integral vektor 56

advertisement
KATA PENGANTAR
Materi Kuliah Analisis Vektor yang meliputi Vektor Konstan, Fungsi
Vektor, Diferensial Vektor dan Integral Vektor mempunyai peranan yang
sangat penting bagi para fisikawan dan rekayasawan untuk membantu
menyelesaikan permasalahannya. Oleh sebab itu mahasiswa teknik perlu
mendapat pengetahuan tentang materi ini, sebagai salah satu bagian
dasar untuk melatih kemampuan rekayasa mereka.
Buku ajar yang berjudul Analisis Vektor ini disusun untuk membantu
mahasiswa dalam memahami pokok bahasan di atas, sehingga proses
belajar mengajar mata kuliah yang dimaksud bisa berjalan dengan lebih
baik.
Penyajian dan pembahasan materi dalam Buku Ajar ini diharapkan
dapat dengan mudah diikuti dan dipahami oleh semua mahasiswa.
Untuk itu, dalam setiap pokok bahasan, penyusun berusaha memberikan
beberapa contoh soal yang dapat diselesaikan mahasiswa sebagai
latihan. Di bagian akhir dari diktat ini diberikan daftar pustaka untuk
membantu bagi yang ingin mempelajari lebih lanjut, agar mendapatkan
pemahaman yang lebih mendalam.
Buku Ajar ini tentu saja memiliki banyak kekurangan, untuk itu
penyusun sangat mengharapkan saran dan kritik yang membangun dari
pemakai
Buku
Ajar
ini
untuk
lebih
menyempurnakan
penyajian
selanjutnya. Akhirnya, penyusun berharap agar Buku Ajar ini dapat benarbenar bermanfaat.
Malang, Agustus 2003
Penyusun
DAFTAR ISI
KATA PENGANTAR
DAFTAR ISI
i
ii
BAB I : VEKTOR KONSTAN
1
1.1
Pengertian Tentang Vektor dan Notasi Vektor
1.2
Aljabar Vektor
1.3
Vektor Posisi Dalam Bidang dan Ruang
1.4
Perkalian Antar Vektor
1.5
Penggunaan Vektor Dalam Geometri
2
BAB II : FUNGSI VEKTOR
4
10
20
28
2.1
Fungsi Vektor
28
2.2
Kurva Vektor
29
BAB III : DIFERENSIAL VEKTOR
34
3.1
Derivatif atau Turunan dari Fungsi Vektor
3.2
Interpretasi Dari Derivatif Vektor
3.3
Gradien, Difergensi dan Curl
3.4
Penggunaan Gradien, Difergensi dan Curl
BAB IV : INTEGRAL VEKTOR
4.1
Integral Garis
4.2
Teorema Green
4.3
Medan Gaya Konservatif
4.4
Integral Luasan
4.5
Teorema Divergensi Gauss
4.6
Teorema Stokes
DAFTAR PUSTAKA
1
35
38
56
56
69
76
84
106
111
34
100
41
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
BAB I
VEKTOR KONSTAN
POKOK BAHASAN :
! Pengertian tentang vektor dan notasi vektor
! Aljabar vektor
! Vektor posisi dalam bidang dan ruang
! Perkalian antar vektor
! Penggunaan vektor dalam geometri
1.1. Pengertian Tentang Vektor dan Notasi Vektor
Beberapa besaran (quantities) dalam fisika mempunyai besar
(magnitude) dan arah (direction), sebagai contoh misalnya lintasan dan
kecepatan sebuah obyek yang bergerak, gaya yang bekerja pada suatu
benda, medan listrik maupun medan magnet suatu titik dan lain
sebagainya. Besaran yang mempunyai besar dan arah disebut dengan
vektor (vector). Sementara besaran yang hanya mempunyai besar
(magnitude) saja seperti massa, waktu maupun temperatur disebut dengan
skalar (scalar). Notasi vektor dan teknik-teknik dengan menggunakan
analisis vektor sangat berguna untuk menjelaskan hukum-hukum fisika dan
aplikasinya baik dalam bidang (dimensi dua = R2) maupun ruang (dimensi
tiga = R3).Dalam penyajiannya sebuah vektor biasa digambarkan sebagai
segmen atau ruas garis yang berarah sebagai berikut :
B
v
v
=
AB = AB = AB
A
=
titik pangkal (initial point)
B
=
titik ujung (terminal point)
A
Panjang vektor v =
v
= AB
:
menyatakan besarnya vektor atau
panjangnya vektor v
dan tanda panah dalam AB menyatakan arah vektor.
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
1
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Ada 3 jenis vektor :
a. Vektor Bebas (free vector) : vektor yang boleh digeser sejajar dirinya
dengan panjang dan arah tetap.
b. Vektor meluncur (sliding vector) : vektor yang boleh digeser sepanjang
garis kerjanya, misalnya gaya yang
bekerja sepanjang garis lurus.
c. Vektor terikat (binding vector) : vektor yang terikat pada sistem koordinat
yang menunjukkan posisi tertentu.
Kecuali bila digunakan untuk menyatakan letak atau posisi, pada umumnya
orang bekerja dengan vektor bebas.
1.2. Aljabar Vektor
Vektor nol (null vector)
Ditulis 0 adalah vektor yang panjangnya nol sehingga arahnya tak
tentu (karena ujung dan pangkalnya berimpit)
Kesamaan 2 vektor
Dua vektor dikatakan sama jika mempunyai panjang dan arah yang
sama.
Kesejajaran 2 vektor
Dua vektor dikatakan sejajar atau paralel jika garis-garisnya sejajar,
arahnya bisa sama atau berlawanan.
Vektor-vektor yang segaris merupakan vektor-vektor yang paralel.
Penjumlahan vektor
Penjumlahan vektor bisa dilakukan dengan mengikuti aturan jajaran
genjang atau aturan segi banyak (poligon)
Misalnya:
a.
A
A
B
A+B=C
B
C
atau
A
C
B
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
2
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
A
B
B
⇒
b.
C
D
C
E = A + B+ C + D
A
D
E
B
A
C
c.
A + B+ C + D + E = 0
E
D
Jumlah dari vektor-vektor yang merupakan sisi-sisi dari sebuah segi banyak
tertutup selalu nol jika arah sisi-sisi tersebut berurutan.
Penggandaan vektor dengan skalar
Jika m = besaran skalar
dan A = vektor yang panjangnya | A |
maka :
m A = vektor yang panjangnya m kali panjangnya A dan arahnya
sama dengan vektor A jika m positif, atau berlawanan
dengan arah vektor A jika m negatif
Pengurangan vektor
Pengurangan vektor dilakukan dengan menambahkan lawan dari
vektor yang mengurangi
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
3
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Jadi:
A
A − B = A + (− B)
A
⇒
B
⇒
−B
B
C = A −− B
A
Jika A = B maka A − B = 0
Hukum-hukum yang berlaku dalam Aljabar Vektor
Jika A, B, C adalah vektor dan m, n adalah skalar maka
1. A + B = B + A
(komutatif terhadap jumlahan)
2. A + (B + C) = (A + B) + C
(asosiatif terhadap jumlahan)
3. Terdapat vektor 0 sehingga: A + 0 = 0 + A = A
(ada elemen netral)
4. Terdapat vektor − A sehingga: A + (− A ) = 0
(ada elemen invers)
5. (mn) A = n (m A )
(asosiatif terhadap perkalian)
6. m(A + B) = m A + m B
(distributif terhadap perkalian)
7. (m + n) A = m A + n A
(distributif terhadap perkalian)
8. 1 (A ) = A
(ada invers dalam perkalian)
2.3. Vektor Posisi dalam Bidang dan Ruang
Teorema Dasar Dalam Vektor :
Setiap vektor C pada bidang dapat ditulis secara tunggal sebagai
kombinasi linier sembarang 2 vektor A dan B yang tidak paralel dan bukan
vektor nol.
Atau:
C = m A + n B dengan m, n adalah skalar yang tunggal
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
4
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Bukti :
P1
P
C = OP = OP1 + OP 2
C
A
O
B
P2
OP1 paralel dengan A sehingga OP1 = m A
C = mA + n B
OP 2 paralel dengan B sehingga OP 2 = m B
Dalam hal ini m, n adalah skalar yang tunggal. Karena jika tidak tunggal
maka C akan bisa ditulis sebagai berikut :
C = m1 A + n1 B = C = m2 A + n2 B
(m1 - m2) A + (n1 - n2 ) B = 0
Karena A dan B bukan vektor nol dan tidak paralel maka,
→ m1 = m2
m1 - m2 = 0 
n1 - n2 = 0 
→ n1 = n2
Teorema dasar ini juga berlaku untuk vektor-vektor dalam ruang (R3),
sehingga untuk sembarang vektor D dapat ditulis :
D = m1 A + m2 B + m3 C
dengan A , B dan C adalah vektor-vektor yang tidak paralel, bukan vektor
nol dan tidak sebidang.
Dua vektor A dan B dikatakan saling bergantung secara linier (dependent
linear) jika terdapat skalar m dan n yang tidak nol dan m A + n B = 0
Kejadian ini akan terjadi jika :
1. A dan B merupakan vektor nol atau
2. A dan B paralel (sejajar)
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
5
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Contoh :
Buktikan bahwa garis yang menghubungkan titik tengah dua sisi sebuah
segitiga adalah sejajar dengan sisi ketiga dan panjangnya sama dengan
1/2 dari panjang sisi ketiga tersebut.
M titik tengah AC
C
N titik tengah CB
AB = AC + CB
N
M
MN = MC + CN = 12 AC + 12 CB = 12 (AC + CB)
B
A
= 12 AB
sehingga MN // AB dan panjang MN = ½ panjang AB
Vektor satuan (unit vector)
Vektor satuan adalah vektor dengan panjang 1 satuan panjang.
a=
A
= vektor satuan dari A
A
dan A = A a
Vektor basis satuan
Perhatikan suatu sistem koordinat XOY dalam R2 dan pilih 2 vektor satuan i
dan j sebagai basis yang masing-masing sejajar dan searah dengan
sumbu x dan
y positif dan berpangkal di O.
y
j
O
i
x
maka vektor i dan j disebut dengan vektor-vektor basis di R2
Di R3 : sebagai vektor basis yang sejajar dan searah dengan sumbu z
dinyatakan dengan vektor k.
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
6
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
z
k
i
j
y
x
Vektor posisi
a. Vektor Posisi dalam R2
Jika i dan j adalah vektor-vektor basis di R2 yaitu vektor satuan yang
masing-masing sejajar dan searah dengan sumbu X dan sumbu Y dan
berpangkal di titik 0 dalam R2.
Maka sembarang vektor r dari titik 0 ke titik P(x,y) dalam bidang XOY
selalu bisa dinyatakan sebagai kombinasi linier dari vektor basis i dan j .
y
ry j = y j
P(X,Y)
r
j
O
i
rx i = x i
x
Sehingga : r = rx i + ry j = x i + y j
rx i = x i
;
ry j = y j disebut vektor-vektor komponen
rx = x

→ komponen vektor r pada sumbu X (proyeksi r ke sumbu X)
ry = y

→ komponen vektor r pada sumbu Y (proyeksi r ke sumbu
X)
Vektor r = x i + y j disebut vektor posisi titik P , karena komponenkomponennya merupakan koordinat yang menunjukkan posisi titik P.
Panjang dari r = | r | =
x2 + y2
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
7
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
b. Vektor Posisi dalam R3 :
Vektor-vektor basis dalam R3 adalah vektor-vektor satuan i , j dan k yang
masing-masing berimpit dan searah dengan sumbu-sumbu X, Y dan Z
positif dan berpangkal di titik 0.
.
z
P(x,y,z)
r
k
j
y
i O
x
r =xi+yj+zk
merupakan vektor posisi dari titik P(x,y,z)
x = proyeksi OP ke sumbu X
y = proyeksi OP ke sumbu Y
z = proyeksi OP ke sumbu Z
Panjang dari r = | r | =
x2 + y2 + z2
Secara umum untuk sembarang vektor A = Ax i + Ay j + Az k dalam R3 ,
berlaku :
z
2
2
Panjang A = A = A x + A y + A z
A zk
i
Vektor satuan a =
γ
β
α
2
A
2
2
Ax + A y + Az
2
y
Ayj
A xi
x
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
8
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Dengan :
" Ax, Ay; Az disebut bilangan arah vektor A
" Sudut-sudut α ; β ; γ yang dibentuk vektor A terhadap sumbu x, y, z positif
disebut arah vektor A
" Cosinus sudut-sudut tersebut disebut cosinus arah.
dengan:
cos α =
cos β =
cos γ =
Ax
2
2
Ax + Ay + Az
2
Ay
2
2
2
2
2
Ax + Ay + Az
Az
2
Ax + Ay + Az
=
=
=
Ax
A
Ay
cos 2 α + cos 2 β + cos 2 γ = 1
A
Az
A
Menyatakan Suatu Vektor Dalam Koordinat Tegak
z
OP1 = x1i + y1j +z1k
P1 (x1 , y1 , z1 )
OP 2 = x2i + y2j + z2k
P2 (x 2 , y 2 , z 2 )
O
x
y
P1P2 = OP1 − OP 2
= (x2i + y2j z2k) – (x1i + y1j z1k)
= (x2 – x1)i (y2 – y1)j + (z2 – z1)k
Sembarang vektor P1P2 dalam sistem koordinat bisa dinyatakan
sebagai kombinasi linier dari vektor-vektor basis dengan komponenkomponennya adalah komponen vektor
posisi
titik ujung dikurangi
komponen vektor titik pangkalnya.
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
9
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
P1P2 = (x 2 − x1 ) 2 + (y 2 − y1 ) + (z 2 − z1 ) = panjang vektor P1P2
SOAL-SOAL
1. Tentukan vektor satuan yang sejajar dengan jumlah (resultan) dari
vektor-vektor
r1 = 2i + 4j – 5k
r2 = i + 2j + 3k
2. Tunjukkan bahwa vektor-vektor :
A
=
3i + 2j + k
B
=
i + 3j + 5k
C
=
2i + j – 4k
akan membentuk sebuah segitiga
3. Ambil sembarang segi 4 ABCD
Titik-titik P, Q, R, S adalah titik-titik tengah sisi AB; BC; CD dan DA
Buktikan bahwa PQRS menyusun suatu jajaran genjang.
(Cukup dengan membuktikan bahwa PQ = RS atau QR = PS )
Q
B
"
C
"
∠
P
R
O
∠
!
S
!
D
1.4. Perkalian Antar Vektor
a. Hasil Kali Skalar (Dot product / Scalar Product)
Ditulis: A ! B = A B cos θ
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
; θ = sudut antara vektor A dan B
10
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
B
A
θ
θ
B
A
A cos θ
B cos θ
Proyeksi A pada B
Proyeksi B pada A
• Sifat Hasil Kali Skalar :
1. A ! B = B ! A
2
2. A ! A = A cos 0 = A
2
3. A ! (B + C) = A ! B + A ! C
4. (A + B) ! C = A ! C + B ! C
Dalam R3 :
z
(krn //)
i ! j = j! k = k ! i = 0
(krn ⊥)
Karena :
k
i
i ! i = j! j = k ! k = 1
y
j
i ! i = i i cos 0 = 1
i ! j = i j cos 90° = 0
x
Jika:
A
=
Axi + Ay j + Azk
B
=
Bxi + By j + Bzk
A ! B = (A x i + A y j + A z k ) ! (B x i + B y j + Bz k)
A ! B = A x B x + A y B y + A z Bz
• Sudut Antar 2 Vektor :
Karena A ! B = A B cos θ
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
11
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
cos θ
=
A!B
==>
AB
A! B
AB
θ = arc cos
Contoh :
A=
3i + 6j + 9k
B =
-2i + 3j + k
A ! B = 3(-2) + (6)(3) + (9(1) = 21
A = 32 + 6 2 + 9 2 = 3 14
B = 22 + 32 + 12 = 14
cos θ =
A!B
21
21 1
=
=
=
A B 3 14 . 14 42 2
• Vektor-vektor Yang Tegak Lurus dan Vektor-vektor Yang Paralel
□ Vektor-vektor yang tegak lurus (yaitu cos θ = 0) ––> A ! B atau A ⊥ B
Atau jika : Ax Bx + Ay By + Az Bz = 0
□ Dua vektor paralel jika komponen-komponennya sebanding atau
jika :
Ax Ay Az
=
=
B x B y Bz
• Hasil Kali Skalar Untuk Menghitung Usaha
Dalam fisika, usaha = gaya × jarak perpindahan
Jika gaya dan jarak perpindahan tidak sejajar
W = F cos θ.d
F
= F! d
θ
d
F cos θ
d= d
Contoh :
Diketahui :
F = 2i + 2j – 4k adalah gaya yang bekerja pada benda yang
bergerak dari titik (1,0,1) ke titik (2,4,2)
Tentukan besarnya usaha yang dilakukan oleh gaya F
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
12
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Jawab:
W = F! d
d
=
(2–1)i + (4–0)j + 2(2–1)k = 2i + 4j + k
W
=
(2i + 2j – 4k) ! (2i + 4j + k) = 4 + 8 – 4 = 8 satuan usaha
b. Hasil Kali vektor (Cross Product / Vector Product
Ditulis: A × B = C hasilnya berupa vektor
A×B
Dengan A × B = A B sin θ
A
C
θ
A
B
B
B
θ
A
C
B× A
Arah dari A × B ditentukan berdasarkan aturan tangan kanan atau
sekrup putar kanan.
Sifat hasil kali vektor:
"
A×B≠B×A
A × B = –(B × A)
anti komutatif
"
(kA) × B = k(A × B) = A (kB)
"
A × (B + C) = (A × B) + (A × C)
(A + B) × C = (A × C) + (B × C)
Dalam R3
z
i × i = i i sin θ
dengan cara yang sama
k
i
y
j
i×i=j×j=k×k=0
i × j = i j sin 90° = 1
x
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
13
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
sehingga:
Jika :
i×j=k
;
j × k = i;
k×i=j
j × i = -k
;
k × j = -i
;
A
=
Ax i + Ay j + Az k
B
=
Bx i + By j + Bz k
A×B =
=
i × k = -j
(Ax i + Ay j + Azk) × (Bx i + By j + Bzk)
(AyBz – AzBy) i – (AxBz – AzBx) j + (AxBy – AyBx) k
atau:
A×B =
i
Ax
Bx
j
Ay
By
k
Az
Bz
dan
A × B = A B sin θ =
(A ! A )(B ! B)− (A ! B)
2
Contoh :
A = 2i – j + k
B = i – 3j + 4k
A ! A = 22 + 32 + 42 = 6
B! B = 2 + 3 + 4 = 9
i j k = i (−4 + 3) − j(8 − 1) + k (−6 + 1)
A × B = 2 - 1 1 = i − 7 j − 5k
1 -3 4
A × B = 12 + 7 2 + 5 2 = 1 + 49 + 25 = 75
Aplikasi dari Hasil Kali Vektor
"
Menghitung Torsi/Momen
Dalam mekanika momen/torsi dari gaya F terhadap titik Q didefinisikan
sebagai:
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
14
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
m = Fd
F
dengan
d
jarak (dalam arah ⊥)
=
antara titik Q ke garis gaya F
Q
d
L
r
d
Q
F
θ
θ
Jika: r = adalah vektor yang menghubungkan titik Q ke titik
sembarang pada garis gaya F
; θ = sudut antara r dengan F
Maka d = r sin θ
dan
m = F r sin θ = F × r
Jika m = M , maka
M = F× r = vektor momen dari gaya F terhadap titik Q
Contoh :
y
Tentukan vektor momen dari gaya F
terhadap titik O
r
0
'
(2,1)
'
'
'
F
x
(4,-2)
Jawab:
F =
r
=
(4 – 2) i + (–2 –1) j + 0k = 2i – 3j + 0k
(2 – 0) i + (1 – 0) j + 0k = 2i + j + 0k
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
15
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
i j k
M = 2 - 3 0 = i(0) − j(0) + k(2 + 6) = 8k
2 1 0
M = 64 = 8
c. Hasil Kali Skalar Tripel (Triple Scalar Product)
Jika:
A =
Ax i + Ay j + Az k
B =
Bx i + By j + Bz k
C =
Cx i + Cy j + Cz k
A ×C = Ay
By
Az i − Ax
Bz
Bx
Az j + Ax
Bx
Bz
Az Cx − A x
Bz
Bx
A × B! C = Ay
By
Ax
= Bx
Cx
Ay
By
Cy
Ay k
By
Az Cy + Ax
Bx
Bz
A y Cz
By
Az
Bz
Cz
→ disebut hasil kali skalar triple, karena hasilnya merupakan skalar.
Dalam hasil kali skalar tripel berlaku sifat:
(
)
(
)
1. A × B ! C = B × C ! A = C × A ! B
sehingga:
(A × B)! C = A ! (B × C)
Nilai hasil kali ini hanya bergantung pada urutan siklus dari vektornya
letak tanda × dan ! nya tidak mempengaruhi hasilnya.
Jika urutan vektornya ditukar maka tandanya akan berubah.
Sehingga:
A × B ! C = −B × A ! C = −B ! A × C
2. Hasil kali skalar tripel: A × B ! C = 0 bila dan hanya bila A, B dan C
sebidang.
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
16
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Bukti:
a. A × B ! C = 0 ⇒ A, B dan C sebidang
Jika A × B ! C = 0 maka A × B ⊥ C atau
salah satu dari A, B atau C vektor nol
Berarti:
i. Apabila salah satu dari A, B atau C vektor nol, maka pasti
A, B dan C sebidang
ii. Apabila A × B ⊥ C maka C bisa diletakkan sebidang dengan
A dan B sehingga A, B dan C sebidang
b. Jika A, B dan C sebidang ⇒ A × B ! C = 0
Jika A, B dan C sebidang, maka A × B ⊥ C sehingga A × B ! C = 0
• Arti Geometris Dari A × B ! C
Diberikan vektor A, B dan C
A = OA
B = OB
C = OC
C
B
O
A
P = A×B
A×B
=
luas jajaran genjang OADB
A × B ! C = P ! C = P C cos θ
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
17
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
C cos θ = tinggi C di atas bidang OADB
Jadi A × B ! C = volume bidang 6 (paralel epipedum) OADB – CEFG
yang disusun oleh A, B dan C
Catatan:
A'
0
Luas jajaran genjang OABC =
B
θ)
OB AA' = OB OA sin θ
= OB × OA
C
A
Contoh :
(
)(
)(
)
Buktikan bahwa A + B ! A + C × A + B = 0
Bukti:
Misalkan
A+B=u
A+C = v
Maka : u ! v × u = volume paralel epipedum dengan sisi-sisi u, v, u
Karena kedua sisinya merupakan vektor yang sama maka ketiga
vektor tersebut sebidang sehingga : u ! v × u = 0
d. Hasil Kali Vektor Tripel (Triple Vector Product)
Hasil kali vektor tripel adalah :
(A × B)× C
A × (B × C )
Tanda kurung diperlukan di sini karena nilai akan berubah jika letak
kurangnya ditukar.
Misalkan :
(i × i) × j = 0 × j = 0
i × (i × j) = i × k = –j
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
18
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Sifat Hasil Kali Vektor Triple :
( ) ( )
A × (B × C ) = (A ! C )B – (A ! B)C
(A × B)× C = (A ! C)B − (B ! C)A
1. A × B × C ≠ A × B × C
2.
Contoh :
1. Jika:
A =
2i + 2j – k
B =
i+j+k
C =
3i + j – 2k
(
)
Hitung : A × B × C
(
A × B× C
;
)
Jawab:
i
a. A xB = 2
1
j
2
−1
i
( A xB ) xC = 1
3
i
b. B × C = 1
3
A! B×C =
= i − 3 j − 4k
j
−3
1
j
−1
1
i
2
1
= i (2 − 1) − j (2 + 1) + k (−2 − 2)
k
2
1
k
−4
−2
= i (6 + 4) − j (−2 + 12) + k (1 + 9)
= 10i − 10 j + 10k
k
= i (2 − 1) − j (−2 − 3) + k (1 + 3)
1
= i + 5 j + 4k
−2
j
2
5
k
= i (8 + 5) − j (8 + 1) + k (10 − 2)
−1
= 13i − 9 j + 8k
4
2. Buktikan : A × [A × (A × B)] = (A ! A )(B × A )
Bukti : Misalkan A × B = C
(
Maka A × B × C
)
=
=
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
(A ! C)A − (A ! A )C
(A ! C × B)A − (A ! A )(A × B)
19
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
=
=
=
( ) ( )( )
− (A ! A )(A × B)
(A ! A )(B × A )
0 A − A ! A A×B
1.5. Penggunaan Vektor Dalam Geometri
a. Persamaan Garis
Dalam R3:
Andaikan l sebuah garis yang melalui titik P1(x1,y1,z1) dan sejajar dengan
sebuah vektor v = Ai + Bj + Ck. Maka l merupakan tempat kedudukan
semua titik P(x,y,z) sedemikian hingga P1P sejajar dengan v
"
P ( x, y , z )
V = Ai + Bj + Ck
P ( x1 , y1 , z1 )
Jadi titik P (x,y,z) terletak pada garis l bila dan hanya bila P1P = t v
dengan t adalah suatu skalar.
Atau:
(x – x1)i + (y – y1) j + (z – z1) k
=
t (Ai + Bj + Ck)
=
t Ai + tBj + tCk
Ini berarti :
x − x1 = tA 

y − y1 = tB 
z − z1 = tC 
x = x1 + tA
y = y1 + tB
z = z1 + tC
Persamaan parameter garis yang melalui titik (x1,y1,z1) dan paralel
dengan vektor v .
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
20
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Atau:
t=
x − x3
x − x1
x − x2
=
=
A
B
C
Persamaan standard garis yang
melalui titik (x1, y1, z1) dan paralel
dengan v = Ai + Bj + Ck
Dalam hal ini v = Ai + Bj + Ck disebut vektor arah garis l dan A, B, C
merupakan bilangan arah garis.
Jika salah satu dari A, B dan C nol
Mis. A = 0 maka x – x1 = 0
x = x1
Persamaan standardnya ditulis :
y − y1 z − z1
; dan
=
B
C
x = x1
Contoh :
Tentukan persamaan garis melalui A ( 5,4,1) dan B (3, 1, 6)
⇒
Vektor arah garis v = AB = –2i – 3j + 5k
Misalkan titik sembarang pada garis adalah P(x1,y1,z1) dan titik tertentu
yang terletak pada garis diambil titik A(5,4,1) maka
Persamaan standard garis:
x − 5 y − 4 z −1
=
=
−2
−3
5
Atau:
x −5 y−4
=
⇒ 3x – 2y – 7 = 0
−2
−3
y − 4 z −1
⇒ 5y – 3z – 17 = 0
=
−3
5
∴Persamaan standard garis:
3x − 2 y − 7 = 0
5 y − 3 z − 17 = 0
Persamaan parameter garis:
x = 5 − 2t
y = 4 − 3t
z = 1 + 5t
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
21
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Dalam R2 :
Jika suatu garis mempunyai gradien (bilangan/tangen arah) = m maka
vektor arah garis :
l = i + mj
b. Persamaan Bidang
Vektor N ⊥ bidang W sehingga N
N
disebut Vektor Normal dari bidang w
Q ( x, y , z )
W
)
Jika N = Ai + Bj + Ck
P ( x1 , y1 , z1 )
PQ = (x – x1) i + (y – y1) j + (z – z1) k
→ PQ terletak pada bidang W
Sehingga PQ ⊥ N ⇒ N ! PQ = 0
Atau:
A(x – x1) + B(y – y1) + C(z – z1) = 0
→ Persamaan bidang melalui titik (x1, y1, z1) dengan normal bidang N =
Ai + Bj + Ck
Contoh :
1. Tentukan persamaan bidang yang melalui titik-titik P(3,2,1) ; Q(4,1,5) ;
R(2,4,3).
⇒

 vektor PQ dan PR terletak pada bidang
PR = −i + 2 j + 2k 
PQ = i − j + 4k
i
j k
N = PQ × PR = 1 − 1 4 = −10i + 6 j + k
−1 2 2
∴
Persamaan bidang:
A(x – x1) + B(y – y1) + C(z – z1) = 0
–10 (x – 3) – 6 (y – 2) + 1( z – 1) = 0
–10x – 6y + z + 41 = 0
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
22
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
"
Persamaan bidang dapat juga ditulis sebagai:
Ax + By + Cz + D = 0
dengan N = Ai + Bj + Ck
2. Tentukan persamaan bidang yang melalui titik T (4,1,-2);
tegak lurus pada bidang u = 2x + 3y + z = 8 dan
tegak lurus pada bidang v = x – y + 3z = 0
⇒
u = 2x + 3y + z = 8
→
N U = 2i + 3 j + k
v = x – y + 3z = 0
→
N V = i – j + 3k
Dicari bidang w yang ⊥ bidang u dan v , berarti N w ⊥ N u dan N V
Atau
i
j k
N w = N u × Nv = 2 3 1 = 10i + 5 j + 5k
1 −1 3
Persamaan bidang w:
10(x – 4) – 5(y – 1) – 5(z + 2) = 0
10x – 5y – 5z – 45 = 0
2x – y – z = 9
c. Menentukan jarak titik terhadap suatu bidang
Diberikan sebuah titik P(r,s,t) yang berada di luar bidang V dengan
V = Ax + By + Cz + D = 0
→ Normal bidang N v = Ai + Bj + Ck
 D

;0,0  terletak pada bidang tersebut.
 A

Jika A ≠ 0 ⇒ Titik Q −
D

k = QP =  r + i + sj + tk
A

Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
23
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
P(r,s,t)
N θ
k
d
Q(-D/A,0,0)
θ = sudut antara N dan k
sehingga d = k cos θ
N ! k = N k cos θ = N d ⇒ d =
N !k
N
sehingga:
 D
A r +  + Bs + Ct
A
d= 
2
A + B2 + C 2
atau
d=
Ar + Bs + Ct + D
A +B +C
2
2
2
Jarak
titik
P(r,s,t)
ke
bidang
Ax + By + Cz + D = 0
Contoh :
Tentukan jarak P(5,5,4) ke bidang ABC jika A = (2,4,2)
B = (6,4,3)
C = (0,5,1)
⇒ AC = -2i + j + k
AB = 4i + k
Normal bidang N = AB × AC
= i
j k = −1 + 2 j + 4k
4 0 1
− 2 1 −1
∴ Persamaan bidang ABC
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
24
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
–(x – 0) + 2 (y – 5) + 4 (z – 1) = 0
–x + 2y + 4z – 14 = 0
Jarak titik P(5,5,4) ke bidang –x + 2y + 4z – 14 = 0
d= d =
− 1(5) + 2(5) + 4(4) − 14
1 + 4 + 16
=
− 5 + 10+!6 − 14
21
=
7
21
d. Persamaan Garis sebagai Perpotongan Dua Bidang
Diberikan bidang v dengan normal N v
Diberikan bidang w dengan normal N w
(w
v)
Nv
"
Nw
Jika bidang v dan w berpotongan pada satu garis maka vektor arah
garis tersebut akan ⊥ dengan N v maupun N w
Sehingga jika vektor arah garis tersebut " maka " = N v × N w
Contoh :
Tentukan persamaan garis yang merupakan perpotongan bidang
2x + y – 2z = 5 dan 3x – 6y – 2z = 7
⇒
v = 2x + y – 2z =5
→ Nv = 2i + j – k
w = 3x + 6y – 2z =5
→ Nw = 3i + 6j – 2k
Vektor arah garis:
L = Nv × Nw = i
j
k = −14i − 2 j − 15k
2 1 −2
3 −6 −2
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
25
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Ditentukan salah satu titik yang terletak pada perpotongan bidang.
(i) 2x + y + 2z = 5
(ii) 3x – 6y – 2z =7
–––––––––––– –
–x + 7y = –2
Misalkan diambil : y = 0 → –x = –2
x =2
(i).
2(2) + 0 – 2z = 5
Titik (2,0,-½ ) terletak pada garis
potong 2 bidang.
–2z = 5 – 4
z=–½
Sehingga persamaan garis perpotongan kedua bidang :
x − 2 y − 0 z − 12
=
=
− 14
−z
− 15
e. Sudut Antara Garis dan Bidang
Jika:
" = ai + bj + ck → vektor arah garis "
N = Ai + Bj + Ck → normal bidang v = Ax + By + Ck + D = 0
"
N
v)
θ
φ
cos θ =
sin φ
N!"
N"
=
Aa + Bb + Cc
(A 2 + B 2 + C 2 )(a 2 + b 2 + c 2 )
= sin (90 – θ)
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
26
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
= cos θ =
Aa + Bb + Cc
(A + B 2 + C 2 )(a 2 + b 2 + c 2 )
2
Sehingga sudut antara garis " dengan vektor arah " = ai + bj + ck dengan
bidang v dengan normal bidang N v = Ai + Bj + Ck adalah
φ = arcsin
Aa + Bb + Cc
(A + B2 + C 2 )(a 2 + b 2 + c 2 )
2
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
27
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
BAB II
FUNGSI VEKTOR
POKOK BAHASAN :
! Fungsi Vektor
! Kurva Vektor
2.1 Fungsi Vektor
Jika sembarang nilai skalar t dikaitkan dengan suatu vektor A, maka A
bisa dinyatakan sebagai fungsi vektor dari t atau A(t), yaitu suatu vektor
yang komponen-komponennya merupakan fungsi dari nilai skalar t.
Dalam R2, fungsi vektor A (t) biasa ditulis dengan,
A(t) = A1 (t) i + A2 (t) j
Dalam R3, fungsi vektor A(t) ditulis dengan,
A(t) = A1 (t) i + A2 (t) j + A3 (t) k
Konsep fungsi vektor ini bisa diperluas, jika sembarang titik (x,y,z) di R3
dikaitkan dengan suatu vektor A, maka A bisa dinyatakan dalam bentuk
fungsi vektor sebagai berikut:
A(x,y,z) = A1(x,y,z) i + A2 (x,y,z) j + A3 (x,y,z) k
Contoh fungsi vektor, misalnya persamaan dari gerakan bebas suatu
partikel dalam ruang.
Jika setiap titik dalam suatu ruang (R3) dikaitkan dengan suatu vektor,
maka ruang tersebut disebut medan vektor. Contoh medan vektor,
misalnya aliran fluida (gas, panas, air dan sebagainya) dalam suatu
ruangan.
Sembarang fungsi yang tidak dikaitkan dengan vektor disebut fungsi
skalar, dan suatu ruang yang setiap titiknya tidak dikaitkan dengan suatu
vektor disebut medan skalar.
Contoh medan skalar, misalnya temperatur sembarang titik dalam suatu
ruang atau batang besi, pada suatu saat.
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
28
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
2.2 Kurva Vektor
Sebuah kurva berarah C dalam sistem koordinat kartesius, bisa
disajikan dalam bentuk fungsi vektor:
r(t)
=
[x(t), y(t), z(t)]
=
x(t)i + y(t)j + z(t)k
Pengambilan nilai t = to akan menunjuk suatu titik pada kurva yang
posisinya ditentukan oleh vektor r(to), dengan koordinat x(to), y(to) dan
z(to).
Bentuk penyajian kurva vektor seperti di atas disebut dengan penyajian
parametric dari kurva C, dengan t sebagai parameternya. Dalam
mekanika, parameter t ini biasanya menyatakan waktu dalam satuan
detik.
CONTOH:
– Penyajian kurva berarah sebagai fungsi vektor
a. Persamaan Kurva Vektor yang berupa Garis Lurus
Dengan persamaan parameter garis lurus
Sembarang garis lurus l yang melalui titik A(a1, a2, a3) dalam ruang bisa
disajikan dalam bentuk fungsi vektor:
"
r(t)
=
x(t)i + y(t)j + z(t)k
; untuk t = 0 → t = t
x ( t ) = a1 + tb1
dan y( t ) = a 2 + tb 2
y( t ) = a 3 + tb 3
dengan
a = a1 i + a2 j + a3k → vektor posisi titik A(a1, a2, a3)
yang terletak pada garis l.
b = b1 i + b2 j + b3k → vektor arah garis l
Jadi, persamaan di atas menyatakan persamaan suatu garis yang
melalui titik A dengan vektor posisi r = a dan arahnya sesuai
dengan arah vektor b. Jika vektor b adalah vektor satuan, maka
komponen-komponennya akan merupakan cosinus arah dari arah
l. Dalam hal ini, | t | merupakan jarak setiap titik pada garis l
terhadap titik A.
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
29
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Contoh:
1. Kurva vektor yang berupa suatu garis lurus dalam bidang, yang
melalui titik A(3,2) dengan gradien 1,
⇒
a = 3i + 2j
b = i + j (garidien 1)
sehingga:
x(t)
=
3+t
y(t)
=
2 + t dan
r(t) = x(t) I + y (t)j = (3+t)i + (2 + t)j
Atau bisa juga ditentukan sebagai berikut:
Persamaan garis yang melalui titik (3,2) dengan gradien 1
adalah :
y – 2 = 1(x – 3) → y = x – 1
Jika,
x(t) = t
untuk t = 2 → t = t
y(t) = t – 1
Maka r(t) = x(t)I + y(t)j = ti + (t – 1)j
2. Kurva yang berupa garis lurus melalui titik A(1,0,2) menuju titik
B(3,-4,1)
⇒
Titik awal (1,0,3) ––→
a
=
i + 0j + 2j
Vektor arah garis
b
=
(3 – 1)I + (– 4 – 0)j + (1 – 2)k
=
2i – 4j – k
x(t)
=
1 + 2t
y(t)
=
0 – 4t
r(t) = (1 + 2t) i – 4tj + (2 – t)k
z(t)
=
z–t
t =0→ t=1
b. Parabola
(1). Parabola y = x2 ; -2 ≤ x ≤ 2
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
30
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
y
y = x2
-2
x
2
x(t)
=t
(x = t)
y(t)
= t2
(karena y = x2)
Sehingga :
r(t) = ti + t2j , dengan t
= -2 → t = 2
(2). Parabola : y = x2 , z = 2 ; 0 ≤ x ≤ 2 ; di R3
z
2
x(t)
=
t ;t=0→ t=2
y(t)
=
t2
z(t)
=
2
r(t) = ti + t2j + 2k
c. Ellips/Lingkaran
Persamaan umum Ellips dalam koordinat kartesius:
x 2 y2
+
= 1, z = c di R3
a 2 b2
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
31
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
z
1
y
1
x
dibawa ke bentuk parameter, dengan :
x (t) = a cos t
y (t) = b sin t
z (t) = c
sehingga bentuk fungsi vektornya menjadi:
r(t) = a cos t i + b sin j + c k
Jika a = b = r, persamaan ellips diatas menjadi persamaan lingkaran:
x2 y2
+ 2 = 1 atau x2 + y2 = r2 ; z=c di R3
2
r
r
dan persamaan fungsi vektornya :
r(t) = r cos t i + r sin t j + c k
d. Helix Putar
Helix putar adalah suatu kurva yang berbentuk seperti spiral yang
terletak pada silinder. Persamaan helix putar yang terletak pada
silinder x2 + y2 = a2, dalam bentuk fungsi vektor adalah:
r(t) = cos i + a sin t j + ct k
(c ≠0)
Jika c > 0 → bentuk helix mengikuti sekrup putar kanan
Jika c < 0 → bentuk helix mengikuti sekrup putar kiri
Misalnya:
Persamaan helix r(t) = cos t i + sin t j + t k adalah persamaan dari
helix putar kanan yang terletak pada silinder x2 + y2 = 1 dan berjarak
vertikal 2π, artinya jika dihubungkan dengan garis vertikal (sejajar
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
32
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
dengan sumbu z) maka jarak dua titik pada helix akan merupakan
kelipatan 2π.
Z
Z
Y
Y
X
X
a.
Helix putar kanan
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
b.
Helix putar kiri
33
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Bab III
DIFERENSIAL VEKTOR
POKOK BAHASAN :
! Derivatif atau turunan dari fungsi vektor
! Interpretasi dari derifatif vektor
! Gradien, divergendi dan curl
! Penggunaan gradien, divergendi dan curl
3.1 Derivatif Atau Turunan Aljabar Dari Fungsi Vektor
Fungsi vektor A(t) dikatakan diferensiabel di titik t jika nilai limit berikut:
lim
Δt → 0
A(t + Δt) − A(t) d
= = A' (t)
Δt
dt
ada
Dalam hal ini, vektor A’(t) disebut derivatif (turunan) dari vektor A(t)
Jadi, jika A(t) = A1 (t) i + A2 (t) j + A3(t)k,
Maka
dA1
dA 2
dA 3
i+
j+
k
dt
dt
dt
= A'1 (t)i + A'2 (t) j + A'3 (t)k
A' (t) =
Rumus-rumus untuk derivatif Fungsi Vektor:
(cA)' = cA'
(c = konstanta atau skalar )
(A + B)' = A'+ B'
(A ! B)' = A'!B + A ! B'
(A × B)' = A'×B + A × B'
(A B C)' = (A' B C) + (A B' C) + (A B C' )
Derivatif Parsial Fungsi Vektor
Untuk fungsi vektor yang komponen-komponennya terdiri dari dua
variabel atau lebih, misalnya:
A(x,y,z) = A1(x,y,z)i + A2 (x,y,z) j + A3(x,y,z)k
maka, bisa ditentukan derivatif parsial dari A(x,y,z) terhadap x, y atau z
sebagai berikut:
∂A ∂A1
∂A 2
∂A 3
=
i+
j+
k
∂x
∂x
∂x
∂x
∂A ∂A1
∂A 2
∂A 3
=
i+
j+
k
∂y
∂y
∂y
∂y
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
34
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
∂A ∂A1
∂A 2
∂A 3
=
i+
j+
k
∂z
∂z
∂z
∂z
CONTOH:
Diberikan fungsi vektor:
φ (x,y) = a cos x i + a sin x j + y k
⇒
•
∂φ
∂x
=
a sin x i + a cos x j
∂φ
∂y
=
k
Jika φ =
A, B
fungsi skalar
=
fungsi vektor ; maka:
a.
d
dA dφ
(φ A) = φ
+ A
dt
dt dt
(A dan φ merupakan fungsi t)
b.
∂
∂B ∂A
(A ! B) = A !
+
!B
∂t
∂x ∂x
(A dan B merupakan fungsi x,
y dan z)
c.
∂
∂B ∂A
(A × B) = A ×
+
×B
∂x
∂x ∂x
(A dan B merupakan fungsi x,
y, dan z)
3.2 Interpretasi Dari Derivatif Vektor
a. Interpretasi geometris
Jika C adalah kurva yang dinyatakan dalam bentuk fungsi vektor
r(t) = x(t)i + y(t)j + z(t)k, maka:
1. Derivatif dari kurva C di P, atau
r' (t) =
d r(t) d x(t)
d y(t)
d z(t)
=
i=
j+
k
dt
dt
dt
dt
merupakan vektor singgung (tangent vector) dari kurva C di P.
2. u =
r'
r'
…………………..→
vektor singgung satuan (unit tangent)
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
35
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
r' (t0 )
C : r (t )
P
3. i =
∫
b
t = t0
r'!r' dt
a
→
panjang kurva C, ≤ t ≤ b (length of a
→
panjang busur a ≤ t (arc length of a
curve)
4. s(t) =
∫
t
a
r'!r' dt
curve)
CONTOH:
Diberikan fungsi vektor dari kurva yang berbentuk lingkaran sebagai
berikut: r(t) = 2 cos t i + 2 sin t j 0 ≤ t 2 , maka:
a) vektor singgung dari kurva di t =
r' (t) = -2 sin t i + 2 cos t j t =
π
adalah
2
π
2
= -2i
b) u =
- 2i - 2i
=
= −i
− 2i
2
c) Panjang busur lingkaran (keliling lingkaran):
2π
∫
2π
r'!r'dt =
o
∫
sin 2 t + 4cost dt
o
2π
=
∫
o
2π
4dt =
∫
4 dt
o
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
36
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
2π
o
= 2t
= 4π
b. Interpretasi dalam mekanika
Jika C adalah lintasan suatu benda yang dinyatakan dalam bentuk
fungsi vektor
maka:
"
v = r' =
dr (t )
dt
→
merupakan vektor kecepatan di suatu
→
laju (speed) atau besarnya kecepatan
→
vektor percepatan
titik t.
"
v = r'!r' =
ds
dt
di sautu titik t.
"
a(t) = v'(t) = r''(t)
CONTOH :
1. Gerak Rotasi
Jika C : r(t) = R cos ωt i + R sin ωt j
⇒ persamaan gerak sebuah partikel P yang bergerak melingkar
berlawanan dengan arah jarum jam.
•
Vektor kecepatan di sembarang titik pada lintasan tersebut.
v(t)
•
= r'(t) = Rω sin ωt i + Rω cos ωt j
Kecepatan sudut (kecepatan angular)
v
Rω
= R 2 ω 2sin 2 ωt + R 2 ω 2 cos 2 ωt + =
=ω
R
R
•
Vektor percepatan
=
a
=
-
= v' = –R ω2t i – R ω2 sin ωt j
2
r(t)
Jadi,
| a | = | -ω r(t)| = ω2 R →
percepatan centripetal (dengan arah
menuju pusat lingkaran)
2. Tentukan persamaan lintasan partikel yang bergerak dengan
vektor percepatan a = 2 i – 2 k, jika posisi awalnya dititik (-1,1,2) dan
vektor kecepatan awalnya v(0) = j
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
37
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
⇒
v(t ) = ∫ 2dt i + ∫ 0dt j + ∫ − 2dt k = (2t + c1 )i + c 2 j + (−2t + c 3 )k
r (t ) = ∫ (2t + c1 )dt i + ∫ c 2 dt j + ∫ (−2 + c 3 )dt k
= (t 2 + c1 t + c 4 )i + (c 2 t + c 5 ) j + (−t 2 + c 3 t + c 6 )k
Kecepatan awal :
v(0) = (0 + c1 )i + c 2 j + (0 + c 3 )k = j → c1 = 0, c 2 = 1, c 3 = 0
∴ v(t ) = 2t i + j − 2t k
Posisi awal : r (0) = −i + j + 2k
r (0) = (0 2 + c1 .0 + c 4 )i + (c 2 .0 + c 5 ) j + (−0 2 + c 3 .0 + c 6 )k
= c 4 .i + c 5 . j + c 6 .k = −i + j + 2k → c 4 = −1, c 5 = 1, c 6 = 2
∴ r (t ) = (t 2 − 1)i + (t + 1) j + (−t 2 + 2)k
3.3 Gradien, Divergensi Dan Curl
Didefinisikan suatu operator vektor ∇ (dibaca del atau nabla) sebagai
berikut:
∇=i
Jika
∂
∂
∂
∂
∂
∂
+ j +k
=
i+
j+ k
∂x
∂y
∂z ∂x ∂y
∂z
φ = φ (x,y,z) adalah fungsi skalar, dan
A = (x,y,z) = A1 (x,y,z) i + A2 (x,y,z) j + A3(x,y,z)k
adalah fungsi vektor yang mempunyai turunan pertama yang
kontinu di suatu daerah.
Maka :
1. GRADIEN dari φ (x,y,z) didefinisikan dengan
grad φ = φ∇
=
 ∂
∂
∂ 
 i + j + k 
∂y
∂z 
 ∂x
=
i
=
∂φ( x, y, z ) ∂φ( x, y, z )
∂φ( x, y, z )
i+
j+
k
∂x
∂y
∂z
∂φ( x, y, z )
∂φ( x, y, z )
∂φ( x, y, z )
+ j
+k
∂z
∂x
∂y
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
38
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
2. DIVERGENSI dari A(x,y,z):
div A = ∇ ! A
∂
∂
∂
+ j +k
∂x
∂y
∂z
=
i
=
∂A1 ( x, y, z) ∂A 2 ( x, y, z) ∂A 3 ( x, y, z)
+
+
∂x
∂y
∂z
3. CURL atau ROTASI dari A(x,y,z):
Curl A = ∇ × A
 ∂
∂
∂
+ j + k  × (A1i + A 2 j + A 3k )
∂y
∂z 
 ∂x
=  i
i
∂
=
∂x
A1
=i ∂
∂x
A2
j
∂
∂y
A2
k
∂
∂z
A3
∂ −j ∂
∂z
∂x
A3
A1
∂ −k ∂
∂x
∂z
A3
A1
∂
∂y
A2
 ∂A 3 ∂A 2   ∂A 3 ∂A1   ∂A 2 ∂A1 
i − 
 j −
k
−
−
−
∂z   ∂y
∂z   ∂x
∂y 
 ∂y
= 
4. Operator Laplace (LAPLACIAN) ∇2 dari φ
∇2 φ
=
div (∇φ) = div (grad φ)
=
 ∂
∂
∂   ∂φ
∂φ
∂φ 
 i + j + k  !  i +
j + k 
∂y
∂z   ∂x ∂y
∂z 
 ∂x
=
∂2 φ ∂2 φ ∂2 φ  ∂2
∂2
∂2 

φ
+
+
=
+
+
∂x 2 ∂y 2 ∂z 2  ∂x 2 ∂y 2 ∂z 2 
Rumus-Rumus :
Jika
A, B fungsi vektor
U,V fungsi skalar, maka
1. ∇ (U + V) = ∇U + ∇V atau grad (U + V) = grad U + grad V
2. ∇ ! (A + B) = ∇ ! A + ∇ ! B atau div (A + B) = div A + div B
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
39
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
3. ∇ × (A + B) = ∇ × A + ∇ × B atau curl (A + B) = curl A + curl B
4. ∇ ! (UA) = (∇U) ! A + U (∇ ! A )
5. ∇ × (UA) = (∇U) × A + U (∇ × A )
6. ∇ ! (A × B) = B × (∇ ! A) − A (∇ ! B)
7. ∇ × (A × B) = (B ! ∇)A − B(∇ ! A ) − (A ! B)B + A(∇ ! B)
8. ∇ ! (A ! B) = (B ! ∇)A + (A ! ∇)B + B × (∇ × A) + A × (∇ × B)
9. ∇ ! (∇U ) = ∇2 U =
dan ∇2 =
∂2U ∂2U ∂2U
disebut Laplace dari U
+
+
∂x 2 ∂y 2 ∂z 2
∂2
∂2
∂2
disebut Operator Laplace
+
+
∂x 2 ∂y 2 ∂z 2
10. ∇ × (∇U) = 0
→ curl dari gradien U = 0
11. ∇ ! (∇ × A ) = 0 → divergensi dari curl A = 0
12. ∇ × (∇ × A ) = ∇(∇ ! A ) − ∇A 2
CONTOH:
Misalkan
a.
b.
φ
=
x2 yz3
fungsi skalar
A
=
xz i – y2 j + 2x2 y k
fungsi vektor
=
∂φ ∂φ
∂φ
i+
j+ k
∂x
∂y
∂z
=
2xyz3 i + x2 z3 j + 3x3 yz2 k
grad φ = ∇φ
div A = ∇ ! A =
=
c.
curl A = ∇ × A =
 ∂
∂
∂ 
 i +
j + k  ! ( xzi − y 2 j + 2 x 2 yk )
∂y
∂z 
 ∂x
z – 2y + 0 = z – 2y
i
∂
∂x
xz
j
∂
∂y
− y2
k
∂
∂z
2x 2 y
=
i (2x2 – 0) – j (4xy – x) + k (0 – 0)
=
2x2 i – (4xy – x) j
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
40
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
d.
e.
div (φA)
=
∇ ! (φA)
=
 ∂
∂ 
∂
 i +
j + k  ! x 2 yz3 ( xz i - y 2 j + 2x 2 yk )
∂y
∂z 
 ∂x
=
∂ 3 4
∂
∂
(x yz )i − ( x 2 y 3 z 3 ) j + ( x 4 y 2 z 3 )k
∂x
∂y
∂x
=
3x2yz4 i – 3x2y2z3 j + 6x4 y2z2 k
(
curl (φA) = ∇ × (φA) = ∇ × x 2 yz 2 ( xz i − y 2 j + 2 x 2 k )
=
i
∂
∂x
3
x yz3
j
∂
∂y
2 3 2
-x y z
)
k
∂
∂z
4 2 3
2x y z
= (4x4yz3 + 3x2 y3 z2) i – (8x3 y2 z3 – 4x3 yz3) j + (–2xy3z3 – x3z4) k
3.4 Penggunaan Gradien, Divergensi dan Curl
a. Derivatif berarah (directional derivatve)
Misalkan temperatur sembarang titik (x,y,z) dalam sebuah ruangan
adalah T(z,y,z). besarnya T(x,y,z) tergantung pada posisi x, y, z dalam
ruang tersebut. sehingga temperatur di suatu titik tertentu mungkin
akan berbeda dengan temperatur di titik lainnya. Karena adanya
perbedaan temperatur ini, maka bisa ditentukan besarnya rata-rata
perubahan (laju perubahan) temperatur dari satu titik ke titik lainnya
persatuan jarak (panjang). Besarnya laju perubahan temperatur
sesaat di suatu titik, akan tergantung pada arah geraknya, atau ke
titik mana yang akan dituju. Oleh sebab itu, laju perubahan ini disebut
dengan derivatif berarah (directional derivative)
Cara menentukan derivatif berarah:
Diberikan suatu medan skalar yang dinyatakan fungsi
Besarnya laju perubahan dari fungsi
(x,y,z).
(x,y,z) di titik (x0, y0, z0) persatuan
jarak (panjang), dengan arah gerak tertentu, misalkan vektor arah
satuannya u = ai + bj + ck, bisa ditentukan sebagai berikut,
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
41
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
∇φ
φ = kons tan
θ)
u
dφ
dalam arah u
ds
atau Duφ
Persamaan garis melalui titik (x0, y0, z0) dengan vektor arah satuan u
= ai + bj + ck, bisa dinyatakan dalam bentuk parameter
x = x o + as
y = y o + bs
z = z o + cs
Sehingga sepanjang garis tersebut, x, y, z akan merupakan fungsi dari
satu variabel s. Jika x, y, z di atas didistribusikan dalam fungsi φ (x, y, z),
maka φ akan merupakan fungsi dari s, artinya sepanjang garis gerak di
atas φ merupakan fungsi dari satu variabel s, sehingga
dφ
bisa
ds
dihitung.
dφ
= Duφ
ds u
=
=
∂φ dx ∂φ dy ∂φ dz ∂φ
∂φ
∂φ
+
+
=
a+ b+ c
∂x ds ∂y ds ∂z ds ∂x
∂y
∂z
 ∂φ ∂φ
∂φ 
 i +
j + k  = (ai + bj + ck )
%"$"#
x ∂y
∂z
%∂"
""$"""#
u
∇φ
Jadi,
dφ
= D u φ = ∇φ ! u = grad φ ! u
ds u
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
42
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Definisi perkalian skalar, diperoleh:
dφ
= ∇φ ! u = ∇φ u cos θ ; θ adalah sudut antara ∇φ dan vektor u
ds u
Karena u vektor satuan, maka | u | = 1, jadi
dφ
= ∇φ cos θ nilai ini akan maksimum jika cos θ = 1 atau θ = 0°,
ds u
yaitu jika u searah dengan ∇φ.
Harga maksimum dari
dφ
adalah ∇φ
ds u
CONTOH:
1. Tentukan derivatif berarah dari fungsi f = 2xy – z2 di titik (2, –1, 1) dalam
arah menuju titik (3, 1, -1). Dalam arah manakah derivatif berarah ini
akan berharga maksimum. Berapa nilai maksimumnya.
⇒
a. Vektor arah titik (2, -1,1) menuju (3,1,-1) = (3–2)i + (1+1)j + (-1-1)k = i +
2j – 2k.
Vektor arah satuan = u =
∇f =
i + 2 j − 2 k i + 2 j − 2k
=
3
1+ 4 + 4
∂
∂
∂
i+2j+k
i+
j+ k =
∂x ∂y
∂z
3
= 2y i + 2x j – 2z k
Du f
(2,-1,1)
= ∇f
(2,-1,1)
= (2 y i + 2 x j − 2z k ) !
i + 2 j − 2k
3
=
1
3
(2 y + 4 x + 4) ( 2, −1, 1)
=
1
3
(−2 + 8 + 4) = 103 = 3,33
b. Nilai Duf di atas akan maksimum jika arah geraknya searah dengan
∇f, dan besarnya nilai maksimum =
∇f = 4y 2 + 4x 2 + 4z 2
= 4 + 16 + 4 = 2 6
( 2 , −1, 1)
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
43
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
2. Jika
(x,y,z) dalam ruangan pada suatu waktu tertentu. Tentukan laju
pertumbuhan temperatur sesaat di titik (2,-1,-1) jika bergerak ke arah
titik (3,1,3)
⇒
Vektor arah satuan = u =
i + 2 j + 2k 1
= (i + 2 j + 2k )
1+ 4 + 4 3
Laju perubahan temperatur di titik (2, -1, 1) dengan arah u =
Du f
(2,-1, 1)
=
1
∇( xy 2 + yz3 ) ! (i + 2 j + 2k )
3
=
1
[ y 2i + (2 xy + z 2 ) j + 3yz 2 k )! [i + 2 j + 2k ]
3
=
1
11
(1 − 8 + 2 − 6) =
3
3
Tanda negatif menunjukkan perubahan yang menurun artinya terjadi
penurunan suhu jika bergerak dari titik (2, -1, 1) ke titik (3,1,3).
b. Gradien sebagai vektor Normal Luasan
Misalkan f(x,y,z) = C adalah persamaan luasan S dalam ruang (R3) dan
fungsi vektor r (t) = x(t)i + y(t)j + z(t)k adalah persamaan kurva yang
terletak pada luasan S. Karena r(t) terletak pada f(x,y,z) = C, maka
berlaku
F[x(t), y(t), z(t)] = C
dan
∂f ∂x ∂f ∂y ∂f ∂z ∂C
+
+
=
=0
∂x ∂t ∂y ∂t ∂z ∂t ∂t
 ∂f
∂f
∂f   dx dy dz 
 i +
j + k  !  +
+ =0
∂y
∂z   dt dt dt 
 ∂x
∇f !
d r(t)
d r(t)
= 0 → ∇f ⊥[
= t' (t)]
dt
dt
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
44
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
∇f
r' (t )
P
r (t )
Karena r(t) merupakan persamaan kurva pada luasan s, maka r'(t) =
dr
merupakan singgung kurva r(t), yang berarti vektor singgung
dt
luasan S di titik tertentu. Jadi, ∇f ⊥ vektor luasan ——> berarti ∇f
merupakan vektor normal luasan S di suatu titik.
Dan n =
∇f
= vektor normal satuan.
∇f
CONTOH:
Tentukan vektor normal dari kerucut putaran:
z2 = 4(x2 + y2) di titik P(1,0,2).
⇒
Persamaan luasan dalam bentuk f(x,y,z) = 0 adalah
f(x,y,z) = 4(x2 + y2) – z = 0
∇f = ∇(4(x 2 + y 2 ) − z 2 ) = 8x i + 8 y j + 8z k
(1,0,2)
= 8i – 4k
n=
8i − 4k
8i − 4k 2i − k
∇f
=
=
=
∇f
64 + 16
80
5
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
45
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
c. Penggunaan lain dari Gradien
Misalkan A adalah suatu partikel dengan massa M yang terletak
pada titik tetap Po(xo, yo, zo) dan B adalah suatu partikel bebas
dengan massa m yang berada pada posisi P(x,y,z) dalam suatu ruang,
maka B akan mengalami gaya tarik dari partikel A. menurut hukum
Newton tentang gravitasi, arah gaya p adalah P menuju Po, dan
besarnya sebanding dengan 1/r2, antara P dengan Po.
Sehingga,
p=
c
r2
c = GMm
G = 6,67 = konstan
dan r = (x − x o ) 2 + (y − y o ) 2 + (z − z o ) 2
;
r≥0
Dalam hal ini, p merupakan suatu vektor dalam ruang.
Jika vektor jarak dari P ke Po,
r = (x – xo)i + (y – yo)j + (z – zo)k ; | r | = r
dan −
r
r
= − = vektor satuan arah dari p
r
r
(tanda minus menyatakan arah dari Po ke P)
maka
vektor p = −
r
r
p = − (c / r 2 ) = = (c / r 3 ) r
r
r
= −c
x − xo
y−y
z−z
i−c 3 o j −c 3 o k
3
r
r
r
———>
fungsi
vektor
yang
menyatakan
gaya
tarik
menarik antara dua partikel.
Jika fungsi skala f(x,y,z) = c/r
;r≥0
merupakan potensial dari medan gravitasi tersebut, ternyata bisa
dibuktikan bahwa grad f = p sebagai berikut:
 ∂
∂
∂

c
i+
j + k 
grad f = 
∂y
∂y  (x − x o ) 2 + (y − y o ) 2 + (z − z o ) 2
 ∂x
=
- 2(x − x o )
c i+
2[(x − x o ) + (y − y o ) 2 + (z − z o ) 2 ]3 / 2
2
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
46
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
- 2(y − y o )
c j+
2[(x − x o ) + (y − y o ) 2 + (z − z o ) 2 ]3 / 2
2
- 2(z − z o )
c k+
2[(x − x o ) + (y − y o ) 2 + (z − z o ) 2 ]3 / 2
2
=
−
=
p
x − xo
y − yo
z−z
c i−
c j− 3 o c k
3
3
r
r
r
Selain itu bisa dibuktikan bahwa:
∂ 2  1  1 3(x − x o ) 2
 = +
r5
∂x 2  r  r 3
∂ 2  1  1 3(y − y o ) 2
 = +
r5
∂y 2  r  r 3
∂ 2  1  1 3(z − z o ) 2
 = +
r5
∂z 2  r  r 3
Jika dijumlahkan menjadi:
∂2  1  ∂2  1  ∂2  1 
 =
 +
 =
∂x 2  r  ∂y 2  r  ∂z 2  r 
=
3
(x − x o ) 2 + (y − y o ) 2 + (z − z o ) 2
+
3
r3
r5
=
3
r2
+
3
=0
r3
r5
Sehingga, karena f = c/r maka
∂ 2f ∂ 2f ∂ 2f
+
+
= 0 atau ∇ 2f = 0
∂x 2 ∂y 2 ∂z 2
Jadi medan gaya yang dihasilkan oleh sebaran massa partikel akan
merupakan fungsi vektor (p) yang merupakan gradien dari fungsi
skalar f (potensial dari medan gravitasi) dan f memenuhi sifat ∇2f = 0
Dalam elektrostatis, gaya tarik menarik antara dua partikel bermuatan
Q1 dan Q2 adalah
p=
k
r
r3
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
(Hukum Couloumb)
47
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
dengan: k =
Q1Q 2
4πε
;
ε = konstanta elektrik
Dalam hal ini p adalah gradien dari fungsi potensial f = – k/r ; dengan
∇2f = 0
CONTOH:
Jika potensial antara dua silinder konsentris adalah
V(x,y) = 110 + 30 ln(x2 + y2) volt. Tentukan gaya listrik di titik P (2,5).
⇒
Vektor gaya elektrostatik p = grad V
p = 30
2x
2y
60
i + 30 2
j ( 2, 5) =
= (2i + 5 j )
2
2
x +y
x +y
29
2
∴ Arah gayanya searah dengan arah vektor p
Penggunaan Difergensi
Dalam aliran fluida:
Perhatikan suatu aliran tak tunak (non-steady state) dari fluida
termampatkan (compressible fluid), misalnya gas atau uap, dalam suatu
ruangan. Karena termampatkan, maka besarnya
(densitas massa =
massa persatuan volume) akan tergantung pada koordinat x, y, dan z.
Dan karena alirannya tak tunak maka
(berubah-ubah dari waktu ke waktu). Jadi
juga tergantung pada t
=
(x,y,z,t). Misalkan v(x,y,z) =
v1i + v2j + v3k adalah vektor kecepatan sesaat dari partikel fluida di suatu
titik (x, y, z)
Selanjutnya, ambil sembarang bagian volume yang sangat kecil
dari ruangan tersebut, misalkan volume W seperti dalam gambar berikut.
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
48
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
ρv 3 + ∆ ρv 3
ρ v1
z
∆z
W)
ρv 2
∆x
∆y
ρv 2 + ∆ ρv 2
ρ v1 + ∆ ρ v 1
ρv 3
y
x
Karena terdapat aliran fluida yang compressible dalam ruangan
tersebut, maka dalam volume W juga akan terjadi perubahan massa
fluida. Untuk mengukur besarnya perubahan massa fluida dalam volume
W, bisa dilakukan dengan mengukur besarnya selisih massa fluida
sebelum masuk dan saat meninggalkan W persatuan waktu.
Jika, massa fluida yang melewati salah satu sisi dari W
Selama ∆t ≈ [komponen vektor kecepatan yang ⊥ dengan masingmasing sisi W] × ρ × [luas permukaan sisi tersebut] × [∆t)
= fluks massa fluida pada masing-masing sisi W.
Maka, untuk menghitung besarnya perubahan massa fluida yang melalui
W, bisa dilakukan dengan menghitung jumlah fluks massa yang keluar
dikurangi dengan jumlah fluks massa yang masuk dari masing-masing sisi
W.
"
"
Fluks massa yang masuk selama ∆t melalui:
–
sisi kiri
=
ρv2 ∆x ∆z ∆t
–
sisi belakang
=
ρv1 ∆y ∆z ∆t
–
sisi bawah
=
ρv3 ∆x ∆y ∆t
Fluks massa yang keluar selama
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
t melalui:
49
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
–
sisi kanan
=
(ρv2 + ρv2) ∆x ∆z ∆t
–
sisi depan
=
(ρv1 + ρv1) ∆y ∆z ∆t
–
sisi atas
=
(ρv3 + ρv3) ∆x ∆y ∆t
Jumlah selisih massa fluida persatuan waktu persatuan
Volume
=
(Σ yang keluar - Σ yang masuk)/volume/waktu
=
∇ρv1∆y∆z ∆t + ∇ρv 2 ∆x∆z ∆t + ∇ρv 3 ∆x∆y ∆t
∆x∆y∆z (∆t )
=
∇ρv1 ∇ρv 2 ∇ρv 3
+
+
∆z
∆x
∆y
Karena volume W diambil sangat kecil, maka ∆x → 0
∆y → 0
∆z → 0
Jadi, besarnya perubahan massa fluida persatuan waktu persatuan
volume dalam ruangan =
 ∇ρv 1 ∇ρv 2 ∇ρv 3
+
+
∆x
∆y
∆z
lim 
∆x → 0
∆y → 0
∆z → 0
 ∇ρv 1 ∇ρv 2 ∇ρv 3
 =
+
+
∂x
∂y
∂z

 ∂
∂
∂ 
i+
j + k  ! (∇ρv1i + ∇ρv 2 j + ∇ρv3 k )
∂z 
 ∂x ∂y
= 
= ∇ ! ρv
= div (ρv)
Sementara itu, telah diketahui bahwa besarnya perubahan massa
fluida persatuan waktu persatuan volume akan sama dengan laju
perubahan (penurunan) densitas massa persatuan waktu, atau =
Jadi, div ρv =
∂ρ
∂t
∂ρ
∂t
Atau
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
50
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
div ρv +
———→
∂ρ
=0
∂t
merupakan persamaan kontinuitas dari aliran
non-steady state dari fluida termampatkan
Jika alirannya tunak (steady state), yang berarti bahwa densitas
massanya tidak tergantung pada t (tidak berubah dari waktu ke waktu),
maka:
∂ρ
= 0 —→
∂t
div ρv = 0 ——→ merupakan kontinuitas untuk aliran steady
state dari fluida termampatkan (compressible).
Untuk aliran steady-state dari fluida tak termampatkan (in compressible
fluid), berarti
nya konstan (tidak tergantung pada x, y, dan z) maka,
div ρv = div v = 0
(ρ ≠ 0)
div v = 0 ——→ persamaan koninuitas dari aliran steady-state
dari fluida tak termampatkan (incompressible fluid).
Penggunaan Curl
Dalam gerak rotasi
Misalkan sebuah benda berputar uniform dengan kecepatan sudut –
(konstan) mengelilingi sumbu & .
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
51
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Ω
P
v
r
R
θ
& O
Didefinisikan vektor kecepatan sudut Ω yang panjangnya
, sejajar
sumbu & dengan arah mengikuti arah majunya sekrup putar kanan
terhadap gerakan benda.
Jika R adalah vektor dari titik 0 di & ke sembarang titik P pada benda,
maka
"
radius putar titik P:
r = | R | | sin θ |
sehingga,
"
kecepatan linier titik P
| v | = ω | R | | sin θ| = |Ω| |R | | sin θ | = | Ω × R |
Vektor v ini mempunyai arah ⊥ bidang yang dibentuk oleh Ω dan R,
sehingga Ω, R, dan v membentuk sistem sekrup putar kanan. Jadi hasil
dari perkalian Ω × R, selain memberikan besarnya nilai v juga akan
menentukan arah dari v.
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
52
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Jika titik 0 diambil sebagai titik asal koordinat, maka:
R
=
xi + yj + zk dan
Ω
=
Ω1i + Ω2 j + Ω k
sehingga, v = Ω × R bisa ditulis
v
=
(Ω2z + Ω3 y)i – (Ω1z - Ω2x)j + (Ω1y - Ω1x) k
dan
i
j
k
∂
∂
∂
curl v = ∇ × v =
∂x
∂y
∂z
(Ω 2 − Ω 3 y) (Ω1 − Ω 3 x ) (Ω1 − Ω 2 x )
= 2 Ω1 i +2 Ω2 j + 2 Ω3 k = 2 Ω
Jadi,
Kecepatan sudut dari sebuah benda yang bergerak uniform =
½ curl dari kecepatan lintas sembarang titik.
SOAL-SOAL LATIHAN
1. Misalkan f = x2 + 9y2 + 4z2
g = xy3 z2
v = xz i + (y – z)2 j + 2xyz k
w = 2y i + 4z j + x2z2 k
Tentukan
a. grad f di titik (3, -1, 0) Jawab
:
6i – 18j
b. ∇2f
Jawab
:
28
c. ∇f !∇g
Jawab
:
72 xy3 z2
∂2 g
∂x∂y
Jawab
:
3 y2 z2
e. ∇f ! v
Jawab
:
2x2 z + 18y (y – z)2+ 16 xyz2
f.
Jawab
:
2 x2 z
g. div v (curl v)
Jawab
:
–11
h. div (v × k)
Jawab
:
0
Jawab
:
–xi – 2(y – z)j – (2y – z)k
d.
i.
div w
curl (v × k)
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
53
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
j.
Dwf di (1, 1, 1)
Jawab
:
18 5
k. Dwg di (3, 0, –2)
Jawab
:
0
l.
Jawab
:
2y – z + 2xy + 2x2z
div (v + w)
2. Jika r(t) menyatakan persamaan kurva lintasan, dengan t = waktu.
Tentukan vektor kecepatan, besarnya laju (speed) dan vektor
percepatan di P[x(t); z(t)], jika
a. r(t) = x(t)i + y(t)j + z(t)k = ti + 3 t2j
Jawab: v = i + 12 j + k ; | v | =
145 ; a = 6 j
b. r(t) = x(t)i + y(t)j + z(t)k = ti + 3 t2j + tk, di titik P (4,12,4)
Jawab: v = i + 3j + k ; | v | =
11 ; a = 0
3. Jika vektor posisi dari lintasan sebuah partikel dinyatakan dalam r = r(t)
= t2i – 2tj + (t2 + 2t)k, t waktu.
a. Kapan (pada saat berapa) partikel akan melintas di titik (4,4,8). Jawab: t = 2
b. Tentukan vektor kecepatan dan laju partikel di saat melintasi
titik (4,-4,8).
Jawab: v = 4i – 2j + 6k; | v | = 2 14
c. Tentukan persamaan garis singgung dari kurva lintasan
partikel tersebut, dan bidang normal dari kurva di titik (4,-4,8)
Jawab:
(x – 4)/4 =
(y + 4)/(-2) = (z – 8)/6
2x – y + 3z = 36
4. Jika berangkat dari titik (1,1) dalam arah manakah fungsi φ = x2 –
y2 + 2xy akan menurun dengan cepat (menurun secara
maksimum).
Jawab
=
–i
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
54
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
5. Jika diberikan medan skalar r =
R=
x 2 + y 2 dan
x 2 + y 2 + z 2 , tentukan
a. Laplace ∇2 dari ln r
Jawab
: 0
b. Laplace ∇2 dari R
Jawab
: 2/R
6. Jika potensial antara dua silinder konsentris adalah V(x,y) = 110 +
30 ln(x2 + y2) volt. Tentukan arah garis-garis ekipotensialnya di titik
P (2,5).
Catatan: garis ekipotensial adalah garis yang tegak lurus
dengan garis gaya elektrotatis.
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
55
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
BAB IV
INTEGRAL VEKTOR
POKOK BAHASAN :
! Integral garis
! Teorema Green
! Medan Gaya Konservatif
! Integral luasan
! Teorema divergensi Gauss
! Teorema Stokes
4.1 Integral Garis (Line Integrals)
Konsep integral garis merupakan generalisasi (perluasan) dari
konsep integral tertentu
a
∫ f ( x)dx .
Dalam integral tertentu
b
a
∫ f ( x)dx ,
b
fungsi f(x) diintegrasikan sepanjang
sumbu x dari x = a sampai x = b, dengan f(x) adalah fungsi yang terdefinisi
pada setiap titik pada sumbu x antara sampai b.
Dalam integral garis, akan diintegrasikan suatu fungsi F sepanjang kurva C
dalam ruang atau bidang, dan fungsi F adalah fungsi yang terdefinisi
pada setiap titik di C. Kurva C, oleh sebab itu disebut sebagai ‘lintasan
integrasi’. Lintasan integrasi C merupakan kurva licin (smooth curve) yang
bisa dinyatakan dalam bentuk fungsi vektor:
r(t) = x(t) i + y(t) j + z(t) k ; a ≤ t ≤ b
dan r(t) mempunyai derivatif kontinu,
r' (t)
=
dr dx ( t )
dy(t) dz(t)
i+
j
k
=
dt
dt
dt
dt
=
x' (t) i + y'(t) j + z'(t) k
yang tidak nol
Dalam hal ini C merupakan kurva berarah dengan:
A :
r(a)
B
r(b)= t akhir dari C
:
=
titik awal dari C
Arah dari A ke B sepanjang C disebut arah positif dari C dan dalam
gambar, arah ini ditunjukkan dengan tanda panah.
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
56
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Jika A = B
C disebut kurva tertutup.
B = r (b )
A = r (a )
B = r (b )
C : r( t )
A = r(a )
C
Definisi Integral Garis
Integral garis dari suatu fungsi vektor F(r) sepanjang kurva C yang
terdefinisikan pada a ≤ t ≤ b, didefinisikan sebagai:
∫ C F(r ) ! dr
∫
=
=
∫
b
a
F[r ( t ) !
dr
dt
dt
b
a
F[r ( t ) ! r ' ( t )dt
Jika,
r (t)
=
x(t) i + y(t) j + z(t) k
r' (t) =
dr
=
F(r)
=
dr dx ( t ) dy( t )
dz( t )
i+
j+
k
=
dt
dt
dt
dt
dx(t) i + dy(t) j + dz(t) k
F1 i + F2 j + F3 k
maka:
∫ C F(r ) ! dr
∫ C [F1dx ( t ) + F2 dy ( t ) + F3dz( t )]
=
=
b
a
=
dy
dz 
 dx
+ F2
+ F3  dt
1
dt
dt
dt 
∫ F
∫ [F x ' ( t) + F y' ( t ) + F z' ( t)]dt
b
1
2
3
a
"
Integral garis sepanjang lintasan C yang tertutup dinotasikan
dengan
∫ F(r ) ! dr
C
Contoh
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
57
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
1. Tentukan integral garis
∫ F(r ) ! dr , jika
C
F(r) = – y i + xy j
C :
adalah busur lingkaran seperti dalam gambar berikut dari titik A
ke titik B.
⇒
C : r(t) =
B(0, 1)
Sehingga,
C
dan F[r(t)]=
f'
∴
∫
C
=
x(t) =
cost t
y(t) =
sin t
0≤t≤
A(1, 0)
0
cost i + sint j
π
2
– sin t i + sin t cos t j
– sin t i + cos t j
F(r ) ! dr =
∫
b
F[r ( t )] ! r ' ( t )dt
a
π/ 2
=
∫
a
[sin 2 t + sin t cos 2 t ]dt
π/ 2
=
0
∫
π/ 2
1 − cos 2t
dt − ∫
0
2
cos 2 t d cos t
π/2
=
1
1
1
t − sin 2 t − cos 3 t
2
4
3
o
=
π
1 π 1
t −0−0+ = +
4
3 4 3
2. Tentukan nilai integral garis pada contoh 1, jika
C : garis lurus yang menghubungkan A dan B
⇒
B(0, 1)Que
Program Semi
Fakultas Teknik Jurusan Mesin
C
Universitas Brawijaya
58
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
C : r(t) =
(1 – t) i + t j
x(t)=
=
1–t
t
0≤t≤1
F[r(t)] =
–t i + t(1 – t) j
r'(t)
–i + j
∴
∫
C
=
1
1
0
0
∫ [t + t (1 − t )]dt =∫ [2t − t ]dt
F(r ) ! dr =
1
1
1 2
t2 − t3 = 1− =
3 0
3 3
=
"
Dari dua contoh di atas terlihat bahwa nilai integral garis selain
tergantung pada batas integrasi, juga tergantung pada
lintasannya.
3. Tentukan
∫ F(r ) ! dr , jika
c
F(r)=
zi+j+yk
C :
r(t) = cos t i + sin t j + 3t k,
0≤t≤2
⇒
∴
x(t)=
cos t
y(t)=
sin t
z(t) =
3t
∫
C
F[r(t)] =
3t i + cos t j + sin t k
r'(t) =
–sin t i + cos t j + 3 k
∫ [− 3t sin t + cos
π/ 2
F(r ) ! dr =
0
π/2
π/2
]
t + 3 sin t dt
π/2
1 + t cos 2 t
dt + 3∫ sin t dt
0
2
=
3∫
=
1
1
3[ t cos t − ∫ cos tdt ] + t + sin 2 t − 3 cos t
2
4
0
t cos t + ∫
2
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
0
59
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
2π
1
1
3t cos t − 3 sin t + t + sin 2 t − 3 cos t
2
4
0
=
Interpretasi Integral Garis
Dalam MEKANIKA
Usaha yang dilakukan oleh guru konstan F yang bergerak sepanjang
vektor lurus d adalah W = F ! d
Jika gaya F tidak konstan (merupakan fungsi variabel), dan bergerak
sepanjang kurva C = r(t), maka besarnya usaha yang dilakukan oleh
gaya F bisa ditentukan dengan menghitung nilai limit dari jumlah
usaha yang dilakukan oleh F sepanjang segmen kecil dari C, jika C
dibagi menjadi n buah segmen kecil-kecil sehingga setiap segmen
mendekati garis lurus.
b = tn
t3
t2
C
t1
a = t0
tm
t m+1
Untuk sembarang m; 1 ≤ m ≤ n, maka
∆Wm = F[r ( t m )]![r ( t m ) − r ( t m )]
Sementara,
lim r ( t ) − r ( t )
m
r ' ( t m ) = ∆t m → 0
∆t m
tm
= tm + 1 – tm
Jadi,
∆Wm ≅ F[r ( t m )] ! r ' ( t m )∆t m ] ! r ' ( t m )∆t m
karena n → ∞ , maka:
n
n
W = lim ∑ ∆Wm = lim ∑ F[r ( t m )] ! r ' ( t m )∆t m
n →∞
m =1
n →∞
m =1
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
60
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
b
=
a
∫ F[r( t )] ! r' (t ) dt
∴ Usaha W = ∫ F(r ) ! dr
C
"
dr
= v( t ) = vektor kecepatan
dt
Karena
maka: W =
"
b
∫
C
F(r ) ! dr = ∫ F[(r )] ! v( t ) dt
a
Dari hukum Newton II : F = ma, bisa diturunkan F = m r''(t) = m v' (t)
Sehingga,
W =
a
=
a
=
dengan
∫
b
∫
b
'
b
 v!v
m v' ( t ) ! v( t ) dt = ∫ m 
 dt
a
 2 
[ ]
b
m 2'
m 2
v dt = v
2
2
a
[
m
2
v(b) − v(a ) 2
2
]
m 2
v = energi kinetik
2
Bentuk-bentuk lain Integral Garis
Bentuk-bentuk berikut merupakan kejadian khusus dari integral garis
∫ F(r ) ! dr ,
C
Jika
F
=
F1 i
∫ F(r ) ! dr = ∫ F dx
F
=
F2 j
∫ F(r ) ! dr = ∫ F dy
F
=
F3 k
Bentuk :
∫
C
C
C
C
C
1
2
∫ F(r ) ! dr = ∫ F dz
C
C
3
b
f (r ) ! dt = ∫ f [r ( t )]dt
a
C : r(t); a ≤ t ≤ b
Merupakan bentuk khusus dari
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
∫ F(r ) ! dr , jika
C
61
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
F
=
F1 i dan F1 =
f [r ( t )]
, sehingga
dx / dt
f = F1
dx
= F1x ' ( t )
dt
Jadi,
∫ F(r ) ! dr = ∫ F ! dx
C
1
C
∫
=
C
f [r ( t )]
dx
dx / dt
b
=
a
∫ f [r( t ) dt
Contoh
Tentukan
C :
∫ (x
2
C
+ y 2 + z 2 ) 2 dt jika
r (t) = cos t i + sin t j 3t k ; 0 ≤ t ≤ 2
⇒
f
=
r(t) =
(x2 + y2 + z2)2
cos t i + sin t j + 3t k
x(t)=
cos t
y(t)=
sin t
z(t) =
3t
f[r(t)] =
[cos2t + sin2t + 9t2]2 = (1 + 9t2)2
∴ ∫ ( x 2 + y 2 + z 2 ) 2 dt =
∫
2π
=
∫
2π
=
t2
=
2π + 48π3 +
C
0
0
(1 + 9 t 2 ) 2 dt
[1 + 18t 2 + 81t 4 ]dt
2π
+
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
6t3
81
+
t
5 0
2592 5
π
25
62
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Sifat-sifat
a.
∫ k F(r) ! dr = k ∫ (r) ! dr
b.
∫ [F(r) + G(r) ! dr ] = ∫ F(r) ! dr + ∫ G (r) ! dr
c.
∫ F(r) ! dr = ∫
C
;
C
C
C
C
konstanta
C
F(r ) ! dr + ∫ F(r ) ! dr ; jika lintasan C dibagi menjadi
C1
C2
dua busur, yaitu C1, dan C2 dengan arah yang sama dengan arah
C.
Contoh Soal
1. Tentukan
a. F
=
∫ F(r) ! dr ; jika
C
y2 i – x4 j
C : r(t) = t i + t–1 j ; 1 ≤ t ≤ 3
b. F
=
y2 i
C : sepanjang kurva x2 + 4y = 4 dari (2, 0) ke (0, 1)
c. F
=
3y i + x j
C : segmen garis lurus dari (0, 0) ke (2, 2½ )
⇒
a.
x(t) = t
y( t ) = t −1
∴ ∫ F(r) ! dr
C
b.
F = t −2 i − t 4 j



r ' ( t ) = i − t −2 j
=
∫ [t
=
1  28
 1 27  
− 3 = 3  − − 1 + 3  = 3
3
−2
1
∫ F(r) ! dr = ∫ y dx
;
2
C
C:
C
x2 + 4y2
=
]
3
1
+ t dt = − t + t 3
3 1
2
−1
2≤x≤0
4
4y2
=
4 – x2
y2
=
4 − x2
4
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
63
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
0
∫ F(r) ! dr
C
0
4 − x2
1
1 
dx = 4x − x 3 
4
4
3 2
=
∫
=
1
8 
4
0 − (8 − ) = −

4
3 
3
2
c. y
Persamaan
segmen
garis dari (0, 0) ke (2, ½),
adalah:
(2, 12 )
1
2
y
x
=
2
(0, 0)
x(t) = t
1
y( t ) t
4
F[r(t)] =
r'(t) =
1
,0≤x≤2
4

1

 r(t) = t i + t j
4

3
ti–tj
4
i+
1
j
4
2
2 3
21
1 
1
∴ ∫ F(r) ! dr = ∫  t − t  dt = ∫ t dt = t 2 = 1
C
4 
2
4 0
0
0
4
2. Tentukan usaha yang dilakukan oleh harga F = xi – zj + 2yk yang
bergerak sepanjang C : z = y4, x = 1;
dari (1, 0, 0) ke (1, 1, 1)
⇒
x =1
y=t
z=t
4





r(t) = i + tj + t4k ;
F[r(t)] =
i – t4j + 2t k
r'(t) =
j + 4t3k
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
0≤t≤1
64
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
∫[
1
∴ W = ∫ F ! dr =
0
C
4
1
1
4
0
7
5
=
3. Tentukan
]
7
− t + 8t dt = ∫ 4 t dt = t 5
0
5
4
∫ (x
2
C
+ y 2 ) ds , jika
C : lintasan y = 2x dari (0, 0) ke (1, 2)
⇒
dx 2 + dy 2
ds =
y =
2x
dy = 2dx
dx 2 + (2dx ) 2 = dx 5
ds =
∴ ∫ (x 2 + y 2 ) ds
C
4. Tentukan
1
∫
=
5 5 31 5 5
x =
0
3
3
0
0≤x≤1
1
=
(x 2 + 4x 2 ) 5 dx = 5 5 ∫ x 2 dx
∫ y dx + x dy ;
2
;
2
C
0
jika
C : Lintasan trapezium seperti dalam gambar berikut
y
(2,2)
C3
C2
(0, 1)
C4
x
(0, 0)
C1
(0, 2)
⇒
∫ y dx + x dy = ∫
2
2
C
C1
∫
C3
"
( y 2dx + x 2 dy) + ∫ ( y 2dx + x 2 dy) +
C2
( y 2dx + x 2 dy) + ∫ ( y 2dx + x 2 dy)
C4
Lintasan C1:
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
65
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
x=t
y=0
∫
..........
→ dx = dt
..........
→ dy = 0
0≤t≤2
∫
2
0
"
..........
→ dx = dt
..........
→ dy = 0
0≤t≤2
0
2
∫
( y 2dx + x 2 dy) = ∫ ( t 2 0 + 4dt )
∫
4dt = 4t 0 = 8
C1
2
0
0
2
Lintasan C3:
x=t
1
y = +1
2
2≤t≤0
"
2
(0 dt + t 2 0) = ∫ 0 dt = 0
Lintasan C2:
x=t
y=0
"
( y 2dx + x 2 dy) =
C1
0 1
1
2
2
+
=
(
y
dx
x
dy
)
( t + 1) 2 dt ) + t 2 . dt
∫C3
∫
2
2
2
0 3
3 3 1 2
2
∫2 ( 4 t + t + 1) = 12 t + 2 t + t =
8 4
0 − ( + + 2) = −6
4 2
→ dx = dt
→ dy =
1
dt
2
Lintasan C4:
..........
→ dx = 0
x =0
..........
→ dy = dt
y=t
1≤ t ≤ 0
∫
C4
0
1
( y 2dx + x 2 dy) =
∫ (t
2
+ 0 + 0 2 dt ) = 0
∴ ∫ y 2 dx + x 2 dy = 0 + 8 − 6 + 0 = 2
C
5. Tentukan besarnya usaha dalam gerakan partikel yang menjalani
lintasan satu putaran elips C dibuang dibidang XOY, jika elips
tersebut berpusat di titik 0 dengan sumbu panjang 4 dan sumbu
pendek 3, dan jika medan gayanya diberikan oleh:
F = (3x – 4y + 2z)i + (4x + 2y – 3z2)j + (2xz – 4y2 + z3) k
Persamaan ellips :
x 2 y2
+
=1
32 4 2
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
66
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
x 2 y2
+
=1
9 16
z
;
z=0
4
y
3
x
Misalkan
x = 3 cos t 
 r ( t ) = 3 cos t i + 4 sin t j
y = 4 sin t 
 0 ≤ t ≤ 2π
z=0

F[r(t)] =
r'(t)
∴W
[9 cost – 16 sint] i + [12 cost + 8 sint] j + [–16 sint] k
=
–3 sint i + 4 cost j
∫
=
2π
− 3 sin t (9 cos t − 16 sin t ) + 4 cos t (12 cos t + 8 sin t )dt
0
∫
=
2π
(−27 sin t cos t + 48 sin 2 t + 48 cos 2 t + 32 sin t cos t )dt
0
∫
=
2π
(48 + 5 sin t + cos t )dt
0
∫
=
0
2π
2π
(48dt + 5∫ sin t d ( sin t )
0
2π
=
48t 0
5 2 2π
si n t = 96π + 0 = 96π
0
2
Soal-Soal
∫ F[r ] dr jika:
1. Hitunglah
F[r] =
C
[x + y] i + [y – x] j
a. C :
Parabola y2 = x dari [1, 1] sampai [4, 2]
b. C :
Garis lurus dari [1, 1] sampai [4, 2]
c. C :
Garis lurus dari [1, 1] ke [1, 2] dan dilanjutkan ke [4, 2]
2. Hutunglah
∫ F[r ] . dr jika
C
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
67
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
F[r] =
[2x – y + 4] i + [5y + 3x – 6] j
a. C :
Sekeliling segitiga di bidang xoy dengan titik-titik sudut [0,0]
[3,0], [3,2] yang dijalani berlawanan arah jaru jam.
b. C :
3. Hitunglah
Sekeliling lingkungan berjari-jari 4 dan berpusat di [0, 0]
∫ [x
2
C
+ y 2 ] ds jika
a. C :
Sepanjang busur lingkaran x2 + y2 = 4 dari [2, 0] sampai [0,2]
b. C :
Sepanjang sumbu x dari [0, 0] ke [1, 0] kemudian dilanjutkan
ke [1, 1]
Jawab
34
;
3
b. 11
2. a. 12 ;
b. 64
3. a. 4
b.
1. a.
;
;
c. 0
5
3
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
68
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
4.2. Teorema Green
Transformasi Integral Rangkap Dua Ke Integral Garis
Integral rangkap dua yang meliputi suatu daerah dalam bidang
XOY bisa ditransformasikan ke dalam integral garis sepanjang batas dari
daerah tersebut atau sebaliknya. Transformasi tersebut dilakukan dengan
teorema Green pada bidang. Transformasi dengan teorema Green ini
penting
karena
bisa
digunakan
untuk
membantu
mengevaluasi
perhitungan integral dengan lebih mudah.
Teorema Green :
Misalkan R adalah daerah tertutup dan terbatas pada bidang XOY
yang batas C nya
erdiri atas sejumlah kurva licin (smooth curve) yang
berhingga, misalkan F1(x,y) dan
F2(x,y) adalah fungsi-fungsi yang kontinu
dan mempunyai derivatif parsial
∂F2
∂F1
dan
∂x
∂y
dalam
domain yang
memuat R, maka :
 ∂F2
∫∫  ∂x
R
−
∂F1 
dx dy =
∂y 
∫ [ F dx + F dy ] = ∫ F ! dr
C
1
2
C
Integrasi ini dilakukan sepanjang batas C di R.
y
C
R
x
Apabila ditulis dalam bentuk vektor menjadi :
∫∫ [CurlF ] ! k
R
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
dxdy
69
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
∫
= F ! dr
C
F = F1(x,y) i + F2(x,y)
CONTOH :
Misalkan : F = (y2 - 7y) i + (2xy + 2x) j
F1 = y2 - 7y
F2 = 2xy + 2x
C : lingkaran x2 + y2 = 1
y
1
-1
 ∂F2
R
x
-1
Ruas Kiri :
∫∫  ∂x
1
−
∂F1 
dx dy =
∂y 
∫∫ [(2 y + 2) − (2 y − 7)] dxdy
=9
R
∫∫
R
dxdy = 9 x luas lingkaran x2 + y2 = 1
= 9π
Ruas Kanan :
r(t) = cos t i + sin t j ; 0≤t≤2π
x(t) = cos t
y(t) = sin t
F1[r(t)] = sin2 t - 7 sin t
F2[r(t)] = 2 cos t sin t + 2 cos t
r'(t) = - sin t i + cos t j
∫ F ! dr =
C
2π
∫ [(sin
2
t − 7 sin t )(− sin t ) + (2 cos t sin t + 2 cost )(cos t )]dt
0
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
70
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
2π
∫ [− sin
=
3
t + 7 sin 2 t + 2 cos 2 t sin t + 2 cos 2 t ]dt
0
2π
2π
2
∫ [(1 − cos t )d cos t
=
+
∫ [1 − cost ]dt
7
2
0
2π
-
0
∫
2 cos 2 td cos t
+
0
2π
∫ (1 + cos 2t )dt
0
= cos t =
7
2
2π
1
3
cos 3 t + 72 t − 74 sin 2t − 23 cos 3 t + t + 12 sin 2t Ι
0
⋅ 2π + 2π = 9π
Bukti Teorema Green :
y
y
d
C**
p(y)
v(x)
a
u(x)
q(y)
c
C*
b
x
x
Misalkan R adalah daerah yang dibatasi oleh lengkung
seperti dalam gambar, maka :
C = C* ∪ C**
a ≤ x ≤ b ; u(x) ≤ y ≤ v(x)
c ≤ y ≤ d ; p(y) ≤ x ≤ q(y)
∂F
∫∫R ∂y1 dx dy =
∂F1
dy
∂y
u ( x)
v( x)
b
b
∫[ ∫
a
] dx = ∫ F1 ( x, y)
y =v ( x )
y =u ( x )
a
b
=
∫ [F [ x, v( x)] − F [ x, u( x)]] dx
1
1
a
b
=
∫ F1[ x, v( x)]dx a
b
∫ F [ x, u ( x)]dx
1
a
a
= -
b
∫ F [ x, v( x)]dx - ∫ F [ x, u ( x)]dx
1
1
b
= -
a
∫ F [ x, y ]dx - ∫ F [ x, y ]dx
1
C **
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
1
C*
71
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
∫
= -
F1 ( x, y ) dx
C
Secara sama :
∂F2
∫∫R ∂x dx dy =
∂F2
dx
∂
x
p( y)
q( y)
d
∫[ ∫
c
] dy
d
=
∫ F ( x, y )
2
x=q( y )
x= p( y)
c
d
=
∫ [F [q( y), y ] − F [ p( y), y ]] dy
2
2
c
d
=
d
∫ F [q( y), y ]dy - ∫ F [ p( y), y]dy
2
2
c
c
d
=
c
∫ F2 [q( y), y ]dy +
∫ F [ p( y), y]dy
2
c
=
∫ F [ x, y ]dy + ∫ F [ x, y]dy
2
2
C*
=
∴
∫∫
R
d
C **
∫
C
∂F2
dx dy ∂x
F2 ( x, y ) dy
∫∫
R
∂F2
dx dy =
∂x
∫
C
F2 ( x, y ) dy +
∫
C
F1 ( x, y ) dx
atau :
 ∂F2
∫∫  ∂x
R
−
∂F1 
dx dy =
∂y 
∫ [ F dx + F dy ] = ∫ F ! dr
1
C
2
C
Luas Daerah Pada Bidang Sebagai Integral Garis Dalam Lintasan Tertutup
Jika F1 = 0
F2 = x
, maka
dan
∫∫ dxdy
R
=
∫
xdy
∫
ydx
C
jika F2 = y
F1 = 0
sehingga,
∫∫ dxdy
R
Karena
maka,
∫∫ dxdy
, maka
=
∫∫ dxdy
R
1
2
R
= -
C
∫ ( xdy − ydx)
C
= A = luas daerah yang dibatasi oleh bidang R
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
72
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
A=
∫∫ dxdy
R
=
∫ ( xdy − ydx)
1
2
C
Luas Daerah Pada Bidang Dalam Koordinat Polar.
Misalkan :
A=
x = r cos θ
y = r sin θ
dx = cosθ dr - r sinθ dθ
dy = sinθ dr + r cosθ dθ
∫∫ dxdy = ∫ ( xdy − ydx)
∫ [r cosθ (sin θdr + r cosθdθ ) − r sin θ (cosθdr − r sin θdθ )]
∫ [r cosθ sin θdr + r cos θdθ − r sin θ cosθdr − r sin θdθ ]
∫ [r cos θ dθ + r sin θdθ ] = ∫ r dθ
1
2
R
=
1
2
C
=
1
2
C
=
1
2
C
C
2
2
2
2
A=
CONTOH :
1. Dengan
2
1
2
∫
C
2
2
1
2
2
2
C
r 2 dθ
menggunakan
teorema
Green
tentukan
sepanjang lintasan C, jika F = 3x2 i - 4xy j
C : sekeliling segi 4 dengan batas 0 ≤ x ≤ 4 ; 0 ≤ y ≤ 1
berlawanan
dengan arah jarum jam.
Penyelesaian :
y
(0,1)
∫
C
F (r ) ! dr
dengan arah
(4,1)
(0,0)
(4,0)
x
F = 3x2 i - 4xy j
F1 = 3x2
F2 = 4xy
∫
C
→
∂F1
= 0
∂y
∂F2
→
= -4y
∂y
F (r ) ! dr =
∫ [ F dx + F dy ]
C
1
2
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
73
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Teorema Green :
 ∂F2
∫ [ F dx + F dy] = ∫∫  ∂x
1
C
2
R
4
∂F1 
dx dy
∂y 
1
∫
=
−
∫ (−4 y − 0) dy dx =
0
0
4
∫
=
-2 dx = -2x
1
4
∫
-2y dx
0
0
= -8
0
0
2. Tentukan luas daerah yang dibatasi ellips
Penyelesaian :
y
b
-a
A=
a
1
2
∫
C
( xdy − ydx) =
=
x2 y2
+
=1
a2 b2
x = a cosθ → dx = - a sinθ dθ
y = b sinθ → dy = b cosθ dθ
x
2π
∫ [a cos θb cosθdθ ) − b sin θ (−a sin θdθ )]
1
2
0
2π
1
2
1
2π
∫ [ab cos θ + ab sin θ ]dθ
2
=
2
0
1
2
∫ abdθ =
1
2
ab θ
0
3. Tentukan luas Kardioida r = a(1 - cos θ)
;
2π
= π ab
0
0 ≤ θ ≤ 2π
Penyelesaian :
y
a
2a
x
-a
Luas Kardioida =
∫
1
2 C
r2 dθ
2π
=
1
2
∫ [a(1 − cos θ )]
2
dθ
0
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
74
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
2π
=
1
2
∫ [a
2
(1 − 2 cos θ + cos 2 θ )] dθ
0
2
=
a
2
2π


1 + cos 2θ
θ
θ
dθ 
−
+
2
sin

∫
2
0


2π
a2
[θ − 2 sin θ + 12θ + 14 sin 2θ ]
=
2
0
2
2π
a  3θ 1

=
− 4 sin 2θ ]

2  2
0
2
a
3π a 2
[3π − 0] =
=
2
2
SOAL-SOAL :
1. Dengan teorema Green tentukan
∫ [( x
2
C
− xy 2 )dx + ( y 2 − 2 xy )dy ]
dengan C : lintasan bujur sangkar dengan titik-titik sudut (0,0); (2,0);
(2,2); (0,2)
Jawab : 8
2. Dengan teorema Green tentukan
∫ [( x
C
3
− x 2 y )dx + xy 2 dy ]
dengan C : daerah yang dibatasi lingkaran x2 + y2 = 4
16
Jawab : 120π
3. Dengan teorema Green tentukan
∫
C
dan x2 + y2 =
F (r ) ! dr , jika
F = xy2 i - x2y j
C : batas daerah yang dibatasi oleh x ≥ 0 ; 0 ≤ y ≤ 1-x2
Jawab : -1/3
4. Tentukan luas daerah di kuadran I yang dibatasi oleh y = x dan y = x3
Jawab : 1/4
5. Tentukan luas daerah yang dibatasi oleh hiposikloida x 2 / 3 + y 2 / 3 = a 2 / 3
Persamaan parameternya adalah : x = a cos3t
0 ≤ t ≤ 2π
y = a sin3t ;
Jawab : 3π
a2
8
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
75
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
4.3. Medan Gaya Konservatif.
Integral Garis yang tidak tergantung pada bentuk lintasan
Dalam bidang (R2) :
Jika F(x,y) = F1(x,y) i + F2(x,y) j
r = xi+yj
dr = dx i + dy j
Teorema :
Syarat perlu dan cukup untuk
∫
C
F ! dr = ∫ F1 dx + F2 dy tidak
C
tergantung pada
bentuk lintasan C yang menghubungkan dua
adalah :
titik pada daerah R dalam bidang R2
∂F1 ∂F2
=
∂y
∂x
atau jika bisa ditemukan suatu fungsi φ (x,y) sedemikian hingga :
∂φ
= F1
∂x
∂φ
= F2
∂y
Kejadian khusus jika C lintasan tertutup dan
∫
C
∂F1 ∂F2
=
∂y
∂x
maka
F ! dr = 0
BUKTI :
F ! dr = F1(x,y) dx + F2(x,y) dy
Karena
∂F1 ∂F2
, maka pasti dapat ditemukan fungsi φ (x,y)
=
∂y
∂x
sedemikian hingga :
∂φ
= F1
∂x
∂φ
= F2
∂y





,
sebab
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
∂F1
∂ 2φ
=
∂y ∂y∂x
=
∂F2
∂ 2φ
=
∂x
∂x∂y
76
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
∂φ
∂φ
dx +
dy = d φ
∂x
∂y
Jadi : F◦dr =
Misalkan C adalah lintasan dari (x1, y1) ke titik (x2, y2), maka
∫
Terbukti
( x2 , y 2 )
( x1 , y1 )
( x1 , y1 )
∫ dφ = φ
F◦dr =
C
( x2 , y 2 )
bahwa
nilai
integrasinya (batas C)
= φ (x2, y2) - φ (x1, y1)
integralnya
C
tergantung
pada
batas
dan tidak tergantung pada bentuk lintasannya.
x1 = x2
Jika C lintasan tertutup, maka
∫
hanya
dan
y1 = y2
sehingga
F◦dr = 0
CONTOH :
( 2 ,1)
∫ [(2 xy − y
1. a. Buktikan bahwa
4
+ 3)dx + ( x 2 − 4 xy 3 )dy ] tidak tergantung
(1, 0 )
pada lintasan yang menghubungkan (1,0) dan (2,1).
b. hitung nilai integral garisnya.
Penyelesaian :
a. F1 = 2xy - y4 + 3
F2 = x2 - 4xy3
Karena
∂F1
= 2x − 4 y 3
∂y
∂F2
= 2 x - 4y3
∂x
→
→
∂F1 ∂F2
, jadi integral garis tersebut tidak tergantung pada
=
∂y
∂x
bentuk
lintasan.
∂φ
= F1
∂x
b. Dari
..............(i)
Dari
maka
φ =
∫ (2 xy − y
4
+ 3)dx = x2y - xy4 + 3x + g(y)
x
∂φ
= F2 maka
∂y
φ =
∫ (x
2
− 4 xy 3 )dy = x2y - xy4 + h(x)
y
..............(ii)
Fungsi φ =
∫ F dx = ∫ F dy
x
1
y
2
(i) = (ii) → x2y - xy4 + 3x + g(y) = x2y - xy4 + h(x)
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
77
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
g(y) = 0
h(x) = 3x
∴ φ = x2y - xy4 + 3x
( 2 ,1)
∴
∫ [(2 xy − y + 3)dx + ( x − 4 xy )dy] = φ
4
2
( 2 ,1)
3
(1, 0 )
=
x2y
-
xy4
+ 3x
(1, 0 )
( 2 ,1)
(1, 0 )
= (22.1 - 2.14 + 3.2) - (12.0 - 1.0
+ 3.1)
= 8-3=5
2. Hitung
∫
C
F◦dr , jika :
F = (2xy3 - y2 cos x) i + (1 - 2y sin x + 3x2y2) j
C : sepanjang parabola 2x = πy2 dari (0,0) ke (
π
, 1)
2
Penyelesaian :
F1 = 2xy3 - y2 cos x
-----------------
F2 = 1 - 2y sin x + 3x2y2
Karena
--------------------------
∂F1 ∂F2
,
=
∂y
∂x
∂F1
= 6 xy 2 − 2 y cos x
∂y
∂F2
= −2 y cos x + 6 xy 2
∂x
jadi integral garis tersebut tidak tergantung
pada bentuk
lintasan.
Mencari fungsi φ :
Dari
............(i)
Dari
∂φ
= F1 maka φ = ∫ (2 xy 3 − y 2 cos x)dx = x2y3 - y2sinx + g(y)
∂x
x
∂φ
= F2 maka φ = ∫ (1 − 2 y sin x + 3x 2 y 2 )dy = y- y2sinx + x2y3 + h(x)
∂y
y
..........(ii)
Fungsi φ =
∫ F dx = ∫ F dy
x
1
y
2
(i) = (ii) → x2y3 - y2sinx + g(y) = y - y2sinx + x2y3 + h(x)
g(y) = y
h(x) = 0
∴ φ = x2y3 - y2sinx + y
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
78
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
∴
∫
C
F◦dr = φ
( π2 ,1)
=
x2y3
-
y2sin
x+y
( 0, 0 )
( π2 ,1)
( 0, 0 )
π2 3 2
π
=(
.1 − 1 . sin + 1 ) - (0
4
2
- 0 + 0)
=
3. Hitung
∫
C
π2
π2
−1+1 =
4
4
F◦dr , jika
F = (x2y cosx + 2xy sinx - y2 ex) i + (x2 sinx - 2y ex) j
C : keliling hiposikloida
x2/3 + y2/3 = a2/3
Penyelesaian :
F1 = x2y cosx + 2xy sinx - y2 ex
-------
∂F1
= x 2 cos x + 2 x sin x − 2 ye x
∂y
F2 = x2 sinx - 2y ex
------
∂F2
= 2 x sin x + x 2 cos x − 2 ye x
∂x
Karena
∂F1 ∂F2
,
=
∂y
∂x
pada bentuk
jadi integral garis tersebut tidak tergantung
lintasan.
Dan karena C lintasan tertutup maka
∫
C
F◦dr = 0
Dalam Ruang (R3) :
Jika F(x,y) = F1(x,y) i + F2(x,y) j + F3(x,y) k
r = xi+yj+zk
dr = dx i + dy j + dz k
Teorema :
Syarat perlu dan cukup untuk
F ! dr =
∫
C
∫
C
F1 dx + F2 dy + F3 dz tidak
tergantung pada bentuk lintasan C yang menghubungkan dua titik
pada daerah R dalam ruan R3 adalah :
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
79
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
∂F1 ∂F2
=
∂y
∂x
∂F3
∂F1
=
∂z
∂x
∂F
∂F2
= 3
∂z
∂y
Atau :
Curl F = ∇ x F = 0
bisa ditemukan suatu fungsi φ (x,y)
sedemikian hingga :
∂φ
= F1
∂x
∂φ
= F2
∂y
;
atau jika
;
∂φ
= F3
∂z
BUKTI :
F ! dr = F1(x,y,z) dx + F2(x,y,z) dy + F3(x,y,z) dz
Karena
∂F
∂F1
∂F1 ∂F2
;
= 3
=
∂z
∂x
∂y
∂x
;
∂F
∂F2
= 3
∂z
∂y
, maka pasti dapat ditemukan fungsi φ (x,y,z) sedemikian hingga :
∂F1
∂ 2φ
=
∂y
∂y∂x
∂φ
= F1
∂x
∂φ
= F2 ,
∂y
∂φ
= F3
∂z
Jadi : F ◦ dr =
sebab
=
∂F2
∂ 2φ
=
∂x
∂x∂y
∂F1
∂ 2φ
=
=
∂z
∂x∂z
∂F2
∂ 2φ
=
=
∂z
∂y∂z
∂F3 ∂ 2αφ
=
∂x
∂z∂x
∂F3
∂ 2φ
=
∂y
∂z∂y
∂φ
∂φ
∂φ
dx +
dy +
dz = d φ
∂x
∂y
∂z
Misalkan C adalah lintasan dari (x1, y1, z1) ke titik (x2, y2, z2), maka
∫
C
F◦dr =
( x2 , y 2 , z 2 )
( x2 , y 2 , z 2 )
( x1 , y1 , z1 )
( x1 , y1 , z1 )
∫
dφ = φ
= φ (x2, y2, z2) - φ (x1, y1, z1)
Terbukti bahwa nilai integralnya hanya tergantung pada batas
integrasinya
(batas
C)
dan
tidak
tergantung
pada
bentuk
lintasannya.
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
80
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Kejadian khusus jika C lintasan tertutup dan Curl F = 0 maka
∫
C
F ! dr = 0
Jika F adalah medan gaya yang bekerja pada suatu obyek yang
bergerak sepanjang
lintasan C, maka medan gaya F disebut
medan gaya konservatif apabila usaha yang dilakukan
oleh
gaya
F
untuk menggerakkan obyek sepanjang lintasan C tadi tidak tergantung
pada bentuk lintasannya, tetapi hanya tergantung pada titik awal dan
titik akhirnya saja.
CONTOH :
1.a. Buktikan bahwa F = (2xz3 + 6y) i + (6x - 6yz) j + (3x2z2 - y2) k
adalah medan gaya konservatif.
b. Hitung usaha yang dilakukan oleh gaya F untuk menggerakkan
benda dari titik
P(1,-1,1) ke titik Q(2,1,-1)
Penyelesaian :
a. F medan gaya konservatif jika ∇ x F = 0 atau Curl F = 0
Curl F =
i
∂
∂x
j
∂
∂y
2 xz 3 + 6 y
k
∂
∂z
6 x − 2 yx
= (-2y + 2y)i-(6xz2 -6xz2)j+(6-6)k
3x 2 z 2 − y 2
=0
Karena curl F = 0 , maka F merupakan medan gaya konservatif.
b.
∂φ
= 2 xz 3 + 6 y → φ =
∂x
∫
∂φ
= 6 x − 2 yz
∂y
→ φ =
∫
(6x - 2yz) dy = 6xy - y2z + h(x,z) . .......... (ii)
∂φ
= 3x 2 z 2 − y 2 → φ =
∂z
∫
(3x2z2 - y2) dz = x2z3 - y2z + k(x,y ........... (iii)
x
y
z
(2xz3 + 6y) dx = x2z3 + 6xy + g(y,z) ........... (i)
(i) = (ii) → x2z3 + 6xy + g(y,z) = 6xy - y2z + h(x,z)
g(y,z) = - y2z
h(x,z) = x2z3
(i) = (iii) → x2z3 + 6xy + g(y,z) = x2z3 - y2z + k(x,y)
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
81
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
g(y,z) = - y2z
k(x,y) = 6xy
φ = x2z3 + 6xy - y2z
∫ F !dr = φ
∴W =
C
Q
= x2z3 + 6xy - y2z
P
( 4 ,1, −1)
(1, −1,1)
= [ 42.(-1)3 + 6.(4).1 - 12.(-1)] - [ 12.(-1)3 + 6.1.(-1) - (-1)2. 1] = 15
2. Hitung usaha yang dilakukan oleh gaya F = y i + (x+y) j + z5 k
yang
sepanjang lintasan C : x2 + y2 = 1 dan z = y ,
bekerja
dari titik (0,1,1) sampai titik (1,0,0)
Penyelesaian :
Curl F =
i
∂
∂x
j
∂
∂y
y
x+ y
k
∂
= (0 - 0)i - (0 - 0) j + (1-1)k = 0
∂z
z5
Karena curl F = 0 , maka F medan gaya konservatif → W =
∫
C
F ! dr = φ
(1, 0 , 0 )
( 0 ,1,1)
Mencari fungsi φ :
∂φ
=y
∂x
→ φ =
∫
y dx = xy + g(y,z)
∂φ
= x+ y
∂y
→ φ =
∫
(x + y) dy = xy +
∂φ
= z5
∂z
→ φ =
∫
z5 dz =
x
y
z
(i) = (ii) → xy + g(y,z) = xy +
g(y,z) =
............... (i)
1 2
y + h(x,z)
2
1 6
z + k(x,y)
6
............... (ii)
............... (iii)
1 2
y + h(x,z)
2
1 2
y + h(x,z)
2
(i) = (iii) → xy + g(y,z) =
1 6
z + k(x,y)
6
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
82
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
k(x,y) = xy + g(y,z) (ii) = (iii) → xy +
1 2
1 6
y + h(x,z) =
z + k(x,y)
2
6
k(x,y) = xy +
h(x,z) =
φ = xy +
W=
∫
C
= -
1 6
1 2
1 6
z = xy +
y + h(x,z) z
6
2
6
1 2
y
2
1 6
z
6
1 2 1 6
y +
z
2
6
F ! dr = φ
(1, 0 , 0 )
= (xy +
( 0 ,1,1)
1 2 1 6
y +
z)
2
6
(1, 0 , 0 )
= (0 + 0 + 0) - (0 +
( 0 ,1,1)
1
1
+
)
2
6
2
3
SOAL-SOAL :
1. Tentukan besarnya usaha W yang dilakukan oleh gaya F = yz i + xz j +
xy k untuk
menggerakkan suatu partikel sepanjang garis lurus
dari P(1; 1,1; 1) ke Q(3; 3; 2).
Jawab : 17
2. Hitung
∫
C
F ! dr , jika
F = 2xy i + (x2 + z) j + y k
C : lintasan x2 + y2 = 1 ; z = x dari (1,0,1) ke (0,1,0)
Jawab = 0
3. Hitung
∫ F !dr
C
, jika
F = 3x2 e3y i + 3x3 e3y j - 3e-3z k
C : keliling ellips 25x2 + y2 = 25 ; z = 0 berlawanan arah dengan jarum
jam.
Jawab = 0
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
83
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
4.4. Integral Luasan / Integral Permukaan ( Surface Integrals)
A. Penyajian Persamaan Luasan / Permukaan
a. Penyajian Dalam Koordinat Kartesius
z = f(x,y)
atau
g(x,y,z) =
0
Misalnya :
z=
x2 + y2 + z2
atau
x2 + y2 + z2 - a2 = 0
x2 + y2 + z2 = a2
merupakan luasan dari bola dengan jari-jari a dan berpusat di titik
O(0,0,0).
z
a
a
y
a
x
b. Penyajian dalam bentuk fungsi vektor
r(u,v) = x(u,v) i + y(u,v) j + z(u,v) k , (u,v) ∈ R
CONTOH :
1. Luasan berupa bidang segi empat 0 ≤ x ≤ a ; 0 ≤ y ≤ b ; z = c
z
c
b
y
x(u,v) = u ; 0 ≤ u ≤ a
y(u,v) = v ; 0 ≤ v ≤ b
z(u,v) = c
r(u,v) = u i + v j + c k
a
2. Luasan berupa bidang 0 ≤ z ≤ (a-x) ; 0 ≤ x ≤ a ; y = c
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
84
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
z
a
a-x
x(u,v) = u
y(u,v) = c
z(u,v) = v
y
a
c
3. Luasan berupa bidang
; 0≤u≤a
; 0 ≤ v ≤ (a-u)
r(u,v) = u i + c j + v k
x y z
+ + = 1 di oktan I
a b c
z
c
b
y
b(1 − u / a)
a
x(u,v) = u
y(u,v) = v
; 0≤u≤a
; 0≤ v ≤
z(u,v) = c(1 - u/a - v/b)
r(u,v) = u i + v j + c(1-u/a-v/b) k
4. Luasan berupa bidang y2 ≤ z ≤ c2 ;
0≤y≤c ; x=a
z
c
x(u,v) = a
0≤u≤c
y(u,v) = u ;
u 2 ≤ v ≤ c2
z(u,v) = v ;
r(u,v) = a i + u j + v k
z = c2
c
y
a
5. Luasan berupa bidang lingkaran
z
c
y2 + z2 = a2
di x = c ;
x(u,v) = c
y
y(u,v) = u cos v
;
0≤u≤a
z(u,v) = u sin v
;
0 ≤ u ≤ 2π
r(u,v) = c i + u cosv j + u sinv k
x
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
85
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
6. Luasan berupa silinder putar : x2 + y2 = a2
;
-c ≤ z ≤ c
x(u,v) = a cos u
y(u,v) = a sin u
; 0 ≤ u ≤ 2π
z(u,v) = v
; -c ≤ v ≤ c
r(u,v) = a cos u i + a sin u j + v k
z
c
a
y
a
x
-c
7. Kerucut Putar : z =
x2 + y2
z2 = x2 + y2
;
0≤z≤c
z
c
-c
x(u,v) = u cos v
c
y
y(u,v) = u sin v
;
0≤u≤c
z(u,v) = u
;
0 ≤ v ≤ 2π
r(u,v) = u cos v i + u sin v j + u k
x
8.
Luasan Bola : x2 + y2 + z2 = a2 ; di oktan I dan II
a.
z
P
u v
x
P'
x(u,v) = a cos v cos u
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
y
;0≤u≤π
86
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
y(u,v) = a cos v sin u
; 0 ≤ v ≤ π/2
z(u,v) = a sin v
r(u,v) = a cos v cos u i + a cos v sin u j + a sin v k
b.
z
P
v
u
y
x
x(u,v) = a cos u cos v
y(u,v) = a sin u sin v
;0≤u≤π
; 0 ≤ v ≤ π/2
z(u,v) = a cos u
r(u,v) = a cos u cos v i + a sin u sin v j + a cos u k
B. Bidang Singgung Dan Normal Luasan
Untuk menghitug Integral Garis digunakan vektor singgung dari lintasan C,
yaitu r'(t), sehingga integral garis bisa didefinisikan sebagai :
∫
C
b
F (r ) ! dr = ∫ F (r ) ! r ' (t )dt
a
Secara sama , dalam menghitung Integral Luasan akan digunakan vektor
normal luasan, yang akan ditentukan dari bidang singgungnya. Bidang
singgung suatu luasan S di titik P di S yang dinotasikan dengan T(P),
adalah bidang yang memuat garis singgung di titik P dari semua kurva di
S yang melalui P.
Untuk menentukan bidang singgung T(P) dari suatu luasan S yang
dinyatakan dalam bentuk fungsi vektor r(u,v), bisa diturunkan dari
kenyataan bahwa suatu kurva di S bisa dinyatakan dalam bentuk
pasangan fungsi-fungsi kontinu sebagai berikut :
║ u = u(t)
║ v = v(t)
dan
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
87
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Fungsi-fungsi u(t) dan v(t) tersebut menyatakan kurva atau lintasan yang
terletak pada luasan S, sehingga u(t) dan v(t) akan memenuhi
persamaan r(u,v), yaitu :
~
r (t) = r[u(t),v(t)]
→ persamaan kurva yang terletak pada luasan
S : r(u,v)
Misalnya :
r (t) = a cos t i + a sin t j + ct k
Karena Helix putar ~
terletak pada luasan
S yang berbentuk silinder dengan persamaan r(u,v) = a cos u i + a sin u j
+vk.
maka kurva atau lintasan yang berbentuk helix putar
tersebut bisa
dinyatakan dalam bentuk pasangan fungsi kontinu :
║u= t
║ v = ct
yang memenuhi persamaan r(u,v) dari silinder di atas.
Selanjutnya vektor singgung dari kurva ~
r (t) = r[u(t),v(t)] bisa ditentukan
dengan dalil rantai :
dr ∂r~ du ∂~
r dv
~
= ru u' + rv v'
=
+
r '(t) =
dt ∂u dt ∂v dt
Dengan mengambil satu titik P pada luasan S, perhatikan semua kurva
pada S yang melalui P, yang masing-masing kurva tersebut bisa
dinyatakan dalam bentuk pasangan fungsi-fungsi kontinu u(t) dan v(t).
Selanjutnya dari semua kurva yang melalui P tersebut bisa ditentukan
vektor singgung atau
~
r '(t) nya. Vektor-vektor singgung ini akan
membentuk satu bidang, yaitu bidang singgung T(P), asal ru dan rv ada
dan keduanya tidak tergantung secara linier (tidak segaris), sehingga :
N = ru x rv ≠ 0
yang berarti bahwa N ⊥ pada bidang singgung T(P), oleh karena itu N
merupakan Vektor Normal dari luasan / permukaan S di titik P.
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
88
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
n
ru
T(P)
rv
∴ Vektor Normal satuan dari luasan S = n =
S
r xr
N
= u v
N
ru xrv
Jika S disajikan dalam persamaan g(x,y,z) = 0 maka
:
n =
grad .g
grad .g
CONTOH :
1. Tentukan vektor normal satuan dari luasan r(u,v) = (u+v) i + (u-v) j
Penyelesaian :
ru =
∂r
=i+j
∂u
rv =
∂r
=i-j
∂v
i
N = r u x rv =
∴n=
− 2k
4
j
k
1 1
1 −1
0
0
= i (0) - j (0) + k(-2) = -2 k
= −k
2. Tentukan vektor normal satuan dari ellipsoida putar
r(u,v) = cos v cos u i + cos v sin u j + 2 sin v k
; di sembarang titik.
Penyelesaian :
ru =
∂r
= - cos v sin u i + cos v cos u j
∂u
rv =
∂r
= - sin v cos u i - sin v sin u j + 2 cos v k
∂u
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
89
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
i
N =
j
− cos v sin u cos v cos u
− sin v cos u − sin v sin u
k
0
2 cos v
= i (2cos2v cosu - 0) - j (-2cos2 v sinu - 0) + k (cosv sinv sin2u + cosv
sinv cos2u)
= 2cos2v cosu i + 2cos2v sinu j + cosv sinv k
| N| =
4 cos 4 v cos 2 u + 4 cos 4 v sin 2 u + cos 2 v sin 2 v
=
4 cos 4 v(cos 2 u + sin 2 u ) + cos 2 v sin 2 v
=
4 cos 4 v + cos 2 v sin 2 v
4 cos 2 v + sin 2 v
= cosv
∴ n
= ( 2cos2v cosu i + 2cos2v sinu j + cosv sinv k) /
cosv
4 cos 2 v + sin 2 v
= (2cosv cosu i + 2cosv sinu j + sinv k) /
4 cos 2 v + sin 2 v
3. Tentukan vektor normal satuan dari bola : x2 + y2 + z2 - a2 = 0
di titik P(x,y,z) sembarang.
Penyelesaian :
g = x2 + y2 + z2 - a2 = 0
grad g = (
∂
∂
∂
i+
j + k ) (x2 + y2 + z2 - a2) = 2x i + 2y j + 2z k
∂x
∂y
∂z
| grad g | =
∴n =
→
4 x 2 + 4 y 2 + 4 z 2 = 2a
2 xi + 2 yj + 2 zk
1
=
(x i + y j + z k)
a
2a
4. Tentukan vektor normal satuan dari kerucut putar :
f(x,y,z) = -z +
x2 + y2 = 0
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
90
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Penyelesaian :
x
grad f =
x +y
2
| grad f | =
∴n =
2
y
i +
x + y2
2
j - k
x2 + y2
+ 1 = √2
x2 + y2
x2
y2
+
+1 =
x2 + y2 x2 + y2

x

i+
2
2  x + y 2
y
1
x2 + y2

j − k

C. Integral Luasan / Integral Permukaan
Diberikan persamaan luasan S :
r(u,v) = x(u,v) i + y(u,v) j + z(u,v) k
;
(u,v) ∈ R
dengan vektor normal luasan : N = ru x rv
dan vektor normal satuan
: n =
N
N
Integral Luasan dari suatu fungsi vektor F = F(x,y,z) meliputi luasan S (over
S) didefinisikan sebagai berikut :
∫∫ F ! n dA = ∫∫ F [r (u, v)] ! N (u, v) dudv
S
Dengan :
R
N(u,v) du dv = n |N| du dv
; karena n =
N
N
|N| = | ru x rv | = luas jajaran genjang (segi empat) yang
dibentuk oleh ru dan rv
( dengan sisi ru dan rv )
Sehingga
|N| du dv = elemen luas dA dari S
Jadi : n dA di S = n |N| du dv di R atau N dudv
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
di R.
91
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
CONTOH :
1. Tentukan integral luasan dari F = y i + 2 j + 2z k , meliputi luasan S yang
berbentuk
silinder parabolis y = x2
Penyelesaian :
;
0 ≤ x ≤ 2 ; 0 ≤ z ≤ 3.
z
3
4
y
2
x
Persamaan S dalam bentuk fungsi vektor :
x(u,v) = u
y(u,v) = u2
z(u,v) = v
; 0≤u≤2
; 0≤v≤3
S : r(u,v) = u i + u2 j + v k
ru = i + 2u j
rv = k
i
N = ru x rv =
1
0
j
2u
0
k
0
1
= 2u i - j
F[r(u,v)] = u2 i + 2 j + 2v k
F[r(u,v)] ! N(u,v) = (u2 i + 2 j + 2v k ) ! (2u i - j) = 2u3 - 2
∫∫ F ! ndA = ∫∫ F [r (u, v)] ! N (u, v)dudv =
S
R
3
=
3
3 2
∫ ∫ (2u
3
− 2)dudv
0 0
2
2 4
∫0 ( 4u − 2u) 0 dv = ∫0 (8 − 4 − 0)dv = 4v
3
= 4.3 - 0 = 12
0
2. Tentukan integral luasan dari F = x2 i + 3y2 k ; meliputi luasan S yang
merupakan bidang dengan persamaan x = y + z = 1 pada oktan I.
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
92
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Penyelesaian :
z
Persamaan fungsi vektor :
x(u,v) = u
;
0≤u≤1
y(u,v) = v
;
0 ≤ v ≤ 1-u
1
1
z(u,v) = 1-u-v
x
y
1
r(u,v) = u i + v j + (1-u-v) k
ru = i - k
rv = j - k
i
j
N = ru x rv = 1
0
1
0
k
−1 = i + j + k
−1
F[r(u,v)] = u2 i + 3v2 j
F[r(u,v)] ! N(u,v) = (u2 i + 3v2 j ) ! ( i + j + k) = u2 + 3v2
∫∫ F ! ndA = ∫∫ F [r (u, v)] ! N (u, v)dudv
S
1 1− u
=
∫ ∫ (u
2
+ 3v 2 )dvdu
0 0
R
=
1
1−u
0
0
2
3
∫ (u v + v )
1
1
0
0
du = ∫ [u 2 (1 − u ) + (1 − u ) 3 ]du = ∫ [u 2 − u 3 + (1 − u ) 3 ]du
=
1 3 1 4 1
u − u − (1 − u ) 4
3
4
4
1
0
=
1 1 1 1
− − =
3 4 4 3
Nilai dari integral luasan ini akan tergantung dari pemilihan vektor normal
satuan luasan integrasinya ( ingat, untuk vektor normal satuan, selain n
bisa juga dipilih -n). Sehingga integral luasan atau integral suatu fungsi
terhadap / meliputi luasan S yang berarah, bisa dilakukan dengan
memilih salah satu kemungkinan dari dari arah vektor normal satuannya.
Arah dari n =
ru xrv
ru xrv
dikatakan arah positif, sebaliknya -n disebut arah
negatif.
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
93
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Jika kita mengubah arah dari S, yang berarti merubah n menjadi -n ,
maka setiap komponen dari n dikalikan dengan -1, sehingga hasil
integralnya juga akan berubah menjadi -1 kali integral semula.\
Integral luasan ini biasanya muncul dalam masalah-masalah aliran fluida
(flow problem).
Jika F(x,y,z) = ρ(x,y,z) v(x,y,z) = ρv
dengan : ρ = densitas massa fluida
v = vektor kecepatan aliran fluida
karena F ! n adalah komponen F dalam arah normalnya, maka :
∫∫ F ! n dA =
fluks massa fluida yang melintasi luasan S.
S
= besarnya massa fluida persatuan waktu yang melintasi
luasan S.
CONTOH :
Hitung besarnya fluks massa dari air yang mengalir melintasi silinder
parabolis S : z = x2 , 0 ≤ x ≤ 2 ; 3 ≤ y ≤ 5. Jika vektor kecepatan aliran air
tesebut adalah v = -xyz i - 3z2j - k ; besarnya laju (speed) dihitung dalam
meter perdetik dan densitas massa air ρ = 1 kg/liter.
Penyelesaian :
Persamaan fungsi vektor dari S : x(u,v) = u
y(u,v) = v
; 0≤u≤2
; 3≤v≤5
z(u,v) = u2
r(u,v) = u i + v j + u2 k
N = ru x rv =
→
ru = i + 2u k
;
rv = j
i
j
k
1
0
0
1
2u = (0-2u) - j (0) + k (1-0) = -2u i + k
0
F(x,y,z) = ρ v = 1 (-xyz i - 3z2j - k) = -xyz i - 3z2j - k
F[r(u,v)] = -u3v i - 3u4 j - k
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
94
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
F[r(u,v)] ! N(u,v) = (-u3v i - 3u4 j - k ) ! (-2u i + k) = 2u4v -1
∫∫ F ! ndA = ∫∫ F[r (u, v)] ! N (u, v) dudv =
S
R
2
5
∫ ∫ (2u
4
v − 1)dvdu
u =0 v =3
=
2
∫ (u
0
4
5
2
3
0
2
v − v) du = ∫ {[u (25) − 5] − [u (9) − 3]}du = ∫ [16u 4 − 2]du
2
4
4
0
2
512
16 5
u − 2u ) =
− 4 = 98,4
5
5
0
= (
v dalam meter/detik
ρ dalam kg/liter = 1000 kg/m3
A dalam m2
Jadi besarnya fluks massa air di atas = (98,4 m/dt)(1000 kg/m3)(m2)
= 98.400 kg/detik.
D. Integral Meliputi Luasan Tak Berarah
a. Jika
Integran merupakan Fungsi Skalar dan Luasan Integrasi
merupakan Fungsi Vektor.
Bentuk Integral Luasan :
∫∫ G (r )dA = ∫∫ G[r (u, v)] N (u, v) dudv
S
R
G(r) = fungsi skalar
dA
= |N| dudv = | ru x rv| dudv
yang dinyatakan
;
yaitu elemen luas dari luasan S
dalam persamaan r(u,v) = x(u,v)i + y(u,v)j + z(u,v)k
dengan arah tidak diperhatikan.
Jika G(r) = 1 ; diperoleh :
A(S) =
∫∫ dA = ∫∫
A
ru x rv dudv
R
yang merupakan luas permukaan dari luasan S.
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
95
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
b. Jika Integran merupakan Fungsi Skalar dan Luasan Integrasi S
merupakan
Fungsi Skalar z = f(x,y).
Sehingga : x = u
y=v
z = f(u,v)
r(u,v) = u i + v j + f(u,v) k = [ u, v, f(u,v)]
ru = [1, 0, fu]
rv = [0, 1, fv]
N = [1, 0, fu] x [0, 1, fv] = [ - fu ; -fv ; 1]
|N| = | [ - fu ; -fv ; 1] | =
Karena :
f u = fx =
∂f
∂x
fv = fy =
∂f
∂y
1 + fu + fv
2
2
, maka :
 ∂f   ∂f 
∫∫S G(r )dA = ∫∫* G[ x, y, f ( x, y )] 1 +  ∂x  +  ∂y 
R
2
2
Dengan : R* =
dxdy
proyeksi
S
ke
bidang XOY
Dan arah vektor normal N di S adalah arah positif.
Jika G(r) = 1 , maka :
A( S ) = ∫∫ dA = ∫∫
S
R*
2
 ∂f   ∂f 
1 +   +   dxdy
 ∂x   ∂y 
2
S = proyeksi luasan S di bidang XOY
CONTOH :
1. Tentukan
∫∫ G (r )dA ;
jika
G(r) = x + 1
S
S : r(u,v) = cos u i + sin u j + v k
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
;
0 ≤ u ≤ 2π
;
0≤v≤3
96
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Penyelesaian :
x(u,v) = cos u ;
y(u,v) = sin u ;
z(u,v) = v
G[r(u,v)] = cos u + 1
ru = -sin u i + cos u j
rv = k
i
j
− sin u
N = ru x rv =
0
k
0 = i (cos u) - j (-sin u) + k (0) = cos u i +
1
cos u
0
sin u j
cos 2 u + sin 2 u = 1
|N| =
∴ ∫∫ G (r )dA =
3
2π
∫ ∫
3
2π
0
0
(cos u + 1) dudv = ∫ (sin u + u )
S
v =0 u = 0
2. Tentukan
∫∫ G (r )dA ;
jika
3
3
0
0
dv = ∫ 2π dv = 2πv
= 6π
G (r) = 1
S
S : persamaan bola dengan jari-jari a sebagai berikut
r(u,v) = a cos v cos u i + a cos v sin u j + a sin v k
-
; 0 ≤ u ≤ 2π ;
π
π
≤v≤
2
2
Penyelesaian :
ru = -a cos v sin u i + a cos v cos u j
rv = -a sin v cos u i - a sin v sin u j + a cos v k
N(u,v) = ru x rv = a2 cos2v cos u i + a2cos2v sin u j + a2 cos v sin v k
|N| = a2
cos 4 v cos 2 u + cos 4 v sin 2 u + cos 2 v sin 2 v
cos 4 v + cos 2 v sin 2 v = a2
= a2
Karena G(r) = 1,
maka
cos 2 v = a2 cos v
∫∫ G (r )dA =
A(S)
S
∴ A(S) =
π / 2 2π
π /2
−π / 2 0
−π / 2
∫
2
2
∫ a cos vdudv = a
= 2πa2 sin v
π /2
∫
2π
π /2
0
−π / 2
u cos v dv = a 2
∫ 2π cos vdv
= 2πa2 (1+1) = 4πa2
−π / 2
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
97
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
3. Tentukan momen inersia I dari lapisan bola yang homogen dengan
persamaan :
S : x2 + y2 + z2 = a2 ;
massanya M, sepanjang sumbu z.
Penyelesaian :
Jika μ = densitas massa luasan bola (massa persatuan luas)
maka :
I =
∫∫ µD
2
dA
S
D = D(x,y,z) = jarak titik P(x,y,z) dipermukaan bola ke sumbu z.
Jadi D2 = x2 + y2
Luas permukaan bola A = 4πa2
→
μ=
M
M
=
A 4πa 2
r(u,v) = a cos v cos u i + a cos v sin u j + a sin v k
x = a cos v cos u
y = a cos v sin u
z = a sin v
D2 = x2 + y2 = a2 cos2v cos2u + a2 cos2v sin2u = a2 cos2v
dA = |N| du dv = | ru x rv| dudv = a2 cos v du dv
M
∴ I = ∫∫ µD dA =
4πa 2
S
π / 2 2π
∫
2
M
=
4π
−π / 2
M
∫0 a cos v dudv = 4π
π /2
4
M
2π cos v dv =
∫
2
−π / 2
3
∫∫ G (r )dA ;
4. Tentukan
jika
π /2
3
π /2
∫
cos 3 v dv =
−π / 2
∫
−π / 2
2π
cos v ∫ dudv
3
0
2Ma 2
3
G (r) = x2 + y2
S
S : Kerucut putar z =
x2 + y2 ;
x2 + y2 ≤ 4
Penyelesaian :
z2 = x2 + y2
z2 ≤ 4
→
-2 ≤ z ≤ 2
Untuk z = 2 → x2 + y2 = 4
Jadi proyeksi luasan S di bidang XOY berupa lingkaran : x2 + y2 = 4
Batas Integrasi :
-2 ≤ x ≤ 2
;
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
98
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
4 − x2
0 ≤ y ≤
Jika : x = u
; -2 ≤ u ≤ 2
u2 + v2
z=
u2 + v2 k
r(u,v) = u i + v j +
u
ru = i +
N =-
|N| =
k
u + v2
2
v
rv = j +
4 − u2
; 0 ≤ v ≤
y=v
k
u2 + v2
u
v
i+
u 2 + v2
u2 + v2
j+k
u2
v2
+
+1 =
u2 + v2 u2 + v2
2
G[r(u,v)] = u2 + v2
4 −u 2
2
∴ ∫∫ G (r )dA =
∫ ∫
u = −2 v = 0
S
2
1
(u 2 + v 2 ) 2dvdu = 2 ∫ (u 2 v + v 3 )
3
−2
4 −u 2
du
0
2
=
3
1
2 ∫ [u 2 4 − u 2 + (4 − u 2 ) 2 ]du
3
−2
Misalkan :
u = 2 sin t
;
du = 2 cos t dt
∫∫ G (r )dA =
S
u = -2 → t = -π/2
;
u=2
→ t = π/2
π /2
2
1
[4 sin 2 t.2 cos t + (4 cos 2 t ) 3 / 2 ]2 cos tdt
3
−π / 2
∫
π /2
=
2
1
[16 sin 2 t cos 2 t + .16 cos 4 t ]dt
3
−π / 2
∫
π /2
=
2
8
1 1
[4 sin 2 2t + (1 + 2 cos 2t + + cos 4t )]dt
3
2 2
−π / 2
∫
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
99
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
π /2
8
[4(1 − cos 2t ) + (3 + 4 cos 2t + cos 4t )]dt
6
−π / 2
∫
=
2
=
π /2
1
1
8
2[4(t − sin 2t ) + (3t + 2 sin 2t + sin 4t )]
2
6
4
−π / 2
=
2[{4(
=
2[
π
π
π
8 π
8
− 0) + (3. + 0)}− {4(− − 0) + (3. − − 0)}]
2
6
2
2
6
2
4π
4π
+ 2π − (−
− 2π )] = 8π 2
2
2
5. Contoh 4 di atas bisa juga dikerjakan dengan cara lain yaitu :
z=
x2 + y2
; G = x2 + y2
Sehingga ,
2
 ∂f   ∂f 
∫∫S G (r )dA = ∫∫* G[ x, y, f ( x, y)] 1 +  ∂x  +  ∂y  dxdy
R
2
fx =
fy =
x
x + y2
2
y
x2 + y2
1+ fx + f y =
2
2
 ∂f   ∂f 
∫∫S G(r )dA = ∫∫* ( x + y ) 1 +  ∂x  +  ∂y  dxdy
R
2
2
2
=
2
4− x 2
∫ ∫ (x
2
+ y 2 ) 2dxdy
x = −2 y = 0
dan seterusnya.
4.5. Teorema Divergensi Gauss
Misalkan T adalah daerah yang terbatas dan tertutup dalam suatu
ruang yang dibatasi
oleh luasan S yang berarah. Dan misalkan
F(x,y,z) adalah suatu fungsi vektor yang kontinu dan mempunyai derivatif
parsial pertama yang kontinu dalam domain yang
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
memuat T, maka :
100
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
∫∫∫ divF ( x, y, z )dV = ∫∫ F ! dA
T
S
n = vektor normal satuan dari luasan S dengan arah positif.
Jika F(x,y,z) = F1(x,y,z) i + F2(x,y,z) j + F3(x,y,z) k
n = cos α i + cos β j + cos γ k
maka,
 ∂F1
∫∫∫ div F ( x, y, z ) dV = ∫∫∫  ∂x
T
T
+
∂F2 ∂F3 
dxdydz
+
∂y
∂z 
∫∫ [F cos α + F
=
1
2
cos β + F3 cos γ ] dA
S
∫∫ [F dydz + F dxdz + F dxdy]
=
1
2
3
S
CONTOH :
1.
∫∫ F ! ndA
Tentukan
dengan menggunakan teorema divergensi
S
Gauss, jika
F = 7x i + - z k
dan
S : x2 + y2 + z2 = 4
→
bola berjari-jari 2
Penyelesaian :
∫∫ F ! ndA
=
S
∫∫∫ divF ( x, y, z)dV = ∫∫∫ (7 − 1)dxdydz
T
T
= 6 x volume bola berjari-jari 2 = 6 x
2. Tentukan
∫∫ F ! ndA
= 6
∫∫∫ dxdydz
T
3
π (2) 3 = 36 π
4
, jika F = xy2 i + y3j + 4x2z k
S
S : silinder x2 + y2 ≤ 4
;
0≤z≤5
Penyelesaian :
 ∂
∂
∂ 
i+
j+
k  ! xy2 i + y3j + 4x2z k = y2+ 3y2+ 4x2 = 4x2+ 4y2
∂y
∂z 
 ∂x
div F = 
= 4(x2+ y2)
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
101
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
∫∫ F ! n dA
=
S
5
4− x 2
2
1


4( x 2 + y 2 )dydxdz = 4 ∫ ∫  x 2 4 − x 2 + (4 − x 2 ) 3 / 2  dxdz
3

0 −2 
5 2
∫ ∫ ∫
z = 0 x = −2
y =0
Misalkan :
x = 2 sin t
; x = -2 → t = -π/2
dx = 2 cos t dt
∫∫ F ! ndA
; x= 2
→ t = π/2
5 π /2
= 4
S
1
(4 sin 2 t.2 cos t + .8 cos 3 t )2 cos tdtdz
3
0 −π / 2
∫ ∫
5 π /2
= 4
∫ ∫
(4 sin 2 2t +
0 −π / 2
π /2
5
= 4
∫[ ∫
8
1 1
[4(1 − cos 2t ) + (1 + 2 cos 2t + + cos 4t )d t ]dz
3
2 2
−π / 2
0
= 4
3. Hitung
16
cos 4 t )dtdz
3
5
5
0
0
∫ 8πdz = 32π z
∫∫ F ! n dA
= 160 π
; jika F = 2xy2 i + x cos z j - yz k
S
dan S : luasan yang membentuk volume tertutup yang dibatasi oleh
luasan z = 1-x ;
0≤y≤2 ; di oktan I seperti dalam
gambar berikut :
z
1
1-x
2
y
1
Penyelesaian :
 ∂
∂
∂ 
i+
j+
k  ! 2xy i + x cos z j - yz k = 2y + 0 -y = y
∂y
∂z 
 ∂x
div F = 
Batas Volume T : x = 0 → x = 1
y=0→y=2
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
102
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
z = 0 → z = 1-x
∫∫ F ! n dA =
S
1
2 1− x
1 2
1
1
2
1
∫x=0 y∫=0 z∫=0 y dzdydx = ∫0 ∫0 y (1 − x) dydx = ∫0 (1 − x) y 0 dx = 2 ∫0 (1 − x)(4 )dx
1
2
(
=2 x−
1
2
x2
)
1
=
0
2
1
2
4. Model Aliran Panas (Flow Problem)
Aliran panas yang terjadi pada suatu benda akan mengalir ke arah
menurunnya temperatur/suhu (dari temperatur tinggi menuju temperatur
rendah ).dari percobaan fisika ditunjukkan bahwa laju aliran panas akan
proporsional dengan gradien dari
temperaturnya.
Hal
ini
berarti
bahwa kecepatan aliran panas V dalam suatu benda atau penghantar
bisa dinyatakan dalam persamaan :
V = - Κ grad U(x,y,z,t)
dengan :
U(x,y,z,t) = temperatur
t
= waktu
Κ
= konstanta konduktivitas thermal dari benda /
penghantar
Berdasarkan informasi ini akan diturunkan model matematis untuk
aliran panas, yang disebut dengan persamaan panas (heat equation).
Penyelesaian :
Misalkan T adalah suatu daerah dalam penghantar / benda tersebut.
S adalah batas luasan dari daerah T
(i). Banyaknya panas yang melalui atau meninggalkan T persatuan
∫∫V ! n dA
waktu adalah :
S
dengan V◦n = komponen dari V dalam arah positif dari n.
∫∫V ! n dA = ∫∫∫ − Κ div( gradU ) dxdydz
S
T
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
= -Κ
∫∫∫ ∇ U
2
dxdydz
T
103
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
dengan ∇ 2U = U xx + U yy + U zz
(ii). Total panas dalam T :
∫∫∫αρU
H=
dxdydz
T
dengan :
α = konstanta panas spesifik dari material pembentuk
benda /
penghantar
tersebut.
ρ
=
densitas massa (massa persatuan volume) dari
material.
Laju penurunan panas dari H :
-
Besarnya
laju
∂H
∂U
= − ∫∫∫αρ
dxdydz
∂t
∂t
T
penurunan
panas
=
banyaknya
panas
yang
meninggalkan T persatuan waktu
Sehingga,
∫∫∫αρ
T
→
∂U
dxdydz = −Κ ∫∫∫ ∇ 2U dxdydz
∂t
T
∫∫∫ (α ρ
T
∂U
− Κ∇ 2 U ) dxdydz = 0
∂t
Karena persamaan ini harus dipenuhi untuk sembarang daerah T,
maka integrand dari bentuk terakhir tersebut harus = 0.
Jadi,
αρ
∂U
− Κ∇ 2U = 0
∂t
αρ
∂U
= Κ∇ 2U
∂t
∂U
Κ 2
=
∇U
∂t αρ
∂U
= c 2 ∇ 2U
∂t
≈
dengan : c2 =
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
Κ
αρ
104
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
Jika aliran panas tersebut tidak tergantung pada t ( aliran steady state
∂U
=0
∂t
), maka :
sehingga persamaan panas menjadi :
∇ 2U = 0
→ disebut persamaan Laplace
SOAL-SOAL :
1. Hitung
∫∫ F ! ndA ; jika F = x i + 2y
2
j - xz k
S
S : Luasan yang membatasi volume tertutup yang berupa 1/4 bagian
silinder y2 + z2 = 4 ;
0 ≤ z ≤ 3 sebagai berikut ,
2. Hitung
∫∫ F ! ndA ; jika F = xy i - y j + 2z k
S
S : Luasan yang membentuk volume tertutup yang dibatasi luasan z =
1-x2 ;
0 ≤ z ≤ 3 sebagai berikut ,
3.
Hitung
∫∫ F ! ndA ; jika F = xz i - sin y j + sin 2y k
2
S
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
105
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
S : Luasan yang membatasi volume tertutup berupa 1/4 bola di
oktan I
4.6. Teorema Stokes
Transformasi antara Integral Luasan dengan Integral Garis
Misalkan S adalah luasan berarah dalam ruang dan batas-batas dari S
adalah kurva C
yang tertutup, dan misalkan F = F(x,y,z) adalah fungsi
vektor kontinu yang mempu-
nyai derivatif parsial pertama yang
kontinu dalam domain yang memuat S, maka :
∫ F ! r ' ( s) dS = ∫∫ [CurlF ]! n dA
C
S
dengan :
▪ n = vektor normal satuan dari S
Arah dari kurva C mengikuti arah dari n, sebagai berikut :
n
C
C
n
n positif → arah C berlawanan arah dengan jarum jam
n negatif → arah C searah dengan arah jarum jam.
▪ r' =
dr
= vektor singgung satuan dari lintasan C
ds
s = panjang busur C
▪ Dari
∫∫ F ! n dA = ∫∫ F ! N dudv
S
; jika F digantikan dengan Curl F
R
dan
N = N1 i + N2 j + N3 k = ru x rv
maka,
 ∂F3 ∂F2 
 ∂F
∂F 
∂F  
 ∂F
 N 1 +  1 − 3  N 2 +  2 − 1  N 3  dudv
−
∂y
∂z 
∂x 
∂y  
 ∂z
 ∂x
∫∫ CurlF ! n dA = ∫∫ 
S
R
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
106
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
=
∫ [F dx + F dy + F dz ]
1
2
3
C
R adalah proyeksi luasan S di bidang XOY yang dibatasi oleh kurva C .
Catatan :
Teorema Green dalam bidang (R2) merupakan kasus khusus dari
Teorema Stokes,
jika F = F1 i + F2 j
Curl F ◦ n = Curl F ◦ k =
∂F2 ∂F1
−
∂x
∂y
Sehingga teorema Stokes menjadi :
 ∂F2
∫∫  ∂x
−
S
=
∂F1 
dA = ∫ [F1dx + F2 dy ]
∂y 
∫ F ! dr
C
CONTOH :
1. Tentukan
∫ F ! dr
, jika F = y i + xz3 j - xy3 k
C
C : lingkaran x2 + y2 = 4
di bidang z = -3
Penyelesaian :
Karena kurva C yang membatasi S terletak pada bidang z = -3 ,
berarti sejajar dengan bidang XOY, maka n = k
Sehingga ,
Curl F =
i
∂
∂x
j
∂
∂y
k
∂
∂z
y
xz 3
− zy 3
Curl F ◦n = Curl F ◦ k = z3 - 1
=
i (-3zy2 -3xz2) - j(0) + k(z3 -1)
= -27 - 1 = -28
z = −3
∫ F ! dr
C
=
∫∫ − 28 dxdy =
-28
S
∫∫ dxdy
= -28 x luas lingkaran x2 + y2 = 4
S
= -28 x π 22 = -112 π
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
107
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
2. Tentukan usaha yang dilakukan oleh gaya F = 2xy3 sin z i + 3x2y2 sinz j +
x2y3cosz k
dalam perpindahannya seputar kurva perpotongan antara
paraboloida z = x2 + y2 dan
silinder (x-1)2 + y2 = 1.
Penyelesaian :
∫ F ! dr = ∫ F ! r ' (s)dS = ∫∫ [CurlF ]! ndA
Usaha =
C
Curl F
C
S
i
∂
∂x
=
j
∂
∂y
k
∂
∂z
2 x 2 y 2 cos z 3 x 2 y 2 sin z
x 2 y 2 cos z
= i(3x2y2cosz - 3x2y2cosz) - j(2xy3cosz - 2xy3cosz) + k(6xy2sinz 6xy2sinz)
= 0
∴W =
∫∫ 0 ! n
dA = 0
S
3. Tentukan
∫ F ! dr
, jika F = (2xz3 + 6y) i + (6x - 6yz) j + (3x2z2 + y2) k
C
C : Lintasan yang membatasi bidang x + y + z = 1 di oktan I.
Penyelesaian :
Curl F =
i
∂
∂x
j
∂
∂y
2 xz 3 + 6 y
6 x − 2 yz
k
∂
∂z
= i(2y+2y) - j(6xz2-6xz2) +
3x 2 z 2 + y 2
k(6-6)
= 4y i
Persamaan fungsi vektor luasan x + y + z = 1 ,
x(u,v) = u
;
0≤u≤1
y(u,v) = v
;
0 ≤ v ≤ 1-u
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
108
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
z(u,v) = 1-u-v
r(u,v) = u i + v j + (1-u-v) k
ru = i - k
rv = j - k
N = ru x rv =
i
j
1
0
0
1
k
−1
=
i+j+k
−1
Curl F[r(u,v)] = 4v i
F[r(u,v)] ! N(u,v) = 4v
1 1− u
∫∫ CurlF ! n dA = ∫∫ Curl F [r (u, v)] ! N (u, v) dudv = ∫ ∫ (4v)dvdu
S
0 0
R
=
1
∫ (2v )
2
0
1− u
0
1
1
1
1
du = 2∫ (1 − u ) du = 2∫ [1 − 2u + u 2 ]du = 2[u − u 2 + u 3 ]
3
0
0
0
2


1
3
= 21 − 1 +  =
2
3
SOAL-SOAL :
1.
Hitung
∫
C
F ! dr ; jika
F = 2x i + z j - y k
C : lintasan tertutup yang terdiri dari garis lurus dari (4,0,0) ke (4,2,0)
dilanjutkan kurva z = 4 - y2 dari (4,2,0) ke (4,0,4) dilanjutkan ke garis
lurus dari (4,0,4) ke (4,0,0) seperti yang digambarkan sebagai berikut ,
z
4
2
y
4
2. Hitung usaha yang dilakukan oleh gaya F = x i - z j + 2y k
perpindahannya se-
pan
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
dalam
jang lintasan yang terdiri dari segmen109
DIKTAT ANALISIS VEKTOR
Oleh : Tim Matematika Teknik Mesin Unibraw
segmen lintasan lurus dari titik (0,0,0) ke
titik (0,1,0) dilanjutkan ke
lintasan x2 + y2 = 1 dari (0,1,0) ke (1,0,0) dilanjutkan dengan
lintasan
lurus ke titik (0,0,0)
3. Hitung usaha yang dilakukan oleh gaya F = xy i + y j + 2z k
bekerja sepanjang
lintasan tertutup
B(0,0,1) dilanjutkan ke titik
C(1,0,1)
dari titik
yang
A(0,0,0) ke titik
kemudian ke titik D(1,0,0)
kembali ke titik A(0,0,0).
4. Hitung
∫
C
F ! dr
; jika F = y i + (x+z) j + y k
dan C : adalah lintasan tertutup berupa lingkaran x2 + z2 = 4 di y = 3
Program Semi Que
Fakultas Teknik Jurusan Mesin
Universitas Brawijaya
110
DAFTAR ISI
KATA PENGANTAR
DAFTAR ISI
i
ii
BAB I : VEKTOR KONSTAN
1
1.1
Pengertian Tentang Vektor dan Notasi Vektor
1.2
Aljabar Vektor
1.3
Vektor Posisi Dalam Bidang dan Ruang
1.4
Perkalian Antar Vektor
1.5
Penggunaan Vektor Dalam Geometri
2
BAB II : FUNGSI VEKTOR
4
10
20
28
2.1
Fungsi Vektor
28
2.2
Kurva Vektor
29
BAB III : DIFERENSIAL VEKTOR
34
3.1
Derivatif atau Turunan dari Fungsi Vektor
3.2
Interpretasi Dari Derivatif Vektor
3.3
Gradien, Difergensi dan Curl
3.4
Penggunaan Gradien, Difergensi dan Curl
BAB IV : INTEGRAL VEKTOR
4.1
Integral Garis
4.2
Teorema Green
4.3
Medan Gaya Konservatif
4.4
Integral Luasan
4.5
Teorema Divergensi Gauss
4.6
Teorema Stokes
DAFTAR PUSTAKA
1
35
38
56
56
69
76
84
106
111
34
100
41
Download