuk menunjukkan 0 adalah infimum dari I . Misalkan w 0 . Berdasarkan pembahasan sebelumnya, dengan memilih iw w / 2 , kita peroleh bahwa iw I dan iw w . Akibatnya, 0 adalah infimum dari I . 44 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Cara lain, adalah dengan menunjukkan seperti apa yang tercantum pada Teorema 2.24. Diberikan 0 . Kita akan memilih apakah ada i I sedemikian sehingga i 0 . Jika i / 2 maka i I dan i . Hal ini selalu mungkin untuk sembarang 0 yang diberikan. Dengan demikian, 0 adalah infimum dari I . ■ Contoh 2.28. Tunjukkan bahwa jika himpunan S R terbatas atas dan a 0 maka supremum dari aS : as : s S , sup aS a sup S . Penyelesaian. Ada beberapa cara untuk menyelesaikan masalah tersebut. Kita mulai dengan cara yang pertama, yaitu bahwa kita harus menunjukkan bahwa a sup S adalah batas atas dari aS atau a sup S as , untuk setiap s S , dan a sup S v , untuk setiap v , batas atas dari aS . Karena S adalah himpunan yang terbatas atas, S mempunyai supremum, menurut sifat Kelengkapan dari R . Karenanya, sup S s , untuk setiap s S . Karena a 0 , a sup S as , untuk setiap s S . Artinya, a sup S adalah batas atas dari aS . Akibatnya, aS memiliki supremum. Selanjutnya, misalkan w adalah sembarang batas atas dari aS atau w as , untuk setiap s S . Karena a 0 , kita peroleh bahwa w / a s , untuk setiap s S . Di sini w / a adalah batas atas dari S . Akibatnya, w / a sup S atau w a sup S . Kita peroleh bahwa a sup S w , untuk setiap w , batas atas dari aS . Jadi sup aS a sup S . Cara kedua untuk menyelesaikan masalah tersebut adalah dengan menunjukkan bahwa a sup S adalah batas atas dari aS dan untuk setiap v a sup S terdapat sv aS sedemikian sehingga v sv . Telah ditunjukkan bahwa a sup S adalah batas atas dari aS . Sekarang, misalkan v a sup S . Karena a 0 , v / a sup S . Akibatnya, terdapat sv / a S sedemikian sehingga v / a sv / a . Karenanya, kita memperoleh v asv / a . Di sini jelas bahwa asv / a aS . Dengan memilih sv asv / a , kita mempunyai sv aS dan v sv . Jadi sup aS a sup S . ■ Lebih jauh, kita akan melihat bagaimana sifat kelengkapan dari R ini digunakan untuk menunjukkan bahwa himpunan semua bilangan asli N tidak mempunyai 45 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) batas atas. Artinya tidak terdapat x R sedemikian sehingga n x , untuk setiap n N , atau dengan kata lain jika diberikan x R terdapat n x N sedemikian sehingga nx x . Teorema 2.29 (Sifat Archimedean). Jika x R maka terdapat n x N sedemikian sehingga nx x . Bukti. Andaikan N memiliki batas atas atau terdapat x R sedemikian sehingga n x , untuk setiap n N . Akibatnya, x adalah batas atas dari N . Menurut sifat kelengkapan dari R , N memiliki supremum. Misalkan supremum dari N itu adalah a . Perhatikan bahwa a 1 a . Karena a 1 jelas bukan batas atas dari N , maka terdapat m N sedemikian sehingga a 1 m . Darinya kita memiliki bahwa a m 1 . Perhatikan bahwa m 1 N . Yang demikian mengakibatkan bahwa a bukan batas atas dari N . Hal ini kontradiksi dengan asumsi di awal bahwa a adalah supremum dari N , yang tiada lain juga merupakan batas atasnya. Jadi himpunan N tidak memiliki batas atas atau Jika x R maka terdapat n x N sedemikian sehingga nx x . ■ Sekarang, misalkan t 0 . Kita peroleh bahwa 1/ t 0 . Menurut sifat Archimedean, terdapat n N , yang bergantung pada 1/ t (bisa juga dikatakan bergantung pada t ), sedemikian sehingga n 1/ t , atau juga bisa ditulis sebagai 1/ n t . Berdasarkan pembahasan ini, kita memiliki akibat berikut. Akibat 2.30. Jika t 0 maka terdapat nt N sedemikian sehingga 0 1/ nt t Selain Akibat 2.30, sifat Archimedean memilki konsekuensi lain, seperti yang dinyatakan pada akibat berikut ini. Akibat 2.31. Jika y 0 maka terdapat n y N sedemikian sehingga ny 1 y n y . Bukti. Misalkan E y : m N : y m dengan y R . Sifat Archimedean menjamin bahwa himpunan E y tidaklah kosong. Karena E y himpunan bagian 46 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) dari N dan tidak kosong, maka menurut sifat well-ordering dari R , E y mempunyai elemen terkecil. Misalkan elemen terkecil itu adalah ny . Karena ny adalah elemen terkecil dari E y , maka ny 1 E y atau n y 1 y . Dengan demikian ny 1 y n y . ■ Jika kita memiliki dua buah sembarang bilangan rasional yang berbeda, secara intuitif kita akan mengatakan bahwa di antara keduanya juga terdapat bilangan rasional yang lain dan jumlahnya bisa tak berhingga. Dengan kata lain, himpunan semua bilangan rasional Q adalah himpunan yang rapat. Secara formal, memang dapat dibuktikan bahwa Q memiliki sifat yang demikian. Teorema 2.32. Jika x, y Q dan x y maka terdapat bilangan rasional r sedemikian sehingga x r y . Bukti. Misalkan x 0 . Akibatnya, y 0 . Menurut Akibat 2.30, terdapat p N sedemikian sehingga 1/ p y . Bilangan rasional r : 1/ p memenuhi x r y . Berikutnya, misalkan x 0 . Darinya, kita memiliki y x 0 . Berdasarkan Akibat 2.30, terdapat m N sedemikian sehingga 1/ m y x . Karenanya, 1 my mx atau 1 mx my . Pandang mx 0 . Menurut Akibat 2.31, terdapat n N sedemikan sehingga n 1 mx n . Dari n 1 mx kita memperoleh n 1 mx , sehingga n 1 mx my . Dari mx n kita memperoleh mx n my . Akibatnya, x n / m y . Bilangan rasional r : n / m memenuhi x r y . Terakhir, misalkan x 0 atau x 0 . Akibatnya, y x 0 . Dengan cara serupa seperti pada kasus x 0 , kita bisa mendapatkan bilangan rasional r sedemikian sehingga x r y . ■ Kita juga memiliki fakta lain, yang analog dengan teorema 2.32, untuk himpunan bilangan-bilangan irasional. 47 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Akibat 2.33. Jika x, y R dan x y maka terdapat bilangan irasional z sedemikian sehingga x z y . Bukti. Dari hipotesis kita dapatkan bahwa x / 2 , y / 2 R dan x / 2 y / 2 . Menurut Teorema 2.32, terdapat bilangan rasional r 0 sedemikian sehingga x / 2 r y / 2 atau x r 2 y . Bilangan z : r 2 merupakan bilangan irasional dan memenuhi x z y . 2.4 ■ INTERVAL Pada subbab ini kita membahas suatu himpunan bagian dari R yang dikonstruksi berdasarkan sifat terurut dari R . Himpunan bagian ini dinamakan sebagai interval. Definisi 2.34. Misalkan a, b R dengan a b . a. Interval buka yang dibentuk dari elemen a dan b adalah himpunan a, b : x R : a x b. b. Interval tutup yang dibentuk dari elemen a dan b adalah himpunan a, b : x R : a x b . c. Interval setengah buka (atau setengah tutup) yang dibentuk dari elemen a dan b adalah himpunan a, b : x R : a x b atau a, b : x R : a x b. Semua jenis interval pada Definisi 2.34 merupakan himpunan yang terbatas dan memiliki panjang interval yang didefinisikan sebagai b a . Jika a b maka himpunan buka a, a dan himpunan tutup a, a a , yang dinamakan dengan himpunan singleton. Elemen a dan b disebut titik ujung interval. Selain interval terbatas, terdapat pula interval tak terbatas. Pada interval tak terbatas ini, kita dikenalkan dengan simbol dan yang berkaitan dengan ketak terbatasannya. 48 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Definisi 2.35. Misalkan a R . a. Interval buka tak terbatas adalah himpunan a, : x R : x a atau , a : x R : x a. b. Interval tutup tak terbatas adalah himpunan a, : x R : x a atau , a : x R : x a . Himpunan bilangan real R merupakan himpunan yang tak terbatas dan dapat dinotasikan dengan , . Perlu diperhatikan bahwa simbol atau bukanlah bilangan real. Karenanya, dapat dikatakan bahwa R ini tidak mempunyai titik-titik ujung. Teorema 2.36 (Karakterisasi Interval). Jika S R adalah himpunan yang memuat paling sedikit dua elemen dan memiliki sifat : jika x, y R dan x y maka x, y S , maka S merupakan suatu interval. Bukti. Kita akan membuktikannya untuk empat kasus. Kasus I, S adalah himpunan terbatas. Karena S himpunan terbatas maka S mempunyai infimum atau supremum. Misalkan infimum dan supremum dari S adalah masing-masing, secara berurutan, a dan b . Jika x S maka a x b . Karenanya, x a, b . Akibatnya, S a, b . Selanjutnya, akan ditunjukkan bahwa a, b S . Misalkan z a, b atau a z b . Yang demikian berarti z bukan batas bawah dari S . Akibatnya, terdapat xz S sedemikian sehingga xz z . Kita memperoleh pula bahwa z bukan batas atas dari S . Itu artinya bahwa terdapat y z S sedemikian sehingga z yz . Kita mendapatkan bahwa z xz , y z . Karena menurut hipotesis, xz , y z S , maka z S . Karena yang demikian berlaku untuk sembarang z a, b , maka a, b S . 49 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Jika a, b S maka a, b S . Karena telah diperoleh bahwa S a, b , maka S a, b . Jika a, b S maka S a, b cukup dinyatakan dengan S a, b . Karena a, b S dan S a, b , maka S a, b . Jika a S dan b S maka S a, b dan a, b S masing-masing, secara berurutan, cukup dinyatakan S a, b dan a, b S . Akibatnya, kita memperoleh S a, b . Jika a S dan b S maka dapat ditunjukkan bahwa S a, b . Kasus II, S adalah himpunan yang terbatas atas tetapi tidak terbatas bawah. Karena S terbatas atas, maka S mempunyai supremum. Misalkan supremum dari S adalah b . Kita memperoleh bahwa x b , untuk setiap x S . Akibatnya, S , b . Berikutnya, kita akan menunjukkan bahwa ,b S . Misalkan z , b atau z b . Karena z bukan batas atas dari S , maka terdapat y z S sedemikian sehingga z yz . Karena S tidak terbatas bawah, maka terdapat xz S sedemikian sehingga xz z . Akibatnya, z xz , y z . Karena menurut hipotesis, xz , y z S , maka z S . Yang demikian berlaku untuk sembarang z , b . Karena itu, ,b S . Jika b S maka ,b S dapat pula dinyatakan dengan ,b S . Karena S , b dan S , b , maka S , b . Jika b S maka S , b cukup dinyatakan dengan S , b Akibatnya, bersama dengan ,b S , kita memperoleh bahwa 50 S a, b . Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Kasus III, S adalah himpunan yang tidak terbatas atas tetapi terbatas bawah. Dengan cara yang serupa, seperti pada kasus II, dapat ditunjukkan bahwa S a, atau S a, dengan a adalah infimum dari S . Kasus IV, S adalah himpunan yang tidak terbatas. Berdasarkan hipotasis, jelas bahwa S R . Selanjutnya, kita akan menunjukkan bahwa R S . Misalkan z R . Karena S tidak terbatas, maka z bukanlah batas bawah dan batas atas dari S . Akibatnya, terdapat xz , yz S sedemikian sehingga xz z dan z yz . Darinya, kita memiliki z xz , y z . Menurut hipotesis, xz , yz S . Akibatnya, z S . Karena hal ini berlaku untuk sembarang z R , maka R S . Dengan demikian, R S . Jadi, secara keseluruhan, telah ditunjukkan bahwa S merupakan suatu interval di R . 2.5 ■ REPRESENTASI DESIMAL DARI BILANGAN REAL Semua bilangan real dapat dinyatakan dalam bentuk lain yang disebut sebagai bentuk desimal. Misalkan x 0,1 . Jika kita membagi interval 0,1 menjadi 10 sub interval yang sama panjangnya, maka x b1 /10, b1 1 /10 untuk suatu b1 0,1, 2,...,9 . Jika kita membagi lagi interval b1 /10, b1 1 /10 menjadi 10 sub interval yang sama panjangnya, maka x b1 /10 b2 /102 , b1 /10 b2 1 /102 untuk suatu b2 0,1, 2,...,9 . Jika proses tersebut terus dilanjutkan maka kita akan memperoleh barisan bn dengan 0 bn 9 , untuk semua n N , sedemikian sehingga x memenuhi b1 b2 b b b b 1 2 ... nn x 1 22 ... n n . 10 10 10 10 10 10 51 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Representasi desimal dari x 0,1 adalah 0, b1b2 ...bn ... . Jika x 1 dan N N sedemikian sehingga N x N 1 maka representasi desimal dari x 1 adalah N , b1b2 ...bn ... dengan 0, b1b2 ...bn ... adalah representasi desimal dari x N 0,1 . Sebagai contoh, kita akan menentukan bentuk desimal dari 1/7. Jika 0,1 dibagi menjadi 10 sub interval yang sama panjang maka 1/ 7 1/10, 1 1 /10 . Jika 1/10, 1 1 /10 dibagi menjadi 10 sub interval yang sama panjang maka 1/ 7 1/10 4 /102 ,1/10 4 1 /102 . Selanjutnya, akan kita peroleh 1/ 7 1/10 4 /102 2 /103 ,1/10 4 /102 2 1 /10 3 . Jika proses ini terus dilanjutkan akan kita dapatkan bahwa 1/ 7 0,142857142857...142857... . Representasi desimal dari suatu bilangan real adalah unik, kecuali bilanganbilangan real berbentuk m /10n dengan m, n dan 1 m 10n . Sebagai contoh, representasi decimal dari 1/2 adalah 0,4999… atau 0,5000… (Coba pembaca periksa mengapa yang demikian bisa terjadi). Contoh lain, 1/7 yaitu 1/8=0,124999...=0,125000... . Coba perhatikan kembali representasi decimal dari 0,142857142857...142857... . Terdapat pengulangan deretan angka 142857 pada representasi desimal dari 1/7. Representasi desimal yang demikian disebut reperesentasi desimal periodik dengan periode p 6 yang menunjukkan jumlah deretan angka yang berulang. Dapat ditunjukkan bahwa bilangan real positif adalah rasional jika dan hanya jika representasi desimalnya adalah periodik (lihat Bartle-Sherbert [1]). Dengan menggunakan representasi desimal dari bilangan real ini, kita akan membuktikan Teorema Cantor yang mengatakan bahwa himpunan semua bilangan real 52 adalah tak terhitung (uncountable). Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Teorema 2.37. Interval satuan 0,1 : x R : 0 x 1 adalah tak terhitung (uncountable). Bukti. Andaikan interval 0,1 countable. Misalkan 0,1 x1 , x2 ,..., xn ,... . Karena setiap elemen di 0,1 dapat dinyatakan dalam bentuk desimal, maka kita dapat menyatakan bahwa x1 0, b11b12 ...b1n ... x2 0, b21b22 ...b1n ... xn 0, bn1bn 2 ...bnn ... dengan 0 bij 9 , untuk semua i, j N . Selanjutnya definisikan bilangan real y : 0, y1 y2 ... yn ... dengan 4, jika bnn 5 yn : 5, jika bnn 4. Jelas bahwa y 0,1 . Berdasarkan pendefinisian yn , jelas bahwa y xn untuk setiap n N . Selain itu, bentuk y : 0, y1 y2 ... yn ... adalah unik karena yn 0,9 untuk semua n N . Hal itu semua mengandung arti bahwa y 0,1 . Terjadi kontradiksi di sini. Jadi 0,1 haruslah uncountable. ■ Prosedur pada pembuktian Teorema 2.37 di atas dikenal sebagai prosedur diagonal yang memanfaatkan representasi desimal bilangan real. Karena 0,1 R 53 dan 0,1 uncountable, maka R adalah uncountable. Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) BAB III BARISAN BILANGAN REAL 3.1 DEFINISI BARISAN BILANGAN REAL Definisi 3.1. Barisan bilangan real adalah fungsi X : N R . Jika X : N R adalah barisan bilangan real maka nilai fungsi X di n N dinotasikan sebagai xn . Nilai xn ini disebut suku ke- n dari barisan bilangan real X . Barisan bilangan real X dapat pula dituliskan sebagai x n : n N . Dalam literatur lain, barisan bilangan real X ini biasa dituliskan dalam notasi xn n 1 . Barisan bilangan real dapat direpresentasikan dalam berbagai cara. Barisan bilangan real X : 1,3,5,... dapat dinyatakan dengan X : x n : n N dengan xn 2n 1 atau xn xn 1 2 dengan x1 1 . Hubungan xn xn 1 2 dengan x1 1 ini disebut sebagai hubungan rekursif. Selanjutnya, perhatikan kembali barisan bilangan real X : x n 2n 1 : n N . Jika n semakin besar maka xn semakin besar, tanpa batas. Tetapi, kalau kita perhatikan barisan Y : y n 1 / n : n N , maka jika n semakin besar maka yn semakin kecil, menuju angka nol. Barisan bilangan real Y ini dikatakan sebagai barisan yang mempunyai limit atau barisan yang konvergen. Sedangkan barisan bilangan real X dikatakan sebagai barisan yang tidak memiliki limit atau barisan yang tidak konvergen atau divergen. Definisi 3.2. Barisan bilangan real x n : n N dikatakan konvergen ke x R , limit dari dari x n : n N , jika untuk setiap 0 terdapat N 0 sedemikian sehingga untuk setiap n N , xn x . 54 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Misalkan barisan bilangan real x n : n N konvergen. Diberikan 0 cukup besar. Karena x adalah “ujung” dari barisan bilangan real x n : n N , tentunya xn x yang cukup besar dapat dipenuhi oleh semua xn , n N dengan N yang kecil. Sebaliknya, jika 0 cukup kecil maka xn x yang cukup kecil dapat dipenuhi oleh setiap xn , n K dengan K yang besar. Penjelasan tersebut mengandung arti bahwa semakin besar N maka semakin kecil atau xn dengan n N akan semakin dekat ke limitnya, yaitu x . Pernyataan barisan bilangan real X konvergen atau menuju ke x dapat dinyatakan sebagai lim X x atau lim xn x atau lim xn x atau xn x . n Berdasarkan Definisi 3.2, kita bisa mendapatkan fakta bahwa lim xn x jika dan n hanya jika untuk setiap 0 , himpunan n N : x n x adalah himpunan yang berhingga. Bukti fakta ini ditinggalkan sebagai latihan bagi para pembaca. Contoh 3.3. Perhatikan lagi barisan bilangan real Y y n 1 / n : n N . Diberikan 0 . Selanjutnya, lihat bahwa 1/ n 0 1/ n 1/ n . Jika n N dengan N 1/ maka n 1/ atau 1/ n . Akibatnya, 1/ n 0 untuk setiap n N . Yang demikian berlaku untuk setiap 0 . Ini artinya bahwa barisan bilangan real Y konvergen ke nol. ■ Sekarang, kita perhatikan lagi barisan bilangan real Y y n 1 / n : n N . Kemudian pandang barisan bilangan real Y ' 1/ 2,1/ 4,1/ 6,... . Suku-suku pada Y ' merupakan suku-suku yang menempati urutan genap pada Y . Barisan Y ' ini disebut sebagai sub barisan dari Y . Berikut ini adalah definisi formal dari sub barisan. 55 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Definisi 3.4. Misalkan X : x n : n N adalah barisan bilangan real dan n1 n2 ... nk ... dengan nk N untuk semua k N . Barisan bilangan real X ': x nk : k N disebut sebagai sub barisan dari X : x n : n N . Bagaimana dengan limit sub barisan dari suatu sub barisan ? Teorema berikut menjelaskan hal ini. Teorema 3.5. Jika X ': x nk : k N adalah sub barisan dari barisan X : x n : n N yang konvergen ke x R maka sub barisan X ': x nk : k N juga konvergen ke x R . Bukti. Karena X : x n : n N adalah barisan yang konvergen ke x R , maka jika diberikan 0 terdapat N 0 sedemikian sehingga untuk semua n N berlaku xn x . Selanjutnya, dengan menggunakan induksi matematika, akan ditunjukkan bahwa nk k untuk setiap k N . Diketahui bahwa n1 n2 ... nk ... . Untuk k 1 jelas bahwa n1 1 . Misalkan untuk k p berlaku n p p . Kita akan tunjukkan bahwa untuk k p 1 berlaku n p 1 p 1 . Karena n p 1 n p maka n p 1 p atau dengan kata lain n p 1 p 1 . Dengan demikian nk k untuk setiap k N . Jika k N maka nk N . Untuk semua nk N berlaku xnk x . Yang demikian berarti sub barisan X ': x nk : k N juga konvergen ke x R . ■ Apakah kebalikan dari Teorema 3.5 berlaku ? Untuk menjawabnya kita lihat penjelasan berikut ini. Perhatikan bahwa barisan Z ' 1,1,1,...,1,... adalah sub barisan dari barisan Z 1, 1,1, 1,..., 1 n 1 ,... . Barisan Z ' adalah barisan yang konvergen ke 1, tetapi barisan Z adalah barisan yang tidak konvergen. Tetapi jika setiap sub barisan dari suatu barisan bilangan real X adalah barisan 56 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) yang konvergen maka X adalah barisan yang konvergen karena X sendiri adalah sub barisan dari dirinya sendiri. Bagaimana halnya dengan limit dari suatu barisan bilangan real yang konvergen, apakah tunggal atau tidak ? Misalkan x dan y adalah limit dari barisan bilangan real yang konvergen X : x n : n N . Jika diberikan 0 terdapat N x , N y 0 sehingga berurutan, untuk setiap n N x dan n N y , berlaku, masing-masing secara xn x / 2 dan xn y / 2 . Misalkan N : maks N x , N y . Selanjutnya, perhatikan bahwa, berdasarkan pertidaksamaan segitiga, x y x xn xn y x xn xn y / 2 / 2 untuk semua n N . Karena 0 yang diberikan sembarang, maka x y 0 atau x y . Yang demikian berarti bahwa limit dari suatu barisan bilangan real yang konvergen adalah tunggal. Teorema 3.6. Limit dari satu barisan bilangan real yang konvergen adalah tunggal. 3.2 SIFAT-SIFAT BARISAN BILANGAN REAL Definisi 3.6. Barisan bilangan real X : x n : n N dikatakan terbatas jika terdapat bilangan real M 0 sedemikan sehingga xn M untuk setiap n N . Berkaitan dengan sifat keterbatasan barisan bilangan real tersebut kita memiliki teorema berikut ini. Teorema 3.7. Barisan bilangan real yang konvergen adalah terbatas. Bukti. Misalkan barisan bilangan real X : x n : n N adalah barisan yang konvergen ke x R . Itu berarti bahwa jika kita ambil 0 0 maka terdapat bilangan real N 0 0 sehingga xn x 0 untuk semua n N 0 . 57 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Selanjutnya, perhatikan bahwa, berdasarkan pertidaksamaan segitiga, xn xn x x xn x x 0 x untuk semua n N 0 . Berikutnya, pilih M : maks x1 , x2 , x3 ,..., xN 1 , x 0 . Jelas bahwa untuk 0 setiap n N berlaku xn M atau dengan kata lain barisan bilangan real X ■ adalah barisan yang terbatas. Sekarang, Misalkan X : x n : n N dan Y : y n : n N adalah dua buah barisan bilangan real yang konvergen. Apakah X Y : x n y n : n N , cX : cxn : n N dengan cR , XY : x n y n : n N , dan X / Y : x n / y n : n N juga barisan yang konvergen ? Teorema-teorema berikut ini menjelaskan hal tersebut. Teorema 3.8. Jika X dan Y adalah barisan yang konvergen ke x dan y , secara berurutan, dan c R maka barisan X Y , cX , dan XY adalah juiga barisan yang konvergen, masing-masing secara berurutan, ke x y , cx , dan xy . Bukti. Misalkan X : x n : n N dan Y : y n : n N . Perhatikan bahwa, bedasarkan pertidaksamaan segitiga, xn yn x y xn x yn y xn x yn y . X dan Y adalah barisan yang konvergen ke x dan y , maka jika diberikan 0 maka terdapat bilangan real N1 , N 2 0 sedemikian sehingga untuk setiap n N1 dan n N 2 , masing-masing secara berurutan, berlaku xn x / 2 dan yn y / 2 . Misalkan N : maks N1 , N 2 . Jika n N maka xn yn x y xn x yn y / 2 / 2 . Karena 0 yang diberikan sembarang, maka X Y konvergen ke x y . 58 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Berikutnya, perhatikan bahwa cxn cx c xn x . Misalkan c 0 . Jika diberikan 0 maka dengan memilih berapa pun bilangan real N 0 , selalu berlaku cxn cx c xn x 0 untuk setiap n N . Sekarang misalkan c 0 . Karena X adalah barisan yang konvergen ke x maka jika diberikan 0 maka terdapat bilangan real N 0 sedemikian sehingga untuk setiap n N , berlaku xn x / c . Akibatnya, untuk setiap n N , cxn cx c xn x c / c . Karena 0 yang diberikan sembarang, maka cX konvergen ke cx . Selanjutnya, kita akan menunjukkan bahwa barisan XY konvergen ke xy . Pertama, perhatikan bahwa xn yn xy xn yn xn y xn y xy xn yn xn y xn y xy xn yn y xn x y Menurut Teorema 3.7, X adalah barisan yang terbatas. Itu artinya terdapat bilangan real L0 sehingga xn L untuk setiap n N . Misalkan M : maks L, y . Jika diberikan 0 maka terdapat bilangan real N1 , N 2 0 sedemikian sehingga untuk setiap n N1 dan n N 2 , masing-masing secara berurutan, berlaku xn x / 2M dan yn y / 2M . Misalkan N : maks N1 , N 2 . Jika n N maka xn yn xy xn yn y xn x y M / 2 M M / 2M . Karena 0 yang diberikan sembarang, maka XY konvergen ke xy . ■ Pembahasan berikutnya kita akan menunjukkan bahwa X / Y akan konvergen ke x / y jika y 0 . Tetapi sebelumnya, kita lihat terlebih dahulu teorema berikut iini. 59 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Teorema 3.9. Jika Y : y n : n N adalah barisan tak nol ( yn 0 untuk setiap n N ) yang konvergen ke y 0 maka barisan 1 / Y : 1 / y n : n N juga konvergen ke 1/ y . Bukti. Jika y 0 kita peroleh bahwa y 0 . Karena Y adalah barisan yang konvergen ke y , maka terdapat N1 0 sehingga untuk setiap n N1 , berlaku yn y 1/ 2 y . Karena yn y yn y atau yn y yn y yn y maka yn 1/ 2 y atau 1 2 untuk setiap n N1 . yn y Selanjutnya, jika diberikan 0 maka terdapat N 2 0 sehingga untuk setiap 2 n N 2 , berlaku yn y 1/ 2 y . Kemudian, perhatikan bahwa, berdasarkan pertidaksamaan segitiga, 1 1 y yn 1 yn y . yn y yn y yn y Jika N : maks N1 , N 2 maka untuk setiap n N , berlaku 1 1 1 2 1 2 yn y 2 y . yn y yn y y 2 Karena 0 yang diberikan sembarang, maka 1/ Y konvergen ke 1/ y . ■ Berdasarkan Teorema 3.8 dan Teorema 3.9, jika X adalah barisan bilangan real yang konvergen ke x dan Y adalah barisan bilangan real tak nol yang konvergen ke y 0 maka barisan bilangan real X / Y juga konvergen ke x / y . Teorema 3.10 (Teorema Apit). Misalkan X : x n : n N , Y : y n : n N , dan Z : z n : n N adalah barisan-barisan bilangan real yang memenuhi xn yn zn untuk setiap n N . Jika lim xn lim zn L maka lim yn L . n 60 n n Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Bukti. Jika diberikan 0 maka terdapat bilangan real N1 , N 2 0 sedemikian sehingga untuk setiap n N1 dan n N 2 , masing-masing secara berurutan, berlaku L xn dan zn L (mengapa demikian ?). N : maks N1 , N 2 . Akibatnya, jika n N maka L xn yn zn L . Kita peroleh bahwa L yn L atau yn L untuk setiap n N . Karena 0 yang diberikan sembarang, maka lim yn L . n ■ Contoh berikut ini memperlihatkan bagaimana Teorema Apit diaplikasikan untuk menghitung limit suatu barisan. cos n : n N . Secara 2 n Contoh 3.11. Kita akan menghitung limit dari barisan langsung, mungkin kita agak susah untuk menentukan limitnya. Perhatikan bahwa 1 cos n 1 untuk setiap n N . Karenanya, kita bisa memperoleh 1 cos n 1 2 2 untuk setiap n N . n2 n n Akibatnya, lim n 1 cos n 1 lim 2 lim 2 . Jadi 2 n n n n n 0 lim n cos n cos n 0 atau lim 2 0 . 2 n n n ■ Barisan bilangan real yang terbatas belum tentu konvergen. Sebagai contoh, barisan bilangan real 1 n : n N adalah barisan yang terbatas tetapi tidak konvergen. Syarat cukup lain apa yang diperlukan sehingga barisan yang terbatas merupakan barisan yang konvergen ? Pembahasan berikut akan menjelaskannya. Definisi 3.12. Misalkan X : x n : n N adalah barisan bilangan real. Barisan X dikatakan naik jika x1 x2 ... xn xn 1 ... dan dikatakan turun jika 61 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) x1 x2 ... xn xn 1 ... . Barisan bilangan real yang naik atau turun disebut sebagai barisan yang monoton. Teorema 3.13 (Teorema Kekonvergenan Monoton). Misalkan X : x n : n N adalah barisan bilangan real yang monoton. Barisan bilangan real X konvergen jika dan hanya jika X terbatas. Lebih jauh, i) Jika X : x n : n N adalah barisan yang naik dan terbatas atas maka lim x n supx n : n N . n ii) Jika X : x n : n N adalah barisan yang turun dan terbatas bawah maka lim x n inf x n : n N. n Bukti. i) Karena barisan X terbatas atas, maka, menurut sifat kelengkapan dari R , himpunan xn : n N memiliki supremum. Misalkan x supxn : n N . Jika diberikan 0 maka x bukanlah batas atas dari x n : n N . Yang demikian mengandung arti terdapat K N sehingga x xK x . Karena X adalah barisan naik dan x adalah batas atas dari x n : n N maka kita mempunyai fakta bahwa x xK xK 1 xK 2 ... x x . Dengan kata lain, x xn x atau xn x untuk setiap n K . Karena 0 yang diberikan sembarang maka barisan X konvergen ke x . ii) Karena barisan X terbatas bawah, maka, menurut sifat kelengkapan dari R , himpunan x n : n N memiliki infimum. Misalkan x inf x n : n N . Jika diberikan 0 maka x bukanlah batas bawah dari x n : n N . Yang demikian mengandung arti terdapat K N sehingga x xK x . Karena X adalah barisan turun dan x adalah batas bawah dari x n : n N maka kita mempunyai fakta bahwa x x ... xK 2 xK 1 xK x . 62 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Dengan kata lain, x xn x atau xn x untuk setiap n K . Karena 0 yang diberikan sembarang maka barisan X konvergen ke x . ■ Contoh 3.14. kita akan menunjukkan bahwa barisan X : x n : n N yang suku-sukunya memenuhi hubungan rekursif xn 1 1 xn 1 dengan x1 0 2 adalah barisan yang konvergen dengan menggunakan Teorema Kekonvergean Monoton. Akan kita perlihatkan bahwa X : x n : n N adalah barisan yang naik dan terbatas atas yang dibatas atasi oleh 2. Kedua hal itu akan ditunjukkan dengan menggunakan induksi matematika. Kita peroleh bahwa x2 1/ 2 . Itu berarti bahwa x1 x2 . Sekarang asumsikan bahwa xk xk 1 Kita akan membuktikan bahwa xk 1 xk 2 . maka Karena xk xk 1 , 1 1 xk 1 xk 1 1 atau xk 1 xk 2 . Jadi X : xn : n N adalah 2 2 barisan yang naik. Jelas x1 2 . Asumsikan xk 2 . Akan ditunjukkan bahwa xk 1 2 . Perhatikan bahwa xk 2 xk 1 1 1 3 xk 1 2 1 xk 1 . 2 2 2 Berdasarkan pernyataan terakhir, bisa juga kita katakan bahwa xn 2 untuk setiap n N . Ini berarti X adalah barisan yang terbatas atas. Karena X : x n : n N adalah barisan yang naik dan terbatas atas, maka, menurut Teorema Kekonvergenan Monoton, barisan X konvergen. Perhatikan bahwa X ': x n 1 : n N adalah sub barisan dari X : x n : n N . Karena X adalah barisan yang konvergen, maka, menurut Teorema 3.5, X ' juga merupakan barisan yang konvergen ke titik yang sama. Misalkan limit barisannya adalah x . Perhatikan bahwa 63 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) xn 1 1 1 1 xn 1 lim xn 1 x x 1 x 1 . xn 1 lim n n 2 2 2 Jadi barisan bilangan real X konvergen ke 1. 3.3 ■ TEOREMA BOLZANO-WEIERSTRASS Pada bagian ini kita akan membahas Teorema Bolzano-Weierstrass, yang memberikan syarat cukup suatu barisan bilangan real memiliki sub barisan yang konvergen. Tetapi, sebelumnya, kita akan membahas terlebih dahulu tentang eksistensi sub barisan yang monoton dari suatu barisan bilangan real. Terema 3.15 (Teorema Sub Barisan Monoton). Setiap barisan bilangan real memiliki sub barisan yang monoton. Bukti. Misalkan X : x n : n N adalah barian bilangan real. Definisikan X n : x k : k n . Untuk setiap n N , bisa saja X n memiliki suku terbesar, namun, bisa juga tidak. Kasus I, untuk setiap n N , X n memiliki suku terbesar. Misalkan sn1 adalah suku terbesar dari X 1 . Selanjutnya, perhatikan X n1 1 . Misalkan xn2 adalah suku terbesar dari X n1 1 . Jelas bahwa xn1 xn2 dengan n1 n2 . Kita juga bisa mendapatkan sn3 yang merupakan suku terbesar dari X n2 1 . Jelas pula bahwa xn xn dengan n2 n3 . Jika proses ini terus dilanjutkan maka kita akan 2 3 dapatkan xn xn xn ... xn xn ... dengan n1 n2 n3 ... nk nk 1 ... . 1 Jadi 2 kita 3 k dapatkan k 1 barisan x nk :k N merupakan sub barisan dari X : x n : n N yang monoton turun. Kasus II, tidak semua X n memiliki suku terbesar. Misalkan n1 N sedemikian sehingga X n1 tidak memiliki suku terbesar. Definisikan suatu 64 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) himpunan bagian dari X n1 , yakni I : xn : n n1 , xn xn1 I . Jelas Himpunan karena X n1 tidak memiliki suku terbesar. Misalkan n2 N sedemikian sehingga xn min xn : n n1 , xn xn . 2 1 Misalkan n3 N sedemikian sehingga xn min xn : n n1 , n n2 , xn xn . 3 1 Misalkan pula n4 N sedemikian sehingga xn min xn : n n1 , n n2 , n n3 , xn xn . 4 1 Jika proses tersebut terus dilanjutkan maka kita akan mendapatkan xn xn xn .. xn xn ... dengan n1 n2 n3 ... nk nk 1 ... . 1 Jadi kita 2 3 k 1 k dapatkan barisan x nk :k N merupakan sub barisan dari X : x n : n N yang monoton naik. Jadi barisan bilangan real X : x n : n N memiliki sub barisan yang monoton. ■ Misalkan X ' x nk : k N adalah sub barisan yang monoton dari barisan bilangan real X : x n : n N yang terbatas. Karena X terbatas maka X ' terbatas juga. Menurut Teorema Kekonvergenan Monoton, X ' adalah barisan yang konvergen. Jadi kita memperoleh suatu fakta, biasa dikenal sebagai Teorema Bolzano-Weierstrass untuk barisan, yaitu Teorema 3.16. Barisan bilangan real yang terbatas memiliki sub barisan yang konvergen. 3.4 KRITERIA CAUCHY Teorema Kekonvergenan Monoton memberikan jaminan atau syarat cukup barisan bilangan real yang monoton adalah barisan yang konvergen. Bagaimana halnya dengan barisan yang tidak monoton ? Apakah masih memungkinkan 65 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) menjadi barisan yang konvergen ? Penjelasan yang akan hadir berikut ini memberikan syarta perlu dan syarat cukup suatu barisan bilangan real yang tidak monoton adalah barisan yang konvergen. Definisi 3.17. Barisan bilangan real X : x n : n N dikatakan sebagai barisan Cauchy jika untuk setiap 0 terdapat bilangan real N 0 sedemikian sehingga untuk setiap n, m N berlaku xn xm . Contoh 3,18. Kita akan menunjukkan bahwa barisan bilangan real 1 / n 2 : n N adalah barisan Cauchy. Diberikan 0 . Pilih N 2 / . Akibatnya, jika n, m N maka n, m 2 / atau 1/ n 2 ,1/ m 2 / 2 . Dengannya, kita dapatkan untuk n, m N , berlaku 1 1 1 1 1 1 2 2 2 2 2 . 2 n m n m n m 2 2 Karena 0 1 / n 2 maka barisan bilangan : n N adalah barisan Cauchy. Contoh yang diberikan sembarang, 3.19. n Akan X 1 : n N kita perlihatkan real ■ bahwa barisan bilangan real bukanlah barisan Cauchy. Negasi dari definisi barisan Cauchy adalah terdapat 0 0 sedemikian sehingga untuk setiap N 0 0 terdapat n, m N 0 yang memenuhi xn xm 0 . Misalkan 0 1/ 2 . Perhatikan bahwa xn xn 1 2 1/ 2 . Jadi untuk setiap N 0 0 kita selalu bisa mendapatkan n, m N 0 dengan m n 1 sehingga xn xn 1 1/ 2 . n Jadi barisan X 1 : n N bukanlah barisan Cauchy. ■ Lema 3.20. Barisan bilangan real Cauchy adalah barisan yang terbatas. Bukti. Misalkan X x n : n N adalah barisan Cauchy. Yang demikian berarti jika diberikan 0 maka terdapat N 0 sedemikian sehingga untuk setiap 66 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) n, m N berlaku x n x m . Akibatnya, x n x N untuk setiap n N . Darinya, kita memperoleh x n x N untuk setiap n N . Misalkan M : maks x1 , x 2 ,...., x N 1 , x N . Untuk setiap n N , kita memilki x n M . Jadi X x n : n N adalah barisan ■ yang terbatas. Selanjutnya, kita akan melihat bahwa setiap barisan bilangan real Cauchyi adalah barisan yang konvergen dan setiap barisan bilangan real yang konvergen adalah barisan Cauchy. Teorema 3.21. Suatu barisan bilangan real adalah konvergen jika dan hanya jika barisan itu adalah barisan Cauchy. Bukti. Kita akan buktikan syarat perlunya terlebih dahulu. Misalkan X x n : n N adalah barisan yang konvergen. Karenanya, jika diberikan 0 maka terdapat N 0 sedemikian sehingga untuk setiap n N berlaku x n x / 2 . Berdasarkan pertidaksamaan segitiga, untuk setiap n, m N berlaku xn xm xn x x xm xn x x xm / 2 / 2 . Karena 0 yang diberikan sembarang, maka X x n : n N adalah barisan Cauchy. Berikutnya, kita akan membuktikan syarat cukupnya. Misalkan X x n : n N adalah barisan Cauchy. Itu berarti bahwa jika diberikan 0 maka terdapat N 0 sedemikian sehingga untuk setiap n, m N berlaku x n x m / 2 . Menurut Lema 3.20, X x n : n N adalah barisan yang terbatas, dan menurut Teorema Bolzano-weierstrass, X xn : n N mempunyai sub barisan X ' x nk : k N yang konvergen ke x . Yang demikian mengandung arti bahwa 67 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) terdapat K 0 sedemikian sehingga untuk setiap k K berlaku x nk x / 2 . Misalkan H : maksN , K dan H n1 , n 2 ,... . Karenanya, x H x / 2 . Untuk n H kita mempunyai x n x x n x H x H x x n x H x H x / 2 / 2 . Karena 0 yang diberikan sembarang, maka X x n : n N adalah barisan yang konvergen ke x . 3.5 ■ BARISAN DIVERGEN Coba perhatikan kembali Definisi 3.17, definisi tentang barisan bilangan real Chauchy. Definisi tersebut ekuivalen dengan pernyataan bahwa suatu barisan bilangan real divergen jika dan hanya jika barisan tersebut bukanlah barisan Cauchy. Itu artinya untuk suatu 0 0 tidak terdapat K 0 sedemikian sehingga untuk setiap n, m K berlaku x n x m . Akibatnya, untuk setiap k N terdapat n, m k berlaku x n x m . Perhatikan barisan bilangan real Z 1 n 1 : n N . Ambil 0 1 . Untuk n k dan m k 1 berlaku k 1 x n x m x k x k 1 1 k 1 2 1 . Jadi untuk setiap k N terdapat n, m k sedemikian sehingga x n x m 1 . Dengan kata lain, Z 1 n 1 : n N adalah barisan yang divergen. Lihat kembali barisan X x n 2n 1 : n N yang merupakan barisan yang divergen. Misalkan diberikan sembarang bilangan M 0 . Kita peroleh selalu ada n N sehingga xn M , yakni untuk n M 1 / 2 . Barisan ini dikatakan divergen menuju tak hingga positif ( ). 68 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Bagaimana halnya dengan barisan S s n 2n 1 : n N . Barisan S juga adalah barisan yang divergen, karena setiap kita mengambil M 0 selalu dapatkan n N sehingga sn M , yakni untuk n M 1 / 2 . Barisan ini dikatakan divergen menuju tak hingga negatif ( ). Sekarang pehatikan barisan Z 1, 1,1, 1,..., 1 n 1 ,... . Telah ditunjukkan bahwa barisan ini juga merupakan barisan yang divergen. Suku-suku barisan ini nilainya berosilasi atau berubah-ubah, secara berselang-seling dan terusmenerus tanpa henti, antara 1 atau -1. Barisan ini divergen tetapi tidak menuju ke maupun . Dari tiga contoh barisan divergen di atas, kita dapat membuat definisi formal barisan yang divergen. Definisi 3.22. Misalkan X x n : n N adalah barisan bilangan real. Barisan X dikatakan divergen menuju ( ) jika untuk setiap M 0 terdapat N M 0 sehingga untuk setiap n N M berlaku xn M ( xn M ). Definisi 3.23. Jika X x n : n N adalah barisan bilangan real yang divergen tetapi tidak menuju ke maupun maka X x n : n N adalah barisan bilangan real yang divergen secara berosilasi. Berdasarkan Teorema 3.7 dan Teorema Kekonvergenan Monoton, barisan bilangan real yang monoton adalah barisan yang konvergen jika dan hanya jika barisan tersebut adalah barisan yang terbatas. Dengan kata lain, barisan bilangan real yang monoton adalah barisan yang divergen jika dan hanya jika barisan itu adalah barisan yang tidak terbatas. Dapat ditunjukkan jika suatu barisan adalah tak terbatas dan naik maka limit barisan tersebut menuju positif tak hingga. Jika suatu barisan adalah tak terbatas dan turun maka limit barisan itu menuju negatif tak hingga. 69 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Ada cara lain untuk menunjukkan bahwa suatu barisan bilangan real adalah barisan yang divergen. Teorema berikut, dinamakan Teorema Perbandingan, menjelaskan kondisi yang membuat suatu barisan dikatakan sebagai barisan yang divergen. Teorema 3.24. Jika x n : n N dan y n : n N adalah barisan bilangan real yang memenuhi x n y n untuk setiap n N Maka a. Jika lim x n maka lim y n . n n b. Jika lim y n maka lim x n . n n Bukti. a. Misalkan M 0 . Karena lim x n , maka terdapat N 0 sehingga untuk n setiap n N berlaku x n M . Karena x n y n untuk setiap n N , maka x n y n untuk setiap n N . Akibatnya, y n M untuk setiap n N .. Karena M 0 yang diberikan sembarang, maka lim y n . n b. Misalkan M 0 . Karena lim y n , maka terdapat N 0 sehingga untuk n setiap n N berlaku y n M . Karena x n y n untuk setiap n N , maka x n y n untuk setiap n N . Akibatnya, x n M untuk setiap n N . Karena M 0 yang diberikan sembarang, maka lim x n . ■ n Namun demikian, tidaklah selalu kita bisa menjumpai kondisi dua barisan seperti yang ada pada hipotesis Teorema 3.24, sehingga kita tidak dapat mengaplikasikan teorema tersebut untuk menunjukkan suatu barisan bilangan real adalah barisan yang divergen. Teorema di bawah ini, dinamakan sebagai Teorema Perbandingan Limit, menjelaskan kondisi (yang lebih umum dibandingkan kondisi pada Teorema 3.24) yang menjadikan suatu barisan bilangan real dikatakan sebagai barisan divergen. 70 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Teorema 3.25. Jika x n : n N dan y n : n N adalah barisan bilangan real positif yang memenuhi lim n xn L dengan L R dan L 0 yn maka diperoleh bahwa lim x n jika dan hanya jika lim y n . n Bukti. Karena lim n n xn L , maka jika diberikan L / 2 terdapat N 0 yn sedemikian sehingga untuk setiap n N berlaku x n / y n L L / 2 atau L / 2 x n / y n 3L / 2 atau L / 2 y n x n 3L / 2 y n . Akibatnya, kita mempunyai bahwa L / 2 y n x n dan 2 / 3L x n y n untuk n N . Berdasarkan Teorema 2.24, jika lim x n maka lim y n n 2 / 3L xn y n n dengan menggunakan untuk n N . Dengan Teorema yang sama, jika lim y n maka n lim x n dengan menggunakan fakta n L / 2 y n x n untuk n N . Jadi lim x n jika dan hanya jika lim y n . n 3.6 fakta n ■ DERET TAK HINGGA Misalkan X : x n : n N adalah barisan bilangan real. Dari suku-suku barisan dari X kita bisa mengonstruksi barisan lain S : s n : n N dengan s n : x1 x 2 x3 ... x n dengan n N . Barisan S yang demikian dinamakan sebagai deret tak hingga (atau deret saja) yang dibangkitkan oleh barisan X : x n : n N . Bilangan s n disebut sebagai jumlah parsial dari derat tak hingga. Bilangan x n disebut sebagai suku dari deret tak hingga. Jika lim s n ada maka S dikatakan sebagai deret tak hingga yang n konvergen dan limit tersebut disebut sebagai jumlah deret tak hingga S atau jumlah dari x1 x 2 x3 ... x n ... . Deret tak hingga S dapat pula dinotasikan dengan 71 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) x atau n n 1 x n . Jadi jika lim s n ada maka lim s n n n x n . Kemudian, jika lim s n tidak ada maka n n 1 S dikatakan sebagai deret tak hingga yang divergen. Contoh 3.26. Kita akan memperlihatkan bahwa deret tak hingga n 1 1 1 1 ... 2 4 8 n 1 2 adalah deret yang konvergen. Perhatikan bahwa n 1 1 1 1 1 ... . 2 n1 2 4 8 16 Akibatnya, n n n n 1 1 1 1 1 1 1 1 1. 2 n1 2 2 2 n 1 2 2 n 1 2 n 1 2 Dengan demikian, n 1 1 1 1 ... 2 4 8 n 1 2 ■ Adalah deret yang konvergen. Dapat ditunjukkan bahwa deret ar n ar ar 2 ar 3 ... n 1 ar r 1 jika r 1 (coba pembaca buktikan). Deret yang demikian dinamakan deret deret geometrik. Jelas bahwa deret tak hingga 2n 1 1 3 5 ... n 1 72 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) adalah salah satu contoh deret tak hingga yang divergen karena jumlah deret tersebut tidak terbatas.. Tentunya bukanlah sesuatu yang mudah untuk menunjukkan suatu deret tak hingga adalah deret yang konvergen. Melalui fakta-fakta berikut ini, kita akan diberikan syarat perlu untuk kekonvergenan deret tak hingga. Teorema 3.27. Jika deret tak hingga x n konvergen maka lim x n 0 . n n 1 Bukti. Jika s n x1 x 2 x3 ... x n maka s n 1 x1 x 2 x3 ... x n 1 . Akibatnya, s n s n 1 x n . Jika deret tak hingga x n konvergen maka n 1 lim s n sn 1 lim x n lim s n lim s n1 lim x n lim x n 0 . n n n n n n ■ Pandang barisan jumlah parsial s n : n N dengan s n x1 x 2 x3 ... x n . Jika deret tak hingga x n konvergen maka s n : n N adalah barisan yang n 1 konvergen. Menurut Kriteria Cauchy untuk barisan, kita memperoleh fakta seperti yang tertuang dalam teorema berikut ini. Teorema 3.28 (Kriteria Cauchy untuk Deret Tak Hingga). Barisan s n : n N atau deret tak hingga x n konvergen jika dan hanya jika untuk setiap 0 n 1 terdapat N 0 sedemikian sehingga jika m n N maka m s m sn x j . j n 1 Jika xn : n N s n : n N 73 adalah barisan nonnegatif maka barisan jumlah parsial adalah barisan yang monoton naik. Menurut Teorema Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) s n : n N Kekonvergenan Monoton, jika adalah barisan terbatas mala s n : n N adalah barisan yang konvergen. Teorema 3.29. Misalkan x n : n N adalah barisan nonnegatif. Barisan jumlah parsial s n : n N adalah barisan terbatas jika dan hanya jika s n : n N adalah barisan yang konvergen atau deret tak hingga x n adalah konvergen. n 1 Lebih jauh, x n 1 n lim s n sups n : n N . n Contoh 3.30. Perhatikan deret tak hingga 1 n . Kemudian, perhatikan pula n 1 bahwa s 2n 1 1 1 1 1 1 ... n1 ... n 2 3 4 2 2 1 1 1 1 1 1 1 ... n ... n 2 4 4 2 2 1 1 1 1 ... 2 2 2 1 n . 2 Berdasarkan hal tersebut, s n : n N adalah barisan tak terbatas. Menurut Teorema 3.29, deret tak hingga 1 n ■ divergen. n 1 Contoh 3.31. Kita akan menunjukkan bahwa deret tak hingga 1 n konvergen. 2 n 1 Barisan jumlah parsial dari deret tak hingga tersebut adalah barisan yang monoton naik. Untuk menunjukkan barisan jumlah parsial terbatas, cukup dengan menunjukkan terdapat sub barisan dari s n : n N , yaitu s nk : k N , 74 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) yang terbatas. Untuk itu, perhatikan bahwa, jika n1 : 21 1 1 maka s n1 1 , jika n2 : 2 2 1 3 maka s n2 1 1 / 2 2 1 / 3 2 1 2 / 2 2 1 1 / 2 , dan jika n3 : 2 3 1 7 maka s n3 s n2 1 / 4 2 1 / 5 2 1 / 6 2 1 / 7 2 s n2 4 / 4 2 1 1 / 2 1 / 2 2 . Secara umum, dengan menggunakan induksi matematika, kita peroleh bahwa jika nk : 2 k 1 maka 0 s nk 1 1 / 2 1 / 2 ... 1 / 2 2 k 1 2 Karena 1 1 / 2 1 / 2 ... 1 / 2 k 1 . ... 1 / 1 1 / 2 2 , maka s nk 2 untuk setiap k N . Akibatnya, sub barisan s nk : k N terbatas. Dengan demikian, barisan s n : n N terbatas. Menurut Teorema 3.29, deret tak hingga 1 / n 2 n 1 ■ konvergen. Kita juga bisa menentukan kekonvergenan suatu deret tak hingga dengan cara membandingkan suku ke- k pada deret takhingga tersebut dengan suku ke- k pada deret tak hingga yang lain. Teorema 3.32 (Uji Perbandingan). Misalkan xn : n N yn : n N dan adalah barisan bilangan real yang bersifat, untuk suatu K N , 0 x n y n untuk setiap n K . a. Jika y n konvergen maka n 1 b. Jika n konvergen. n 1 xn divergen maka n 1 x y n konvergen. n 1 Bukti. Menurut Teorema Cauchy untuk deret tak hingga, jika y n konvergen n 1 maka apabila diberikan 0 terdapat N 0 sedemikian sehingga jika m n N maka 75 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) m m yj j n 1 y j . j n 1 Misalkan M : supK , N . Kita peroleh untuk m n M , m m x j n 1 j y j . j n 1 Menurut Teorema Cauchy untuk deret tak hingga, x konvergen. n n 1 ■ Kontrapositif dari a. adalah b. . Contoh 3.33. Kita akan menunjukkan bahwa deret tak hingga n n 1 3 n 1 konvergen. Perhatikan bahwa n 1 2 untuk setiap n N . n 1 n 3 Kita ketahui bahwa deret tak 1 n hingga konvergen. 2 Menurut Uji n 1 Perbandingan, n 3 n 1 n deret tak hingga yang konvergen. 1 ■ Teorema 3.34 (Uji Perbandingan Limit). Misalkan x n : n N dan y n : n N adalah barisan bilangan real positif sejati dan limit L : lim n xn yn Nilainya ada. a. Untuk L 0 , xn konvergen jika dan hanya jika n 1 b. Untuk L 0 , jika y y n konvergen. n 1 n konvergen maka n 1 x n konvergen. n 1 Bukti. Misalkan L 0 . Diberikan L / 2 . Karenanya, terdapat N 0 sedemikian 76 sehingga untuk setiap nN , xn / y n L L / 2 atau Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) L / 2 x n / y n 3L / 2 . Berdasarkan Uji Perbandingan, x n konvergen jika dan n 1 hanya jika y n konvergen. n 1 Misalkan L 0 . Diberikan 1 . Karenanya, terdapat N 0 sedemikian sehingga untuk setiap n N , x n / y n 0 1 atau 0 x n y n . Berdasarkan Uji Perbandingan, jika y n konvergen maka n 1 x Perhatikan kembali deret tak hingga n konvergen. ■ n 1 n 3 n 1 n pada contoh 3.33. Perhatikan 1 bahwa n / n3 1 n3 lim 1 0 . n n n 3 1 1/ n2 lim Karena deret tak hingga 1 n 2 konvergen, maka, menurut Uji Perbandingan n 1 Limit, deret tak hingga n n 1 3 n konvergen. 1 Ada cara lain, selain menggunakan Teorema 3.29, yaitu dengan menggunakan suatu uji yang disebut sebagai Uji Kondensasi Cauchy, untuk menunjukkan bahwa deret tak hingga 1 / n dan n 1 1 / n 2 , masing-masing, divergen dan n 1 konvergen, secara berurutan. Bahkan dengan Uji Kondensasi Cauchy kita dapat menunjukkan secara umum bahwa deret-p, 1 / n p , konvergen jika p 1 dan n 1 divergen jika p 1 . 77 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Teorema 3.35 (Uji Kondensasi Cauchy). Misalkan barisan a k : k N nonnegatif dan monoton turun. Deret tak hingga a konvergen jika dan hanya k k 1 jika deret tak hingga 2 k a 2k konvergen. k 1 n Bukti. Perhatikan jumlah parsial s n n ak dan t n 2 k a2k . Untuk n 2 k , k 1 k 1 s n a1 a 2 a3 a 4 a5 a 6 a 7 ... a 2k ... a 2k 1 a1 2a 2 2 2 a 22 ... 2 k a 2k t k . Jelas jika 2 k a2k konvergen maka k 1 a k konvergen. k 1 Untuk n 2 k , s n a1 a 2 a3 a 4 ... a 2k 1 1 ... a 2k a1 / 2 a 2 2a 22 ... 2 k 1 a 2k t k / 2 . Seperti halnya di atas, jika a k konvergen maka k 1 2 k a 2k konvergen. ■ k 1 Untuk p 0 , jelas bahwa lim 1 / n p 0 . Dengan menggunakan Teorema 3.27, n deret tak hingga 1 / n p divergen untuk p 0 . Perhatikan bahwa n 1 k 1 2k 2 k p 2 1 p k dengan p 0 . k 1 Dengan menggunakan Uji Kondensasi Cauchy, dapat ditunjukkan bahwa bahwa deret-p, 1 / n p , konvergen jika p 1 dan divergen jika p 1 (Detail n 1 penjelasan fakta ini ditinggalkan sebagai latihan bagi pembaca). Kita pun dapat menunjukkan kekonvergenan suatu deret tak hingga dengan membandingkan dua suku pada deret tak hingga tersebut. 78 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Teorema 3.36. Misalkan a n : n N adalah barisan bilangan real non negatif sejati. a. Jika lim a n 1 / a n 1 maka deret tak hingga n a n konvergen. n divergen. n 1 b. Jika lim a n 1 / a n 1 maka deret tak hingga n a n 1 c. Jika lim a n 1 / a n 0 maka tidak diperoleh kesimpulan apakah n a n n 1 konvergen atau divergen. Bukti. Misalkan lim a n 1 / a n L . Misalkan L 1 , maka terdapat N 0 n sedemikian sehingga untuk setiap n N , a n 1 / a n L . Karenanya, aN 1 a N 2 ... a N k ... La N L2a N ... Lk a N ... . Ruas kanan pertidaksamaan di atas merupakan deret tak hingga geometrik dengan rasio 0 L 1 . Akibatnya, menurut Teorema 3.32, deret tak hingga a n konvergen. n 1 Jika L 1 , kita bisa memperoleh bahwa, untuk suatu N 0 , aN 1 a N 2 ... a N k ... La N L2a N ... Lk aN ... . Karena L 1 , deret di ruas kanan pertidaksamaan adalah deret yang divergen. Yang demikian mengakibatkan deret di ruas kiri divergen. Akibatnya, deret tak hingga a n divergen. n 1 Untuk L 1 , perhatikan deret tak hingga 1/ n dan n 1 1 / n 2 . Diperoleh n 1 1 / n 1 1/ n2 1 1 dan lim 1. n n 1/ n 1/ n2 lim Deret tak hingga 1/ n dan n 1 1 / n 2 adalah deret yang divergen dan konvergen, n 1 masing-masing secara berurutan. Jadi untuk L 1 , kita tidak bisa mendapatkan kesimpulan tentang kekonvergenan suatu deret tak hingga. 79 ■ Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) BAB IV LIMIT FUNGSI 4.1 Titik Timbun Definisi 4.1. Misalkan A R dan c R , dengan c tidak harus di A. C di sebut titik timbun A jika 0, V (C ) (c , c ) memuat paling sedikit satu anggota A yang tidak sama dengan c, atau V (c) /{c} A . Contoh 4.2. 1. Misalkan A = ( 2 , 3 ), tentukan titik timbun A. Penyelesaian 2 titik timbun A, karena dengan mengambil sebarang δ = ½ , dimana V1 / 2 (2) (1 12 ,2 12 ) maka V1 / 2 (2) /{2} A . Sehingga dengan mengambil δ > 0 dapat disimpulkan V (2) /{2} A . 2 ½ juga titik timbun A, karena 0, V (2 12 ) /{2 12 } A . 3 juga titik timbun A, karena 0, V (3) /{3} A . Jadi dapat disimpulkan bahwa setiap titik pada interval [2 , 3] merupakan titik timbun A. 2. Misalkan B = {1, 2, 3, 4, 5 }, tentukan titik timbun B. Penyelesaian Ambil δ = ½ , sehingga V1 / 2 (1) ( 12 ,1 12 ) . Tetapi V1 / 2 (1) /{1} B . yang Jadi 1 bukan titik timbun B. Begitu juga dengan titik lain.. Jadi dapat disimpulkan bahwa B = {1, 2, 3, 4, 5 } tidak mempunyai titik timbun. 80 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Teorema 4.3. Misalkan A R dan c R , c titik timbun A jika dan hanya jika (an ), an c, n N lim (an ) c . n Bukti: () Misal c titik timbun A. Sehingga V 1 (c) memuat sedikitnya satu titik di A yang n berbeda dari c. Jika an titik tersebut, maka an A, an c, n N lim (an ) c . n () Diserahkan kepada pembaca sebagai latihan. ■ 4.2 Definisi Limit Fungsi Definisi 4.4. Misalkan A R, f : A R dan c R , dengan c titik timbun A. Misalkan L limit dari f di titik c, ditulis lim f ( x) L x c jika 0, 0, untuk x V (c) /{c} A berlaku f ( x) V ( L) . Definisi limit di atas dapat ditulis lim f ( x) L x c jika dan hanya jika 0, 0, untuk 0 x c dan x A berlaku f ( x) L . Contoh 4.5 1 n 1. Misalkan A : n R , f : A R, f ( x) 2 x . Buktikan lim f ( x) 0 . x0 Bukti: , Sehingga jika 0 x 0 x dan 2 x A berlaku f ( x ) L 2 x 0 2 x 2 x 2 2 . 2 Jadi terbukti lim 2 x 0 . Ambil 0 sebarang. Pilih x0 81 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) 2. Buktikan lim x 2 c 2 . x c Analisa pendahuluan Tujuan pembuktian ini 0 mencari sehingga untuk 0, 0 x c , x A berlaku x 2 c 2 . 2 2 Perhatikan bahwa x c ( x c )( x c) x c x c . Jika diambil 1 maka x c 1 . Menurut pertidaksamaan segitiga x c x c 1 atau x 1 c . 2 2 Sehingga x c x c x c 1 2 c x c , Dengan mengambil 2 2 maka diperoleh x c . 1 2 c Bukti: , Sehingga jika 0 x c 1 2 c Ambil 0 sebarang. Pilih min 1, 2 2 dan x R berlaku x c x c x c 1 2 c x c Jadi terbukti lim x 2 c 2 . ■ x c Teorema 4.6. Jika f : A R dan c titik timbun A , c R maka f hanya mempunyai satu limit di titik c. Selanjutnya akan dibicarakan kaitan antara barisan dengan limit fungsi dan kriteria kedivergenan. Teorema 4.7 (Kriteria Barisan untuk Limit). Misalkan f : A R dan c titik timbun A , maka lim f ( x) L jika dan hanya jika untuk setiap barisan (xn) di A yang konvergen x c ke c dimana xn c, n N, f ( xn ) konvergen ke L. Bukti dari teorema 4.6 dan 4.7 diserahkan kepada pembaca sebagai latihan. 82 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Contoh 4.8. Buktikan lim x 2 4 dengan menggunakan kriteria barisan. x2 Bukti: Ambil x n 2 1 , n . Akan ditunjukkan f ( x n ) konvergen ke 4. n x 2 Perhatikan bahwa lim f ( x n ) lim 4 x 2 4 1 4. n n2 Jadi terbukti bahwa lim x 2 4 . ■ x2 Teorema 4.9 (Kriteria Kedivergenan). Misalkan A R, f : A R dan c R , dengan c titik timbun A. a) Jika L R maka f tidak punya limit L di c jika dan hanya jika ada barisan (xn) di A yang konvergen ke c dimana x n c, n , tetapi f ( xn ) tidak konvergen ke L. b) f tidak punya limit di c jika dan hanya jika ada barisan (xn) di A yang konvergen ke c dimana xn c, n N, tetapi f ( x n ) tidak konvergen ke R. Contoh 4.10. 1 tidak ada di R . x0 x 1. Buktikan lim Bukti: f ( x) Misalkan f ( xn ) 1 x . Ambil xn 1 ,n N n2 . Tetapi 1 n 2 ,sehingga f ( x n ) tidak konvergen karena tidak terbatas 1 2 n 1 tidak ada di R . x0 x di . Jadi terbukti bahwa lim 2. Buktikan lim sgn( x) tidak ada. x 0 Bukti: 83 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) 1, x 0 Misalkan f(x) = sgn (x). Perhatikan bahwa sgn( x) 0, x 0 . 1, x 0 Sehingga fungsi sgn (x) dapat ditulis menjadi sgn( x) Ambil xn x ,x 0. x (1) n , n N . Tetapi n (1) n xn n (1) n , f ( x n ) sgn( x n ) n xn (1) n sehingga f ( x n ) divergen. ■ 4.3 Teorema Limit Definisi 4.11. Misalkan A R, f : A R dan c R , dengan c titik timbun A. f dikatakan terbatas pada lingkungan c jika ada lingkungan dari c, yaitu V (c) dan konstanta M > 0 sehingga f ( x ) M , x A V (c ). Teorema 4.12. Misalkan A R, f : A R dan f mempunyai limit di c R , maka f terbatas pada suatu lingkungan dari c. Definisi 4.13 Misalkan A R , f : A R, g : A R . Definisikan ( f g )( x ) f ( x) g ( x ) ( f g )( x) f ( x ) g ( x ) (bf )( x) bf ( x ), b 84 f ( x) f , h( x) 0 ( x) h( x) h , ( fg )( x) f ( x) g ( x) , x A Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Teorema 4.14. Misalkan A R , f : A R, g : A R dan c R , dengan c titik timbun A. Misalkan b . lim f ( x) L 1. Jika dan x c lim g ( x) M lim ( f g )( x) L M lim ( f g )( x) L M lim ( fg )( x ) LM lim (bf )( x) bL x c xc , x c maka x c xc f L . x c h H 2. Jika h : A R , h( x) 0, x A, lim h( x) H 0 maka lim xc Bukti: 1. Ambil 0 sebarang. Misal lim f ( x) L , artinya 1 0, untuk 0 x c 1 dan x A x c berlaku f ( x) L . 2 Misal lim g ( x) M , artinya 2 0, untuk 0 x c 2 dan x A x c berlaku g ( x ) M . 2 Akan ditunjukkan lim ( f g )( x ) L M . x c Pilih min( 1 , 2 ) , sehingga untuk 0 x c dan x A berlaku ( f g )( x) ( L M ) ( f ( x ) L) ( g ( x) M ) f ( x) L g ( x ) M 2 2 Jadi terbukti lim ( f g )( x ) L M . x c ■ 2. Bukti selanjutnya diserahkan kepada pembaca sebagai latihan. Contoh 4.15. x2 4 x 4 b ). lim 2 x2 x 2 3 x 6 x Hitung a). lim Jawab. 85 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) a) Kita dapat menggunakan teorema 4.13 (b), karena jika dimisalkan f(x) = x + 4 h(x) = x2 , h( x) 0, x , lim h( x ) H 0 maka dan x 2 x 4 lim ( x 4) 6 3 lim 2 x2 x 2 4 2 lim x 2 x x2 b) Tidak dapat menggunakan teorema 4.13 (b), karena jika dimisalkan f ( x) x 2 4, h( x) 3x 6, x tetapi H lim h( x) lim (3 x 6) 0 x 2 maka x2 untuk x2 4 1 1 1 4 lim ( x 2) lim x 2 (2 2) . x 2, lim x2 3 x 6 x2 3 x 2 3 3 3 ■ Teorema 4.16. Misalkan A R, f : A R dan c R , dengan c titik timbun A. Jika a f ( x) b x A, x c dan jika lim f ( x ) ada maka a lim f ( x) b . x c xc Teorema Apit 4.17. Misalkan A R , f , g , h : A R dan c R , dengan c titik timbun A. Jika f ( x) g ( x ) h( x ) x A, x c dan jika lim f ( x) L lim h( x ) x c x c maka lim g ( x ) L . x c Contoh 4.18. 1 x 1 x Buktikan bahwa lim cos tidak ada tetapi lim x cos 0 . x0 x0 Bukti. 1 x 1 x Akan dibuktikan lim cos tidak ada . Misalkan f ( x ) cos . x0 86 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Ambil subbarisan lim dimana n xn 1 , n dan subbarisan 2 n 1 1 0 , lim 0 n 2n (2n 1) .Tetapi yn 1 , n , (2n 1) f ( x n ) cos 2n 1 dan f ( y n ) cos(2n 1) 1 , sehingga lim ( f ( x n )) lim ( f ( y n )) . n n 1 x Jadi lim cos tidak ada. x0 1 x Akan dibuktikan lim x cos 0 . x0 1 x Perhatikan bahwa x x cos x dan lim x 0 lim x maka menurut x0 x0 1 x teorema apit lim x cos 0 . x0 ■ Teorema 4.19. Misalkan A R, f : A R dan c R , dengan c titik timbun A. Jika lim f ( x) 0 maka V (c ) f ( x ) 0, x A V (c), x c . x c Bukti: L 0 , sehingga menurut definisi limit fungsi 2 Misalkan L lim f ( x ) 0 . Pilih xc 0 0 x c , x A f ( x ) L Karena f ( x) 87 f ( x) L L 2 maka L 0, x A V (c), x c . 2 L . 2 L L f ( x) L 2 2 atau ■ Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Soal – soal 1 n 2. Misalkan A (0,2), f : A R, f ( x ) 3x 5 . Buktikan lim f ( x ) 5 dan lim f ( x ) 8 1. Misalkan D : n N . Tentukan titik timbun D. x0 x 1 3. Buktikan jika f : A R dan c titik timbun A , c R maka f hanya mempunyai satu limit di titik c. 1 1 ,c 0. x c 5. Misalkan A R, f : A R dan c R , dengan c titik timbun A. Buktikan jika lim f ( x) L lim f ( x ) L 0 . 4. Buktikan lim x c x c xc I R, f : I R Misalkan K & L f ( x ) L K x c 6. Misalkan c I , x I Buktikan lim f ( x) L . dan . x c 7. Buktikan bahwa limit berikut tidak ada 1 x2 x0 ( x 0) 1 ( x 0) x 1 (c) lim ( x sgn( x )) (d ) lim sin( 2 ) ( x 0) x0 x 0 x 8. Misalkan A R , f , g : A R dan c R , dengan c titik timbun A. Misalkan f terbatas pada lingkungan dari c dan lim g ( x ) 0 . Buktikan bahwa (a) lim (b) lim x 0 x c lim ( fg )( x) 0 . x c 9. Berikan contoh fungsi f dan g dimana fungsi f dan g tidak punya limit di titik c, tetapi f + g dan fg mempunyai limit di titik c. 10. Buktikan teorema 4.15 11. Misalkan A R, f : A R dan c R , dengan c titik timbun A. Buktikan jika lim f ( x) 0 maka V (c ) f ( x ) 0, x A V (c ), x c . x c 88 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) BAB V KEKONTINUAN FUNGSI 5.1 Definisi Fungsi Kontinu Definisi 5.1. Misalkan A R, f : A R dan c A . f dikatakan kontinu di titik c jika untuk setiap lingkungan V ( f (c )) dari f(c) terdapat lingkungan V (c) dari c sehingga jika x A V (c ) maka f ( x ) V ( f (c )) . Berikut ini ada beberapa hal yang perlu diperhatikan dalam pengambilan titik c; 1. Jika c A , dimana c titik timbun A, maka dari definisi limit dan definisi fungsi kontinu dapat disimpulkan bahwa f kontinu di c f (c ) lim f ( x ) . x c Dengan kata lain, jika c titik timbun A maka f dikatakan kontinu di titik c jika memenuhi syarat f terdefinisi di titik c lim f ( x ) ada f (c) lim f ( x) xc xc 2. Jika c A , dimana c bukan titik timbun A, maka ada lingkungan V (c) dari c sehingga A V (c) {c} . Jadi dapat disimpulkan bahwa fungsi f jelas kontinu di titik c A walaupun c bukan titik timbun A. Titik ini disebut ”titik terisolasi dari A”. Definisi selanjutnya akan membicarakan kekontinuan fungsi pada suatu himpunan. Definisi 5.2. Misalkan A R, f : A R Jika B A , f dikatakan kontinu pada B jika f kontinu di setiap titik pada B. 89 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Teorema 5.3 Misalkan A R, f : A R dan c A . Pernyataan berikut ekuivalen : 1) f dikatakan kontinu di titik c jika untuk setiap lingkungan V ( f (c )) dari f(c) terdapat lingkungan V (c) dari c sehingga jika x A V (c ) maka f ( x ) V ( f (c )) . 2) Untuk 0, 0 x A, x c f ( x ) f (c ) . 3) Jika (xn) barisan bilangan riil, xn A, n R dan (xn) konvergen ke-c maka barisan f((xn)) konvergen ke f(c). Kriteria Ketakkontinuan 5.4 Misalkan A R, f : A R dan c A . f tidak kontinu di titik c jika dan hanya jika ( x n ) A ( x n ) konvergen ke c, f((xn)) tidak konvergen ke f(c). Contoh 5.5 1. Misalkan f(x) = 2x. Buktikan f(x) kontinu pada R . Bukti: Ambil 0 sebarang dan c R sebarang. Pilih x c , x D f f ( x) f (c) 2 x 2c 2 x c 2 . 2 Sehingga menurut definisi kekontinuan f(x) kontinu pada R . 2. Misalkan h( x) x 2 , x R . Buktikan h(x) kontinu pada R . Bukti: Pada contoh 5.5 (2) telah dibuktikan bahwa lim h( x ) c 2 h(c) dengan x c c R , maka h kontinu pada setiap titik c R . Sehingga h kontinu pada R . 3. Misalkan f ( x) sgn( x), x R . Buktikan bahwa f(x) tidak kontinu di x = 0. Bukti: Pada contoh 4.9 (2) telah dibuktikan bahwa lim sgn( x) tidak ada di R . x 0 90 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Sehingga f(x) = sgn x tidak kontinudi x = 0. 4. Misalkan A R , dan f ”fungsi Di richlet” yang didefinisikan sebagai , x Q 1 0 , x \ Q berikut: f ( x ) Buktikan bahwa f(x) tidak kontinu di R . Bukti: Misalkan cQ , ( xn ) \ Q, ( xn ) c, n N ambil . Karena f ( xn ) 0, n N maka lim ( f ( x n )) 0 , tetapi f(c) = 1. n Akibatnya f tidak kontinu pada c Q . Misalkan bR \Q , ambil ( y n ) Q , ( y n ) b, n N . Karena f ( yn ) 1, n N maka lim ( f ( y n )) 1 , tetapi f(b) = 0. n Akibatnya f tidak kontinu pada b R \ Q . Dari kedua kasus di atas dapat diambil kesimpulan f tidak kontinu pada R . Selanjutnya ada beberapa hal tentang perluasan fungsi kontinu; 1) Terkadang ada fungsi f : A R yang tidak kontinu di titik c karena f(c) tidak terdefinisi.Tetapi, jika fungsi f mempunyai limit L di titik c maka dapat didefinisaikan fungsi baru F : A {c} R yang didefinisikan sebagai berikut: ,x c L F( x ) f ( x ) ,x A Maka F kontinu di titik c. 2) Misalkan fungsi g : A R tidak mempunyai limit di titik c, maka tidak dapat dibuat fungsi G : A {c} R yang kontinu di titik c dan didefinisikan sebagai berikut: ,x c C G( x ) g( x ) , x A Untuk membuktikan pernyataan di atas andaikan lim G( x ) C . Bukti xc selengkapnya diserahkan kepada pembaca sebagai latihan. 91 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Contoh 5.6 1 x 1) Misalkan g( x ) sin , x 0 . Karena lim g( x ) tidak ada, maka kita x 0 tidak dapat memperluas fungsi g(x) di titik x = 0. 1 x 2) Misalkan f ( x ) x sin , x 0 . Karena f(0) tidak terdefinisi dan f tidak 1 x kontinu di titik x = 0 tetapi lim x sin 0 , maka kita dapat memperluas x 0 fungsi f(x) menjadi F : R R yang didefinisikan sebagai berikut: 0 ,x 0 1 . F( x ) x sin , x 0 x Sehingga F kontinu di x = 0. 5.2 Sifat-sifat Fungsi Kontinu Misalkan A R, f , g , h : A R , b R . Pada definisi 3.12 telah dibahas tentang penjumlahan (f + g), selisih (f - g), perkalian dua fungsi (fg), dan perkalian fungsi dengan skalar (bf) serta pembagian (f / h) dengan h( x) 0, x A . Berikut ini akan membahas penjumlahan, selisih, perkalian dua fungsi, dan perkalian fungsi dengan skalar serta pembagian fungsi kontinu. Teorema 5.7. Misalkan A R , f , g : A R , b R . Misalkan c A dan f dan g kontinu di titik c, a) Maka f + g, f - g, fg, bf kontinu di titik c. b) Jika h : A kontinu di c A dan jika h( x ) 0,x A maka f /h kontinu di titik c. Bukti: a). Untuk membuktikan teorema di atas, dibagi menjadi dua kasus : 92 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) 1. Jika c bukan titik timbun A 2. Jika c titik timbun A, f kontinu di titik c, dan g kontinu di titik c maka lim f ( x) f (c) dan lim g ( x) g (c ) . Sehingga x c x c lim ( f g )( x) lim f ( x) g ( x) lim f ( x) lim g ( x ) x c xc x c xc f (c ) g (c) ( f g )(c) ■ Akibatnya (f + g) kontinu di titik c. Teorema 5.8. Misalkan A R , f , g : A R , b R . Misalkan c A dan f dan g kontinu pada A, a) Maka f + g, f - g, fg, bf kontinu pada A. b) Jika h : A R kontinu pada A dan jika h( x ) 0,x A maka f /h kontinu di pada A. Teorema 5.9. Misalkan A R, f : A R , dan misalkan | f | didefinisikan sebagai f ( x ) f ( x ) , x A . a) Jika f kontinu di titik c A maka | f | kontinu di titik c. b) Jika f kontinu pada A maka | f | kontinu pada A. Bukti teorema 5.8 dan 5.9 diserahkan kepada pembaca sebagai latihan. Teorema 5.10. Misalkan A R , f : A R, f ( x ) 0 x A , dan misalkan sebagai ( f )( x) f didefinisikan f ( x) , x A a) Jika f kontinu di titik c A maka b) Jika f kontinu pada A maka f kontinu di titik c. f kontinu pada A. Bukti. a) Ambil 0 sebarang. Misalkan c A . Jika f c 0 maka f c 0 . Karena f kontinu di c A maka 93 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) 0 x A, x c f ( x ) f x 2 atau f x 0 f x f c . Sekarang misalkan c A dan f c 0 . Karena Karena f c A maka 0 x A, x c f ( x) f c kontinu di f c . Perhatikan bahwa x A, x c berlaku f ( x) f (c ) Jadi terbukti f ( x) f (c ) f ( x) f ( x) f ( c) f ( x) f (c ) f ( x) f ( c) f (c ) f ( x ) f (c ) f (c ) f ( x ) f (c ) f ( x) f (c ) f ( c) f (c ) f kontinu di titik c. ■ Pada teorema 5.7 membahas tentang perkalian dua fungsi kontinu adalah kontinu. Selanjutnya akan dibahas tentang komposisi fungsi kontinu. Komposisi Fungsi Kontinu Teorema 5.11. Misal A, B R, f : A R , g : B R , f ( A) B . Jika f kontinu di titik c A dan g kontinu pada b f ( c ) B maka g f : A R kontinu di titik c. Teorema 5.12. Misal A, B R, f : A R , g : B R , f ( A) B . Misalkan f kontinu pada A dan g kontinu pada B . Jika f ( A) B maka g f : A R kontinu pada A. Bukti teorema 5.11 dan 5.12 diserahkan kepada pembaca sebagai latihan. 5.3 Fungsi Kontinu pada Interval Definisi 5.13. Misal f : A R . f dikatakan terbatas pada A jika M 0 f ( x ) M , x A . 94 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Dari definisi di atas dapat dikatakan suatu fungsi dikatakan terbatas jika range fungsi tersebut terbatas di R . Ingat bahwa fungsi kontinu tidak selalu terbatas, contohnya pada f ( x) 1 , A {x R : x 0} , f x kontinu pada A tetapi tidak terbatas pada A. Jika f ( x ) 1 , B {x R : 0 x 1} juga f kontinu pada B tetapi x terbatas pada B. Sedangkan jika f ( x ) f tidak 1 , C {x R : x 1} f kontinu pada C x dan f terbatas pada C, meskipun C tidak terbatas. Teorema 5.14 (Keterbatasan). Misal I = [a,b] interval tertutup terbatas dan misalkan f : I R kontinu pada I. Maka f terbatas pada I. Bukti: Andaikan f tidak terbatas pada I, maka xn I f ( xn ) n, n N . Karena I terbatas maka X = (xn) terbatas, sehingga menurut teorema Bolzano-Weistrass ada subbarisan yang konvergen, sebut X ( x nr ) yang konvergen ke x. Karena X I maka menurut teorema x I . Dari hipotesis di atas diketahui f kontinu pada I, sehingga menurut teorema 5.3 ( f ( x nr )) konvergen ke f(x). Menurut teorema suatu barisan konvergen adalah terbatas, maka ( f ( x nr )) terbatas. Hal ini bertentangan dengan kenyataan bahwa f ( xnr ) nr r , r R . Jadi pengandaian salah haruslah f terbatas pada I.■ Definisi 5.15 Misalkan A R, f : A R . f mempunyai maksimum absolut pada A jika ada x* A f ( x*) f ( x), x A dan f mempunyai minimum absolut pada A jika ada x* A f ( x* ) f ( x ), x A . x* disebut titik maksimum absolut dan x* disebut titik minimum absolut. 95 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Teorema 5.16 (Maksimum-Minimum). Misal I = [a,b] interval tertutup terbatas dan misalkan f : I R kontinu pada I. Maka f mempunyai maksimum absolut dan minimum absolut pada I. Bukti : Misalkan f ( I ) { f ( x), x I } . Karena I interval tertutup terbatas maka f(I) juga terbatas pada R , sehingga f(I) mempunyai supremum dan infimum, sebut s* = sup f(I) dan s* inf f ( I ) . Akan dibuktikan x*, x* I s* f ( x*) & s* f ( x* ) . Karena 1 n s* = sup f(I) maka s * , n N bukan batas atas f(I). Sehingga xn I s * 1 f ( xn ) s*, n N . n Karena I terbatas maka X = (xn) juga terbatas, sehingga menurut Teorema Bolzano-Weistrass ada subbarisan X ( x nr ) yang konvergen ke x*. Karena f kontinu di x* maka lim f ( x nr ) f ( x*) sehingga s * n Karena 1 lim s * n nr s* lim s * n maka 1 f ( x nr ) s*, r . nr menurut teorema apit lim ( f ( x nr )) s * . Sehingga f ( x*) lim ( f ( x nr )) s* sup f ( I ) . n n ■ Akibatnya f(x) mempunyai absolut maksimum. Teorema 5.17 (Lokasi Akar). Misal I = [a,b] interval tertutup terbatas dan misalkan f : I R kontinu pada I. Jika , , I f ( ) 0 f ( ) atau f ( ) 0 f ( ) maka c ( , ) f (c) 0 . Bukti dari teorema lokasi akar diserahkan kepada pembaca sebagai latihan. 96 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Teorema 5.18 (Niai Tengah Bolzano’s). Misal I = [a,b] interval dan misalkan f : I R kontinu pada I. Jika a, b I dan jika k R yang memenuhi f (a) k f (b) maka c (a, b) f (c ) k . Bukti: Misal a, b I dan f (a) k f (b) , k R . Misalkan a < b dan misalkan g(x) = f(x) – k. Karena f (a) k f (b) maka g (a) 0 g (b) . Karena f(x) kontinu pada I maka g(x) juga kontinu pada I, sehingga menurut teorema lokasi akar c (a, b), a c b 0 g (c ) f (c ) k .Jadi f(c) = k. Misalkan b < a dan misalkan h(x) = k - f(x). Karena f (a) k f (b) maka h(b) 0 h(a) . Karena f(x) kontinu pada I maka h(x) juga kontinu pada I, sehingga menurut teorema lokasi akar c (a, b), b c a 0 h(c) k f (c) .Jadi f(c) = k. ■ Akibat 5.19. Misal I = [a,b] interval tertutup terbatas dan misalkan f : I R kontinu pada I. Jika k yang memenuhi inf f ( I ) k sup f ( I ) maka c I f (c) k . 5.4 Kekontinuan Seragam Definisi 5.20. Misalkan A R , f : A R. f dikatakan kontinu seragam pada A jika untuk 0, ( ) 0 x, u A, x u ( ) f ( x) f (u ) . Selanjutnya akan dibicarakan beberapa kriteria ketakkontinuan seragam, salah satunya dengan menggunakan barisan. Definisi 5.21 (Ketak Kontinuan Seragam). Misalkan A R , f : A R. Pernyataan berikut ekuivalen : 1) f tidak kontinu seragam pada A 2) 0, 0 0, x , u A x u f ( x ) f (u ) 0 97 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) 3) 0 0, ( xn ), (un ) A lim ( x u ) 0 & f ( xn ) f (un ) 0 , n N n Dari definisi kekontinuan fungsi jelas bahwa jika f kontinu seragam pada A maka f kontinu di setiap titik dari A. Tetapi jika f kontinu di setiap titik dari A tidak mengakibatkan g ( x) 1 x tidak f kontinu seragam pada A. Contohnya misalkan , A {x R : x 0} . Fungsi g kontinu pada A ( lihat contoh ), tetapi g kontinu seragam pada A karena dengan mengambil 1 1 0 12 , x n , u n lim ( x n u n ) 0 dan n n 1 n g ( xn ) g (un ) | n (n 1) | 1 1 2 0 , n R . Selanjutnya jika f kontinu pada suatu interval tertutup terbatas, sebut I maka f kontinu seragam pada I. Teorema 5.22 (Kekontinuan Seragam). Misalkan I adalah interval tertutup terbatas, dan f : I R kontinu pada I maka f kontinu seragam pada I. Bukti dari teorema 5.22 diserahkan kepada pembaca sebagai latihan. Pada teorema 5.22 suatu fungsi kontinu akan kontinu seragam jika intervalnya tertutup dan terbatas. Apabila intrervalnya tidak tertutup dan terbatas akan sulit menentukan kekontinuan seragam. Untuk itu diperlukan kondisi lain, yaitu kondisi Lipschitz . Definisi 5.23 (Fungsi Lipschitz). Misalkan A R , f : A R. Jika K 0 f ( x) f (u ) K x u , x, u A maka f dikatakan fungsi Lipschitz pada A atau memenuhi kondisi Lipschitz. Teorema 5.24. Jika f : A R dan f fungsi Lipschitz maka f kontinu seragam pada A. 98 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Bukti: Ambil 0 sebarang. Misalkan f fungsi Lipschitz maka K 0 f ( x) f (u ) K x u , x, u A . Akan ditunjukkan f kontinu seragam pada A atau 0 x, u A, x u f ( x) f (u ) . Pilih , sehingga x, u A, K f ( x) f (u ) K x u K K . K ■ Jadi f kontinu seragam pada A. Kebalikan dari teorema di atas tidak benar, artinya tidak setiap fungsi kontinu seragam adalah fungsi Lipschitz. Contohnya, misalkan g : I , I [0, 2], g ( x ) x . Menurut teorema 5.10 g kontinu pada I, sehingga menurut teorema 5.22 g kontinu seragam pada I. Tetapi g bukan fungsi Lipschitz karena tidak ada K 0 g ( x) g (u ) K x u , x, u I . Contoh 5.25. 1. Misalkan f(x) = x2 pada A = [0,b] dengan b konstanta positif. Tunjukkan bahwa f kon tinu seragam. Jawab: Ambil x, u [0, b] sebarang. Perhatikan bahwa f ( x ) f (u ) x 2 u 2 x u x u 2b x u . Sehingga dengan mengambil K = 2b , f merupakan fungsi Lipschitz. Menurut teorema 5.24 f kontinu seragam. 2. Misalkan g ( x) x, A [1, ) . Tunjukkan bahwa g kon tinu seragam. Jawab: Ambil x, u A sebarang. Perhatikan bahwa g ( x ) g (u ) x u xu x u 1 xu . 2 Sehingga dengan mengambil K = ½ , g merupakan fungsi Lipschitz. Menurut teorema 5.24 g kontinu seragam. 99 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) 5.5 Fungsi Monoton dan Fungsi Invers Definisi 5.26. Misalkan f : A R , f dikatakan naik pada A jika x1 , x 2 A dan x1 x 2 maka f ( x1 ) f ( x 2 ) . f dikatakan naik sejati pada A jika x1 , x 2 A dan x1 x 2 maka f ( x1 ) f ( x 2 ) . Misalkan f : A R , f dikatakan turun pada A jika x1 , x 2 A dan x1 x 2 maka f ( x1 ) f ( x 2 ) . f dikatakan naik sejati pada A jika x1 , x 2 A dan x1 x 2 maka f ( x1 ) f ( x 2 ) . Jika f : A R, naik pada A maka g = -f turun pada A, sedangkan jika f : A R, turun pada A maka g = -f naik pada A. Fungsi yang monoton belum tentu konitnu, sebagai contoh 0 , x [ 0,1 ] 1, x ( 1,2 ] Misalkan f ( x ) Pada fungsi di atas, f naik pada [0,2] tetapi tidak kontinu di x = 1. Teorema 5.27. Misal I R, f : I R , f naik pada I. Misal c I dimana c bukan titik ujung dari I, maka ( i ). lim f ( x ) sup{ f ( x ) : x I , x c } x c ( ii ). lim f ( x ) inf{ f ( x ) : x I , x c } x c Bukti: (i). Ambil 0 sebarang. Misalkan x I dan x < c. Karena f naik maka f ( x ) f ( c ) . Sehingga { f ( x ) : x I , x c } terbatas di atas oleh f(c). Karena { f ( x ) : x I , x c } 100 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) terbatas di atas maka mempunyai supremum,sebut L sup{ f ( x ) : x I , x c } . Maka 0 , L bukan batas atas { f ( x ) : x I , x c } , sehingga y I dimana y c L f ( y ) L. c y 0 c y Pilih y y c maka dan L f ( y ) f ( y ) L . Akibatnya f ( x ) L jika 0 c y atau f ( x) sup{ f ( x) : x I , x c} untuk 0 c y . Karena 0 sebarang, maka dapat disimpulkan lim f ( x ) sup{ f ( x) : x I , x c} . x c (ii). Buktinya di serahkan kepada pembaca sebagai latihan. ■ Akibat 5.28. Misal I R, f : I R , f naik pada I. Misal c I dimana c bukan titik ujung dari I, maka pernyataan berikut equivalent: a) f kontinu di c b) lim f ( x ) f ( c ) lim f ( x ) x c xc c) sup{ f ( x ) : x I , x c } f ( c ) inf{ f ( x ) : x I , x c } Misal I interval dan f : I R , f fungsi naik. Misal a titik ujung kiri dari I, dan f kontinu di a jika dan hanya jika f ( a ) inf{ f ( x ) : x I , x a }, atau f kontinu pada a jika dan hanya jika f ( a ) lim f ( x ) . xa Misal I interval dan f : I R , f fungsi naik. Misal b titik ujung kanan dari I, dan f kontinu di b jika dan hanya jika f ( b ) sup{ f ( x ) : x I , x b }, atau f kontinu pada b jika dan hanya jika f ( b ) lim f ( x ) . x b 101 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) Soal-Soal 1. Misalkan A R , f : A R, dan c A , f kontinu pada c. Buktikan jika 0, V (c) x, y A V (c ) f ( x) f ( y ) . 2. Misalkan f ( x) sgn( x), x R . Buktikan bahwa f(x) kontinu di di c R , c 0 . f : R R, 3. Misalkan kontinu pada c, c R , f (c) 0 . Buktikan f V (c ) x V (c) f ( x ) 0 . 4. Misalkan g : R R, ,x Q 2x g ( x) x 3 , x R \ Q Tentukan di titik mana g kontinu. 5. Tentukan di titik mana fungsi berikut kontinu x 2 2x 1 x2 1 (b).g ( x) x x 1 | sin x | (c).h( x) x (d ).k ( x ) cos 1 x 2 (a). f ( x ) , x ,x 0 ,x 0 , x f : R R, 6. Misalkan f ( x) f ( y) K x y dan K > 0 yang memenuhi , x, y R . Buktikan bahwa f kontinu di setiap titik cR . 7. Misalkan A R, f : A R , dan misalkan | f | didefinisikan sebagai f ( x ) f ( x ) , x A . Buktikan jika f kontinu di titik c A maka | f | kontinu di titik c. 8. Misalkan A R , f : A R, dan f kontinu pada A. Jika f n didefinisikan sebagai f n ( x) ( f ( x))n , n N , buktikan bahwa f n kontinu pada A. 9. Berikan contoh fungsi f dan g yang tidak kontinu di titik c, tetapi (f + g) dan (fg) kontinu di titik c. 10. Berikan contoh fungsi f : [0,1] R yang tidak kontinu di setiap titik dari [0,1], tetapi |f| kontinu pada [0,1]. 11. Misal I = [a,b] dan misalkan f : I R kontinu pada I dimana f ( x) 0, x I . Buktikan 0 f ( x) , x I . 102 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) 12. Misal I = [a,b] dan x I , y I f ( y ) misalkan 1 2 f : I R kontinu pada I dimana f ( x) . Buktikan c I f (c) 0 . 13. Buktikan teorema 5.17 14. Buktikan teorema 5.22 15. Misal I = [a,b] dan misalkan f : I R kontinu pada I , dan misalkan f (a) 0, f (b) 0 . Misalkan W x I : f ( x) 0 dan w = sup{W}. Buktikan f(w) = 0. 16. Misalkan g ( x ) x, A [0, ) . Tunjukkan bahwa g kon tinu seragam pada A. 17. Misalkan g ( x) 1 , x A [a, ) dengan a konstanta positif. Tunjukkan bahwa g kon tinu seragam pada A. 18. Buktikan jika f kontinu seragam pada A maka f terbatas pada A. 19. Misalkan f(x) = x dan g(x) = sin x, tunjukkan bahwa f(x) dan g(x) kontinu seragam pada , tetapi (fg)(x) tidak kontinu seragam pada . 20. Misalkan g ( x ) 1 , x2 A [1, ) . Tunjukkan bahwa g kon tinu seragam pada A, tetapi g tidak kontinu seragam pada B (0, ) . 21. Gunakan kriteria ketakkontinuan seragam pada fungsi berikut: (a ). f ( x) x 2 A [0, ) (b).g ( x) sin(1 x) B (0, ) 22. Buktikan jika f dan g kontinu seragam pada R maka f g kontinu seragam pada R . 23. Misalkan A R , f : A R, g : A R, b R . Misalkan c A dan f dan g kontinu di titik c, buktikan (f + g), f - g, fg, bf kontinu di c dengan menggunakan definisi fungsi kontinu. 103 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah) DAFTAR PUSTAKA Bartle, R. G., Sherbert, D. R., 2000. Introduction to Real Analysis Third Edition, John Wilwey & Sons, Inc. DePree, J., Swartz, C., 1998. Introduction to Real Analysis, John Wiley & Sons, Inc. Goldberg, R. R., Methods of Real Analysis Second Edition, John Wiley & Sons. 104 Mencintai ilmu adalah cara termudah untuk mempelajarinya (Abu Abdillah)