STRATEGI PROBLEM SOLVING DALAM DINAMIKA LINGKUNGAN GEOMETRI TESIS Oleh HASIHOLAN SITOMPUL 067021016/MT SEKOLAH PASCASARJANA UNIVERSITAS SUMATERA UTARA MEDAN 2008 Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 STRATEGI PROBLEM SOLVING DALAM DINAMIKA LINGKUNGAN GEOMETRI TESIS Untuk Memperoleh Gelar Magister Sains dalam Program Studi Magister Matematika pada Sekolah Pascasarjana Universitas Sumatera Utara Oleh HASIHOLAN SITOMPUL 067021016/MT SEKOLAH PASCASARJANA UNIVERSITAS SUMATERA UTARA MEDAN 2008 Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 Judul Tesis Nama Mahasiswa Nomor Pokok Program Studi : STRATEGI PROBLEM SOLVING DALAM DINAMIKA LINGKUNGAN GEOMETRI : Hasiholan Sitompul : 067021016 : Magister Matematika Menyetujui, Komisi Pembimbing (Prof. Dr. Herman Mawengkang) Ketua (Dr. Sutarman, M.Sc) Anggota Ketua Program Studi Direktur (Prof. Dr. Herman Mawengkang) (Prof. Dr. Ir. T.Chairun Nisa. B,M.Sc) Tanggal lulus: 5 Juni 2008 Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 Telah diuji pada Tanggal 5 Juni 2008 PANITIA PENGUJI TESIS Ketua : Prof. Dr. Herman Mawengkang Anggota : Dr. Sutarman, M.Sc Dr. Tulus, M.Si Drs. Iryanto, M.Si Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 ABSTRAK Penelitian ini bertujuan untuk memaparkan kesesuaian dan manfaat strategi pemecahan masalah (problem solving) dalam memahami konsep-konsep yang berkaitan dengan geometri dinamika . Studi terhadap penelusuran literatur dan hasil penelitian sebelumnya menunjukkan secara teoritis bahwa strategi problem solving merupakan strategi yang sangat relevan untuk memahami konsep-konsep geometri. Strategi ini dapat membantu mengembangkan skema-skema yang ada dalam pikiran peserta didik untuk mengkaitkan suatu konsep dengan konsep yang lain, sehingga secara komulasi hierarkhis, konsep dalam geometri tersebut lebih cepat dipahami dan peserta didik mampu mengaplikasikannya dalam penyelesaian masalah-masalah dikehidupan nyata. Kata Kunci : Pemecahan masalah, Heuristik strategi, Penalaran matematika, Geometri i Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 ABSTRACT This research paper is intended to explain the relevancy and benefit of problem solving strategy in understanding the concepts that relates to dynamic geometry. The study on relevant literature and the previous research study reveals theoretically that the problem solving strategy is the very relevant strategy used to understand the the geometry concepts. This strategy can be used to help developing schemes in students mind in order to relates one concept to another, so that in hierarcichal cumulative, the geometry concept is quickly understood and they have the ability to apply the problem solving in a real life situation. Keyword : Problem Solving, Heuristic Strategies, Mathematical reasoning, Geometry ii Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 KATA PENGANTAR Puji syukur penulis ucapkan kepada Tuhan Yang Maha Esa yang telah memberikan begitu banyak rahmat dan nikmat sehingga tesis ini dapat terselesaikan. Dalam menyelesaikan pendidikan di Sekolah Pasca Sarjana USU ini, penulis banyak mendapat dukungan dari berbagai pihak, maka pada kesempatan ini penulis mengucapkan terima kasih dan penghargaan yang sebesar-besarnya kepada: Prof. dr. Chairuddin P. Lubis, DTM&H, Sp.Ak selaku Rektor Universitas Sumatera Utara. Prof. Dr. Ir. T. Chairun Nisa. B,MSc selaku Direktur Sekolah Pasca Sarjana Universitas Sumatera Utara (USU) yang telah memberikan kesempatan kepada penulis untuk mengikuti Program Studi Magister Matematika di Sekolah Pascasarjana Universitas Sumatera Utara. Prof. Dr. Herman Mawengkang selaku Ketua Program Studi Magister Matemetika dan Dosen Pembimbing-I yang telah banyak memberikan bimbingan dan bantuan serta motivasi kepada penulis sehingga pendidikan ini dapat terselesaikan dengan baik. Dr. Sutarman, M.Sc selaku Dosen Pembimbing-II yang telah mem- berikan masukan dan arahan bagi penulis dalam menyelesaikan tesis ini. Dr. Saib Suwilo, M.Sc selaku Sekretaris Program Studi Magister Matematika SPs USU, juga sebagai dosen yang telah memberikan masukan dan arahan untuk perbaikan tesis ini. iii Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 Dr. Tulus, M.Si dan Dr. Iryanto, M.Si selaku Dosen yang telah memberikan bimbingan dan petunjuk sehingga tesis ini dapat terselesaikan. Seluruh Staf Pengajar pada Program Studi Magister Matematika PPs. USU yang telah membekali ilmu pengetahuan kepada penulis selama perkuliahan hingga selesai. Drs. Muhammad Abdu Siregar selaku Kepala Sekolah SMA Negeri 7 Medan yang telah memberikan kesempatan dan dukungan kepada penulis untuk mengikuti Program Studi Magister Matematika di Sekolah Pascasarjana Universitas Sumatera Utara. Rekan-rekan seperjuangan, Mahasiswa angkatan kedua Program Studi Matematika PPs. Universitas Sumatera Utara, atas kerjasama dan kebersamaan mereka dalam mengatasi berbagai masalah selama perkuliahan bersama penulis. Sdri. Misiani, S.Si, selaku Staf Administrasi Program Studi Matematika PPs. Universitas Sumatera Utara, yang dengan penuh kesabaran memberikan pelayanan terbaik di Program Studi Matematika PPs USU. Secara khusus penulis ingin menyampaikan terima kasih dan rasa sayang yang mendalam kepada kedua orang tua penulis Ayahanda tercinta Alm. F. Sitompul dan Ibunda tercinta A. br. Manurung. Istri tercinta drg. Monica Manurung dan ananda tersayang Clara Thaniya Sitompul, Philip Komujuh Sitompul, Abednego Sitompul serta abang, kakak dan adikadikku yang senantiasa memberikan dorongan dengan penuh kesabaran dan pengorbanan serta selalu mendoakan keberhasilan penulis dalam menyelesaikan studi. iv Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 Hanya syukur dan terima kasih yang penulis dapat ucapkan kepada semua pihak untuk dukungan, doa, bimbingan dan arahan yang penulis dapatkan. Semoga tesis ini bermanfaat bagi pembaca dan pihak-pihak yang memerlukannya. Medan, 23 Juni 2008 Penulis, Hasiholan Sitompul v Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 RIWAYAT HIDUP Hasiholan Sitompul dilahirkan di Kisaran pada tanggal 26 April 1967 dan merupakan anak ketiga dari 6 bersaudara dari ayah Alm. F. Sitompul dan Ibu A. br. Manurung. Menamatkan Pendidikan Sekolah Dasar (SD) di SD Negeri 9 Kisaran pada tahun 1979, Sekolah Menengah Pertama pada tahun 1982 di SMP Negeri 1 Kisaran, dan Sekolah Menengah Atas (SMA) jurusan IPA pada tahun 1985 di SMA Negeri 1 Kisaran. Pada tahun 1986 memasuki Perguruan Tinggi Negeri di FMIPA Diploma III Jurusan Matematika Universitas Sumatera Utara di Medan dan lulus tahun 1990. Pada tahun 1990 penulis menjadi Staf Pengajar di SMA Negeri 3 Tanjung Pinang Provinsi Kepulauan Riau sampai tahun 1999. Pada tahun 1997 memasuki Perguruan Tinggi Negeri Universitas Terbuka Jurusan Matematika dan memperoleh gelar Sarjana Pendidikan pada Oktober 1999. Pada tahun 2000 penulis menjadi staf pengajar di SMA Negeri 7 Medan sampai sekarang. Pada tahun 2006 mengikuti pendidikan Program Studi Magister Matematika di Sekolah Pascasarjana Universitas Sumatera Utara. vi Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 DAFTAR ISI Halaman ABSTRAK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii KATA PENGANTAR . . . . . . . . . . . . . . . . . . . . . . . . . iii RIWAYAT HIDUP . . . . . . . . . . . . . . . . . . . . . . . . . . vi DAFTAR ISI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii DAFTAR GAMBAR . . . . . . . . . . . . . . . . . . . . . . . . . ix BAB 1 PENDAHULUAN . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Latar Belakang . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Permasalahan . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Tujuan . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Kontribusi . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Metodologi Penelitian . . . . . . . . . . . . . . . . . . . 8 BAB 2 TINJAUAN PUSTAKA . . . . . . . . . . . . . . . . . . . . 9 2.1 Pengertian Problem Solving . . . . . . . . . . . . . . . . 9 2.2 Langkah Pemecahan Masalah (Problem Solving) . . . . . . 10 2.3 Pola Pikir Deduktif-Aksiomatik dalam Geometri . . . . . . 14 2.4 Pengertian Geometri . . . . . . . . . . . . . . . . . . . 16 vii Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 2.5 Dinamika Geometri pada Matematika Sekolah . . . . . . . 17 BAB 3 STRATEGI PROBLEM SOLVING DALAM GEOMETRI . . . 23 3.1 Perkembangan Strategi Problem Solving . . . . . . . . . . 23 3.2 Penelitian yang berkaitan dengan Problem Solving . . . . . 25 3.3 Problem Solving Dalam Matematika Dasar . . . . . . . . 32 3.4 Peranan Guru dan Problem Solving . . . . . . . . . . . . 34 3.5 Strategi Mengajar dan Menilai Pemecahan Masalah . . . . 36 3.6 Hierarki Konsep dan Kaitannya dengan Dinamika Geometri 39 3.7 Kurikulum Geometri dan Teori Pembelajarannya . . . . . 47 3.8 Ide-ide Pokok Dalam Belajar-Mengajar Geometri . . . . . 50 3.9 Belajar-Mengajar dan Pengalaman Empirik dalam Geometri 52 3.10 Proses dan Strategi Problem Solving . . . . . . . . . . . . 54 BAB 4 KESIMPULAN DAN SARAN . . . . . . . . . . . . . . . . . 63 4.1 Kesimpulan . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2 Saran . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 DAFTAR PUSTAKA . . . . . . . . . . . . . . . . . . . . . . . . . 64 viii Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 DAFTAR GAMBAR Nomor Judul Halaman 2.1 Kaitan antar subsistem dalam penyelesaian masalah . . . . . 11 3.1 Mengkonstruksi suatu titik pada garis atau garis melalui suatu titik . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 Dua prosedur yang berbeda untuk konstruksi yang sama . . . 41 3.3 Konstruksi B : (k) adalah garis tegak lurus terhadap B melalui E (titik di luar AB) . . . . . . . . . . . . . . . . . . . . . 42 Grafik yang menggambarkan hubungan induk-anak antara elemenelemen dua konstruksi A dan B . . . . . . . . . . . . . . . 42 3.4 ix Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 BAB 1 PENDAHULUAN 1.1 Latar Belakang Salah satu visi pembelajaran matematika yaitu mengarahkan siswa pada pemahaman konsep matematika yang diperlukan untuk menyelesaikan masalah matematika dan masalah ilmu pengetahuan lainnya serta memberikan kemampuan penalaran matematika kepada siswa. Tetapi masih banyak siswa yang kurang menguasai pokok-pokok bahasan dalam matematika karena mereka kurang memahami dan menggunakan nalar yang logis dalam menyelesaikan masalah yang diberikan sehingga muncullah suatu inovasi dalam pembelajaran yaitu menerapkan pendekatan problem solving. Problem solving adalah proses berpikir untuk menentukan apa yang harus dilakukan ketika kita tidak tahu apa yang harus kita lakukan. Problem solving bisa didefinisikan sebagai proses dari memecahkan masalah dalam suatu cara yang sistematis dan rasional. Problem solving seharusnya menjadi bagian dari penyelesaikan persoalan matematika untuk setiap siswa. Siswa tidak akan tertarik untuk belajar memecahkan masalah jika ia tidak tertantang untuk mengerjakannya. Pada hal siswa harus diberi kesempatan untuk mempelajari proses problem solving yang dikategorikan sebagai suatu masalah. Untuk mengatasi hal ini sebaiknya masalah diberikan diawal kegiatan pengajaran sebagai tantangan (challenge) bagi para siswa sehingga mereka bisa bereksplorasi atau menyelidiki, tentunya dengan 1 Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 2 pertanyaan-pertanyaan yang muncul dari guru atau siswa itu sendiri dalam bentuk problem-posing, sehingga teorema, rumus, dalil, pengertian, maupun konsep baru dapat dimunculkan dari masalah yang dikemukakan pada awal kegiatan ini. Sebagian besar ahli pendidikan matematika menyatakan bahwa masalah merupakan pertanyaan yang harus dijawab atau direspon. Mereka juga menyatakan bahwa tidak semua pertanyaan otomatis akan menjadi masalah. Suatu pertanyaan akan menjadi masalah hanya jika pertanyaan itu menunjukkan adanya suatu tantangan yang tidak dapat dipecahkan dengan suatu prosedur rutin yang sudah diketahui siswa. Menurut Herman Hudojo (2003) bahwa : ”masalah terbagi menjadi dua, yaitu masalah menemukan dan masalah membuktikan”. Masalah menemukan dapat berupa teori atau praktek, abstrak atau konkrit, sedangkan membuktikan terkait dengan masalah menunjukkan suatu pertanyaan benar atau salah. Sedangkan Sujono (2005) berpendapat bahwa : ”suatu masalah menimbulkan suatu situasi, dimana seseorang menginginkan sesuatu tercapai belum tahu bagaimana mendapatkannya”. Artinya masalah berkaitan dengan usaha untuk mendapatkan sesuatu sebagai tujuan. Pada pemahaman konsep-konsep geometri, pemecahan masalah merupakan bagian penting dari kurikulum matematika, karena dalam proses pembelajarannya, seseorang dimungkinkan memperoleh pengalaman menggunakan pengetahuan serta ketrampilan yang dimiliki untuk diterapkan pada pemecahan masalah yang bersifat tidak rutin. Siswa tidak hanya diberikan teori-teori dan rumus-rumus matematika yang sudah baku dan jadi, tetapi siswa dilatih dan dibiasakan untuk belajar memecahkan masalah selama proses pembelajaran berlangsung sehingga pemahaman suatu Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 3 konsep atau pengetahuan haruslah dibangun (dikonstruksi) dari siswa sendiri. Matematika dirasakan oleh banyak siswa sebagai suatu mata pelajaran yang sukar, tidak menyenangkan untuk dipelajari. Mereka tidak jarang menghadapi kesulitan dalam matematika sehingga diperlukan problem solving sebagai strategi untuk menyelesaikan persoalan matematika. Kemampuan problem solving ini akan terbantu perkembangannya kalau dalam diri siswa dipenuhi dengan berbagai macam strategi problem solving. Geometri adalah bidang matematika yang bagus untuk diajarkan. Geometri penuh dengan soal-soal menarik dan teorema-teorema yang mengagumkan. Geometri terbuka bagi banyak pendekatan yang berbeda. Geometri mempunyai sejarah panjang, yang terkait erat dengan perkembangan matematika. Geometri merupakan bagian integral dari pengalaman budaya kita yang merupakan komponen penting dari banyak aspek kehidupan mulai dari arsitektur hingga rancangan (dengan segala manifestasinya). Selain itu, geometri menarik bagi rasa pemandangan, keindahan dan intuisi kita. Karenanya geometri bisa menjadi topik yang meraih minat siswa, di mana siswa tersebut tidak jarang merupakan siswa yang mungkin mendapati bidang matematika lain, seperti bilangan dan aljabar, sumber kebingungan dan kegagalan dan bukan kegairahan dan kreativitas. Mengajarkan geometri dengan baik bisa menjadi cara yang memungkinkan lebih banyak siswa dapat meraih keberhasilan dalam matematika. Aspek-aspek dan pertimbangan ini juga cenderung menjadikan geometri topik yang menuntut untuk diajarkan dengan baik. Mengajarkan geometri dengan baik melibatkan pengetahuan tentang bagaimana mengenali soal-soal dan teoremateorema geometri yang menarik, memahami sejarah dan konteks budaya geometri Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 4 serta memahami berbagai jenis kegunaan untuk mana geometri dikembangkan. Itu berarti memahami apa yang bisa ditawarkan pendidikan geometri lengkap dan kaya kepada siswa bila kurikulum matematika kerapkali didominasi oleh pertimbangan lain (tuntutan bilangan dan aljabar khususnya). Ini berarti dapat menyampaikan semuanya ini kepada siswa dengan cara yang menstimulasi dan membangkitkan minat, dan menghasilkan pemahaman dan keberhasilan dalam penilaian matematik. Semua ini adalah memperkenalkan beberapa sifat khusus geometri dan proses belajar-mengajar geometri tersebut. Mengkaji sifat geometri, alasan-alasan dimasukkannya geometri dalam kurikulum matematika sekolah dan bagaimana cara paling tepat dalam belajar-mengajar geometri. Menurut National Council of Supervisor of Mathematics ( NCSM, 1978), belajar memecahkan masalah merupakan alasan utama dalam mempelajari matematika. Karena tujuan utama belajar dan mengajar matematika adalah mengembangkan kemampuan untuk menjawab berbagai jenis persoalan matematika yang kompleks. Penyelesaian masalah dalam matematika tidak terlepas dari bagaimana strategi belajar mengajar menyelesaikan masalah (problem solving) yang senantiasa muncul di kelas. Pemecahan masalah dalam bidang geometri merupakan alat yang baik untuk belajar pemecahan masalah. Geometri sebagai cabang ilmu matematika menerangkan sifat-sifat garis, sudut, bidang dan ruang. Mempelajari geometri dapat membantu untuk berpikir lebih inovatif dan kreatif sehingga dapat diaplikasikan ke dalam banyak bidang kehidupan. Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 5 Siswa perlu mempelajari konsep-konsep geometri dan bagaimana menyelesaikan masalah-masalahnya secara efektif. Konsep-konsep geometri adalah bermanfaat dalam bidang matematika lainnya dan dalam situasi dunia nyata. Strategistrategi yang dipergunakan dalam menyelesaikan masalah geometri dapat dipergunakan pula dalam situasi lain. Mempelajari geometri dari tingkat dasar seharusnya menjadi suatu alasan yang baik membuat hubungan antara matematika dan lingkungan. Geometri adalah salah satu bidang matematika yang sangat penting di alam semesta ini. Geometri memberikan pengalaman yang dapat membantu siswa untuk mengembangkan pemahaman terhadap bentuk dan sifat-sifat geometri itu sendiri, yang mana memungkinkan siswa menyelesaikan masalah-masalah yang relevan dan dapat mengaplikasikan sifat-sifat geometri terhadap situasi dunia riil. National Council of Supervisors of Mathematics mengesahkan bahwa geometri adalah salah satu yang diajukan sebagai bidang keterampilan dasar (NCSM, 1976) dan tentu saja suatu keterampilan dasar yang mesti diajarkan kepada siswa untuk semua level kemampuan dan bakat. Istilah dinamika pada matematika berkenaan dengan gerakan gambar yang berubah. Dinamika geometri adalah merupakan istilah baru yang dibuat untuk menjawab paket software baru seperti Sketchpad dan Cabri. Jadi, sistem dinamika geometri memberikan akses kepada keaneka ragaman objek geometri dan berhubungan dengan penggunanya yang dapat berinteraksi untuk membangun dan memanipulasi objek tersebut. Teknologi dikembangkan sebagai alat yang efektif untuk mengajar dan mempelajari geometri. Ketika teknologi itu digunakan secara tepat dapat memberikan wawasan dan pengetahuan yang luas Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 6 terhadap pemahaman geometri siswa. Kalkulator dan komputer dengan software yang tepat mentransformasi semua kelas matematika kedalam laboratorium seperti lingkungan dalam bayak kelas sains dimana siswa menggunakan teknologi untuk menginvestigasi, menerka, membuktikan penemuan mereka (NTCM, 1989). Pada Cabri Geometre, siswa bisa berinteraksi secara langsung dengan komputer menggunakan mouse dengan alat yang bekerja dengan sistem untuk membangun, memanipulasi dan mengeksplorasi gambar. Kenyataan di sekolah, menunjukkan bahwa mutu pembelajaran matematika yang diukur dari hasil belajar siswa ternyata cenderung lebih rendah dibandingkan dengan pelajaran lainnya. Untuk level internasional, Soedjadi (2005) mengungkapkan bahwa : pelajaran matematika yang dimaksudkan untuk secara serius meningkatkan penalaran dan kecerdasan, selama ini Indonesia tertinggal dari negara-negara lain, termasuk negara ASEAN. Salah satu faktor utama penyebabnya adalah penerapan metode yang kurang tepat dengan karakteristik materi dan perkembangan siswa. Seperti yang diungkapkan Marpaung (dalam Zubaidah, 2007) bahwa : ”metode pembelajaran matematika yang diterapkan selama ini disekolah cenderung masih berpusat pada guru dan cenderung mengekang kebiasaan siswa serta kreatifitasnya”. Dari uraian-uraian teoritis tersebut, perlu diterapkan suatu metode yang diharapkan mampu meningkatkan pemahaman siswa tentang matematika atau geometri. Hal ini dilakukan untuk memperbaiki mutu pendidikan matematika ditingkat sekolah yang sekaligus sebagai dasar untuk tingkat pendidikan lanjutannya. Problem solving merupakan salah satu alternatif yang sesuai diterap- Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 7 kan untuk memahami konsep-konsep geometri. Seperti yang diungkapkan oleh Majid (2006) bahwa : metode pemecahan masalah (problem solving) merupakan cara memberikan pengertian dengan menstimulasi siswa untuk memperhatikan, menelaah dan berpikir tentang suatu masalah untuk selanjutnya menganalisis masalah tersebut sebagai upaya untuk memecahkan masalah. 1.2 Permasalahan Salah satu tantangan utama dalam pengajaran matematika adalah rendahnya mutu pendidikan pada mata pelajaran matematika yang disebabkan oleh penerapan metode yang belum tepat dengan karakteristik siswa dan materi itu sendiri. Belajar untuk dapat menyelesaikan persoalan merupakan alasan utama untuk mempelajari matematika. Problem solving merupakan suatu metode untuk menangani secara sistematis persoalan-persoalan geometri, karena itu perlu diajukan strategi yang terkait dengan : ”Bagaimana penerapan dan kesesuaian langkah-langkah metode problem solving diterapkan untuk memahami konsepkonsep atau materi dalam bidang geometri sehingga dapat meningkatkan kemampuan analitis terhadap siswa”. 1.3 Tujuan Tujuan penelitian ini adalah untuk : memaparkan atau mendeskripsikan penerapan langkah-langkah teoritis dari metode problem solving sebagai salah satu metode yang sesuai diterapkan pada pembelajaran geometri. Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 8 1.4 Kontribusi Kontribusi dari hasil penelitian ini adalah sebagai bahan masukan atau perbandingan kepada pihak penyelenggara pendidikan, guru dan siswa dalam memilih alternatif pembelajaran yang sesuai diterapkan untuk mempelajari materi geometri. Seperti diketahui bahwa geometri merupakan bagian dari matematika yang memuat materi berstruktur aksioma-deduktif dan tersusun secara hierarkhis, serta banyak digunakan untuk memecahkan masalah pada bidang ilmu lainnya. 1.5 Metodologi Penelitian Penelitian ini merupakan penelitian literatur dalam bidang pendidikan matematika terutama yang terkait dengan problem solving dan geometri. Buktibukti atau pengalaman empiris dari peneliti dan temuan penelitian yang relevan akan dikemukakan pada bagian pembahasan. Langkah-langkah yang dilakukan pada penelitian ini adalah penelusuran dan pengkajian teori-teori pendukung yang membahas tentang : a. Pengertian dari problem solving. b. Pengertian dan konsep-konsep dasar geometri. c. Strategi problem solving yang terkait dalam geometri. d. Dinamika geometri pada matematika sekolah. e. Pengetahuan empirik dan fakta-fakta hasil penelitian yang relevan. f. Menarik kesimpulan sebagai inti dari pengkajian teori atau pengetahuan empirik. Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 BAB 2 TINJAUAN PUSTAKA 2.1 Pengertian Problem Solving Penyelesaian masalah didefenisikan oleh Kantowski sebagai ”sebuah situasi dimana orang yang menghadapinya tidak memiliki algoritma yang dapat diakses dengan mudah yang akan memberikan sebuah solusi” (1977). Hal senada Trismen (1988) mendefenisikan problem solving atau pemecahan masalah sebagai ”apa yang anda lakukan ketika anda tidak mengetahui apa yang dilakukan”, sedangkan Schoenfeld (1985) mengatakan bahwa ”bahkan perhitungannya adalah apa yang dimaksud dengan matematika”. Lebih jauh Lesh (1981) berpendapat: ”penyelesaian masalah adalah lebih daripada memperoleh jawaban”. Ini merupakan sebuah alat, sebuah alat pemikiran dan sebuah filosofi. Penyelesaian masalah adalah sebuah kecenderungan untuk belajar dari setiap kesempatan yang ada, sebagian besar yang dapat dikumpulkan dari pengalaman tersebut. Penyelesaian masalah terutama merupakan suatu cara berpikir,cara menganalisa sebuah situasi, cara penggunaan keahlian pemberian alasan yang tidak dipelajari melalui pengingatan kenyataan-kenyataan tertentu, akan tetapi melibatkan diri sendiri dalam proses penyelesaian masalah dan menggunakan pengalaman dan pengetahuan yang lalu terhadap masalah yang sedang ditangani. Agar menjadi pemecah masalah yang baik, orang harus mengembangkan dasar pengetahuan matematika. Seberapa efektif dia mengorganisasikan pengetahuan juga 9 Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 10 turut mempengaruhi problem solving yang sukses. Berkaitan dengan pemecahan masalah, Kantowski (1974) menemukan bahwa ”siswa yang mempunyai dasar pengetahuan yang baik menjadi orang yang paling mampu menggunakan heuristik dalam instruksi geometri”. Selanjutnya Silver (1979) menemukan bahwa ”pemecah masalah yang sukses lebih mungkin mengelompokkan persoalan matematika berdasarkan kemiripan utamanya di dalam stuktur matematika”, dan Wilson(1967) menemukan bahwa ”heuristik umum hanya berdaya guna apabila didahului oleh heuristik tugas tertentu”. Istilah heuristik adalah bersinonim dengan strategi, teknik, atau aturan. Sebagai contoh : peringatan untuk membuat tabel atau menguraikan persoalan dengan kata-kata sendiri atau menarik angka untuk menggambarkan argumen yang menjadi bukti, memiliki sifat heuristik. Apabila diluar konteks, Polya (1973) mengungkapkan bahwa heuristik tidak memiliki nilai tertentu, tetapi apabila dimasukkan ke dalam situasi atau persoalan matematika, heuristik bisa sangat membantu. Intruksi matematika yang menekankan proses heuristik telah menjadi fokus beberapa penelitian. Kantowski (1977 ) menggunakan intruksi heuristik dapat digunakan untuk meningkatkan kemampuan pemecahan persoalan geometri dari murid sekolah menengah. 2.2 Langkah Pemecahan Masalah (Problem Solving) Menurut Polya (1973) ada 4 langkah yang perlu dilaksanakan untuk menyelesaikan masalah matematika yaitu: 1). memahami dan mendalami masalah, 2). menemukan suatu strategi, 3). menggunakan strategi untuk menyelesaikan masalah dan 4). mengkaji kembali serta Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 11 merefleksikan terhadap solusi atau keadaan awal. Bagi masalah-masalah yang sulit, tidak memungkinkan untuk secara mudah keempat tahapan ini secara berturut-turut untuk menghasilkan suatu jawaban. Diagram dibawah ini jauh menyerupai apa yang terjadi sesungguhnya, seperti yang digambarakan pada gambar 2.1 berikut. Dalam problem solving beberapa aspek sangat terkait satu dengan lainnya. Misalnya proses memahami masalah terkait dengan proses mengkaji, menggunakan strategi, proses menyelesaikan masalah. Dalam masalah matematika, tentunya akan dapat dikaji atau dipahami inti utama dari masalah, termasuk mengetahui apa yang sudah diketahui dan apa yang akan dicari dari masalah tersebut. Kemudian mampu menyusun model matematikanya, dan mampu memilih strategi penyelesaian, dan terakhir mengkaitkan dengan masalah awal yang sekaligus melakukan recek tentang hasil atau penyelesaian yang di dapat. Gambar 2.1 : Kaitan antar subsistem dalam penyelesaian masalah Tidak ada peluang untuk dapat menyelesaikan suatu masalah kalau kita tidak lebih dulu dapat memahaminya. Proses ini memerlukan bukan saja pengenalan apa yang harus dicari melainkan juga berbagai jenis informasi penting yang perlu dipadukan bersama untuk memperoleh jawaban. Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 12 Pencarian suatu strategi menurut Polya (1973) cenderung mengungkapkan bahwa adalah jauh lebih sederhana untuk memikirkan suatu strategi yang tepat. Strategi pemecahan masalah yang umum adalah: 1. Estimasikan (termasuk menebak dan periksa, dan menebak dan perbaikan). 2. Bertindak (termasuk menggunakan peralatan). 3. Gambarkan (termasuk membuat gambar dan diagram). 4. Membuat daftar (termasuk membuat suatu tabel) 5. Pikirkan (termasuk penggunaan keterampilan yang sudah anda ketahui) Strategi mengestimasikan dalam menebak dan memeriksa merupakan salah satu strategi yang paling sederhana. Setiap orang dapat menebak suatu jawaban. Jika mereka juga dapat memeriksa bahwa tebakan mereka sesuai dengan kondisi masalah, maka mereka telah menguasai strategi menebak dan memeriksa. Menebak dan memperbaiki adalah lebih memuaskan dari menebak dan memeriksa. Dasar pemikirannya adalah bahwa jika menggunakan dugaan pertama tidak tepat maka dapat membuat dugaan berikutnya. Dalam masalah-masalah yang relatif sederhana mudah melihat bagaimana cara memperbaiki dugaan akhir. Strategi bertindak dan menggunakan peralatan sering digunakan secara bersamaan. Peralatan ini meliputi diri anak itu sendiri sehingga ada hubungan diantara bertindak dan penggunaan peralatan. Strategi membuat gambar sangat diperlukan meskipun gambar tidak perlu terlalu luas melainkan hanya mencakup rincian yang cukup untuk menyelesaikan Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 13 masalah. Memang sulit untuk mengetahui dimana membuat gambar akan berakhir dan dari mana memulai menggambarnya. Kita harus memikirkan atau membayangkan diagram sebagai suatu yang dapat kita gambarkan. Strategi membuat daftar atau tabel yang terorganisir adalah dua aspek yang bekerja secara sistematis. Strategi ini akan membantu siswa untuk melakukan pengembangan logika sistematis terhadap bidang matematika mereka jika mereka mulai mengorganisir segala sesuatu secara sistematis. Strategi berpikir tidak dipergunakan sendiri tetapi dalam bentuk kombinasi dengan strategi lainnya. Strategi-strategi yang ingin kita sebutkan disini adalah menjadikan masalah itu menjadi sistematis, membuat catatan, mengamati pola, menggunakan kerja simetris dan menggunakan keterampilan yang sudah dimiliki. Setelah mendalami masalah dan memutuskan suatu rencana tahap pemecahan masalah yang selanjutnya adalah menyelesaikan masalah, sehingga jawaban diperoleh. Dalam menyelesaikan masalah siswa diharapkan membuat catatan apa yang sedang mereka lakukan. Hal ini penting untuk memperlihatkan kepada orang lain apa yang telah mereka lakukan dan juga bermanfaat dalam mencari kesalahan-kesalahan seandainya jawaban yang benar tidak ditemukan. Selanjutnya penting untuk membiasakan menelusuri kembali apa yang telah dilakukan. Ada 4 alasan tentang pentingnya melakukan penelurusan kembali dalam problem solving, yaitu : a). merupakan praktek yang baik untuk memeriksa pekerjaan dan memastikan tidak membuat kesalahan apapun, b). penting untuk memastikan bahwa jawaban yang diperoleh pada dasarnya adalah jawaban yang tepat bagi masalah dan bukan terhadap masalah yang diduga sedang ditanyakan, c). mengkaji ulang dan memikirkan lebih jauh tentang solusi dibanding solusi Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 14 semula, dan d). dapat memberikan pandangan yang lebih luas tantang apa yang sesungguhnya sedang berlangsung. 2.3 Pola Pikir Deduktif-Aksiomatik dalam Geometri Geometri secara khusus banyak memberi peluang untuk mengajar siswa bagaimana memberikan penjelasan secara matematik. Dalam bidang geometri alasan matematika berfokus pada pembuatan conjecture dan kemudian membuktikan atau menyangkal. Conjecture perlu dibuktikan dengan deduktif logis atau tidak terbukti dengan counter-example (contoh penyangkal). Misalnya konsep persegi dapat diturunkan dari konsep persegipanjang, karena memang persegi adalah suatu persegipanjang yang keempat sisinya sama panjang. Tetapi sebaliknya tidak benar, karena persegipanjang belum tentu persegi, karena pada persegi panjang tidak disyaratkan keempat sisinya sama panjang. Artinya counter-example yang digunakan menunjukkan bahwa persegi itu bukan persegi panjang adalah keempat sisinya sama panjang. Penggunaan alasan deduktif dalam bentuk pernyataan ”jika-maka” dan bukti bukti dalam pengajarannya membuat siswa untuk: 1. Membuktikan hipotesis dan kesimpulan pernyataan jika-maka. 2. Menggunakan counter-example untuk menyangkal pernyataan jika-maka 3. Menggunakan sifat-sifat aljabar sebagai bukti. 4. Mengenal jenis-jenis alasan yang dapat dipergunakan sebagai bukti 5. Merencanakan pembuktian dan menuliskannya dalam bentuk dua kolom Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 15 Pembuktian menggunakan alasan deduktif terdiri dari beberapa langkah berbeda: 1. Buatlah gambar yang mengilustrasikan apa yang akan dibuktikan. Gambar ini sudah dibuat atau mungkin harus menggambar sendiri. 2. Tulis pernyataan yang diberikan dan tuliskan kesimpulan yang dibuktikan. Sekarang anda memiliki tahap permulaan dan akhir dari pembuktian. 3. Tandai gambar menurut apa yang dapat anda simpulkan dari informasi yang diberikan. Ini merupakan langkah pembuktian yang akan dicari tahu bagaimana terbukti dan apakah anda mampu atau tidak membuktikannya yang diminta. Sisi-sisi yang kongruen, sudut-sudut, dan lain-lain harus ditandai sehingga anda dapat melihat apa yang harus dituliskan dalam pembuktian ini untuk menyakinkan pembaca bahwa anda benar dalam kesimpulan yang anda buat. 4. Tuliskan langkah-langkah secara cermat, tanpa menghilangkan langkah-langkah sederhana. Geometri Euclid didasarkan kepada lima prinsip mendasar yang disebut postulate atau aksioma. Postulate adalah prinsip-prinsip atau asumsi-asumsi dasar yang dianggap dapat dibuktikan sendiri. Kelima postulate dasar Euclid tersebut adalah: Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 16 Postulate 1. Postulate 2. Postulate 3. Postulate 4. Postulate 5. Untuk setiap titik P dan untuk setiap titik Q yang tidak sama dengan P , ada garis l yang melalui P dan Q Untuk setiap ruas garis AB dan untuk setiap ruas garis CD ada titik E sehinga A adalah antara A dan E dan ruas garis CD adalah kongruen dengan ruas garis BE Untuk setiap titik O dan untuk setiap titik A yang tidak sama dengan O ada sebuah lingkaran dengan pusat O dan radius OA. Semua sudut-sudut adalah kongruen satu sama lainnya. Untuk setiap garis l dan untuk setiap titik P yang tidak terletak pada l dan ada garis m melalui P dan sejajar l. 2.4 Pengertian Geometri Definisi geometri yang berguna dewasa ini adalah definisi yang dikaitkan dengan pakar matematika Britania yang sangat dihormati, Sir Christopher Zeeman mengartikannya sebagai: ”geometri terdiri dari cabang-cabang matematika yang mengeksploitasi intuisi visual (terutama indera kita) untuk mengingat teorema, memahami bukti, menginspirasikan perkiraan, mempersepsikan realitas dan memberikan pengetahuan global” (Royal Society/JMC 2001). Ini semua merupakan keahlian yang dapat dialihkan yang dibutuhkan untuk semua cabang matematika lainnya, termasuk sains. Konsep-konsep geometri tidak terlepas dari kehidupan sehari-hari, malah kehidupan tidak terlepas dari unsur-unsur geometri. Benda-benda sekitar yang menopang kehidupan manusia tidak terlepas dari geometri. Misalnya alat transportasi yang mebutuhkan unsur lingkaran, bola, kubus dan sebagainya. Atau konsep rumah tidak terlepas dari unsur segi empat, kubus, balok, luas permukaan, dan luas bidang datar, dan sebagainya. Hal ini merupakan salah satu penyebab bahwa pengetahuan tentang geometri sangat dibutuhkan oleh peserta didik sejak mulai dari usia sekolah sampai perguruan tinggi. Seperti hasil laporan penelitian Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 17 yang dilakukan oleh Royal Society/JMC mengajukan bahwa tujuan mengajarkan geometri sebagai berikut: 1. Mengembangkan kesadaran ruang, intuisi geometrik dan kemampuan memvisualisasi. 2. Mengembangkan pengalaman geometrik yang luas dalam dua dan tiga dimensi. 3. Mengembangkan pengetahuan dan pemahaman tentang dan kemampuan dalam menggunakan sifat-sifat dan teorema-teorema geometri. 4. Mendorong pengembangan dan penggunaan perkiraan, pertimbangan deduktif dan bukti. 5. Mengembangkan keahlian mengaplikasikan geometri melalui pemodelan dan pemecahan masalah dalam konteks dunia nyata. 6. Mengembangkan keahlian ICT yang berguna dalam konteks geometrik secara spesifik. 7. Menanamkan sikap positip terhadap matematika dan 8. Mengembangkan kesadaran akan warisan sejarah dan budaya geometri di masyarakat dan aplikasi geometri di masa sekarang. 2.5 Dinamika Geometri pada Matematika Sekolah Studi tentang geometri menunjukkan kontribusi yang signifikan dalam membantu siswa untuk mengembangkan keahlian visualisasi, berpikir kritis, intuisi, Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 18 perspektif, pemecahan-masalah, memperkirakan, berpikir deduktif, argumen logika dan bukti. Gambaran-gambaran geometris bisa digunakan untuk membantu siswa mengartikan bidang-bidang matematika lainnya seperti konsep pecahan dan perkalian dalam aritmetika, hubungan antara grafik-grafik fungsi (dari dua dan tiga variabel) dan gambaran grafik data dalam statistik. Pertimbangan ruang penting di bidang kurikulum lainnya dan juga matematika: sains, geografi, seni, rancangan dan teknologi. Bekerja dengan peralatan praktis juga bisa membantu mengembangkan keahlian motorik dengan baik. Geometri memberikan konteks yang kaya budaya dan sejarah yang berkaitan dengan konsep atau unsur matematika, seperti bentuk piramide, segitiga, prisma, balok, dan sejenisnya. Terdapat banyak hasil yang menarik, yang terkadang mengejutkan atau kontra-intuitif dalam geometri yang bisa menstimulasi siswa agar ingin mengetahui lebih banyak dan memahami mengapa. Mempresentasikan geometri dengan cara yang merangsang keingintahuan dan mendorong eksplorasi bisa meningkatkan pembelajaran siswa dan sikapnya terhadap matematika. Dengan mendorong siswa mendiskusikan soal-soal dalam geometri akan menggodok ide-ide mereka dan mengembangkan argumen-argumen dengan struktur yang jelas untuk mendukung intuisi mereka yang bisa menghasilkan peningkatan keahlian komunikasi dan pengakuan pentingnya bukti. Kontribusi matematika kepada perkembangan spiritual, moril, sosial dan kultural siswa bisa direalisasikan dengan efektif melalui geometri. Seperti yang telah disebutkan di atas, sebagian ide untuk menggunakan geometri mendukung perkembangan spiritual dan kultural bisa ditemukan dalam rujukan-rujukan kehidupan sehari-hari. Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 19 Sumber-sumber materi yang berguna untuk mendukung perkembangan moril dan sosial bisa ditemukan dalam publikasi Stapleford Centre di Nottingham (misalnya, sumberdaya Charis Mathematics untuk tahap utama 3 dan 4), serial Summing up the World dari Development Education in Dorset, dan Maths and Human Rights Resources Book yang dipublikasikan Amnesty International. Hal ini dapat digunakan sebagai media atau untuk mendukung belajar-mengajar geometri untuk tingkat usia tertentu. Geometri kaya akan sumber kesempatan untuk mengembangkan gagasan tentang bukti. Walaupun banyak lagi yang akan disampaikan tentang hal ini di bagian kemudian, namun pantas kiranya ditekankan bahwa gambar-gambar visual, terutama yang dapat dimanipulasi dilayar komputer, mengajak siswa untuk mengamati dan memperkirakan generalisasi. Membuktikan perkiraan akan mengharuskan siswa memahami bagaimana gambar-gambar yang diamati terkait satu dengan lainnya dan terkait dengan balok pembangun utama. Bantuan melalui software geometri dapat digunakan untuk memahami gambar-gambar yang diamati untuk menunjukkan konsep dari : titik-titik, lingkaran-lingkaran dan garisgaris paralel dan tegak lurus. Kehidupan manusia berada pada planet padat yang berdimensi tiga yang ternyata membutuhkan banyak pengalaman melalui stimulus visual. Ini berarti bahwa kemampuan menafsirkan informasi visual sangat mendasar sifatnya bagi eksistensi manusia. Untuk mengembangkan pemahaman tentang bagaimana keterkaitan antar fenomena ruang dan untuk mengaplikasikan pemahaman tersebut dengan yakin untuk memecahkan masalah dan mengartikan situasi baru hendaknya menjadi bagian dari pengalaman semua peserta didik atau semua siswa. Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 20 Geometri menawarkan cara yang kaya dalam mengembangkan keahlian visualisasi. Visualisasi memungkinkan siswa memperoleh cara mengeksplorasi soalsoal matematika dan masalah-masalah lainnya tanpa perlu menghasilkan diagram yang akurat atau menggunakan gambaran-gambaran simbolis. Memanipulasi gambar-gambar di dalam pikiran bisa menginspirasikan keyakinan dan mengembangkan pemahaman intuitif tentang situasi ruang. Berbagi gambar-gambar visual pribadi bisa membantu mengembangkan keahlian komunikasi dan juga memungkinkan siswa dapat mengetahui bahwa kerapkali ada banyak cara dalam menafsirkan gambar atau deskripsi lisan atau tulisan. Tidak sedikit kehidupan kultural kita yang sifatnya visual. Apresiasi keindahan seni, arsitektur, musik dan banyak artefak budaya melibatkan prinsip-prinsip geometri simetri, perspektif, skala, orientasi, dan lain sebagainya. Memahami banyak prinsip ilmiah dan fenomena teknologi juga membutuhkan kesadaran geometrik, sepertihalnya navigasi, teknik orientasi dan pembacaan peta. Mengenali yang sudah tidak asing dan yang masih asing membutuhkan kemampuan mencirikan dan mencatat ciri-ciri utama. Banyak sekali aplikasi matematika saat ini memiliki komponen geometrik yang kuat. Pada banyak kasus, masalah mencakup kegiatan memasukkan informasi geometrik ke dalam komputer dengan format yang berguna, memecahkan masalah geometrik dan mengeluarkan penyelesaian ini sebagai bentuk visual atau ruang, sebagai rancangan yang akan dibangun, sebagai tindakan yang akan dilaksanakan atau sebagai gambar yang akan digeluti. Memecahkan masalah ini membutuhkan pengetahuan geometrik yang berarti. Pada saat sekarang ini banyak dikembangankan media untuk memperkaya pembelajaran geometri, Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 21 seperti melalui : rancangan dan pemodelan geometrik dibantu komputer, dunia robot, pencitraan medik, animasi komputer dan presentasi visual. Rancangan dan Pemodelan Geometrik Dibantu Komputer: Masalah dasarnya adalah untuk menguraikan, merancang, memodifikasi atau memproduksi bentuk yang kita inginkan: mobil, pesawat, gedung, komponen hasil manufaktur, dll. dengan menggunakan komputer. Deskripsi yang dibutuhkan agar cukup akurat mengontrol proses manufaktur secara langsung dan untuk memungkinkan simulasi dan pengujian objek-objek, biasanya sebelum membuat model fisik. Yang jelas, misalnya, pesawat udara Boeing terbaru dirancang seluruhnya dengan menggunakan komputer, tanpa menggunakan model fisik. Dunia Robot: Untuk menggunakan robot, kita harus meng-input (menggunakan kamera, sensor, dan lain-lain) model geometrik lingkungan. Isu keseluruhan tentang perbendaharaan geometrik apa yang digunakan (misalnya, pemodelan benda padat, aproksimasi polihedral, dan lain-lain.) dan bagaimana informasi ditata berstruktur adalah bidang utama penelitian di bidang yang disebut geometri komputasional. Pencitraan Medik: Menghasilkan pengukuran yang tidak mengganggu (biasanya suatu bentuk gambar) mengharuskan konstruksi gambar tiga-dimensi yang layak dari bagian-bagian tubuh. Ini, misalnya, bisa melibatkan serangkaian proyeksi atau gambar dari ultrasound atau pencitraan resonansi magnetik (MRI) dari beberapa arah atau titik. Ini menimbulkan pertanyaan tentang berapa banyak pengukuran yang dibutuhkan untuk mengkonstruksi gambar tiga-dimensi penuh dan algoritma apa yang bisa digunakan untuk merekonstruksi gambar lengkap dari potongan-potongan. Pertanyaan sedemikian menghasilkan beberapa hasil Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 22 baru yang berarti di bidang seperti tomografi geometrik. Animasi Komputer dan Presentasi Visual: Bagaimana caranya komputer bisa menghasilkan gambar yang cukup kaya untuk membodohi persepsi manusia kita tentang bentuk statis dan benda bergerak? Salah satu pakar komputer/ahli geometri yang mengerjakan seluruh video animasi ’A Bugs Life’ menggambarkannya sebagai ”latihan dalam menangani tekstur dan memodelkan pakaian dengan tingkat matematika baru”. Matematika baru dengan landasan geometris, seperti fractal, merupakan bagian dari pekerjaan ini. Jadi itu merupakan pemodelan geometris. Pada bidang ilmu lain banyak digunakan konsep geometri untuk menyelesaikan masalah pada bidang tersebut. Misalnya, dalam kimia pada kimia perhitungan dan bentuk-bentuk molekul, fisika pada materi memodelkan berbagai bentuk kaca dan materi agregat, biologi pada pemodelan protein, pendaratan obat pada molekul lainnya, pada Sistem Informasi Geografik (GIS), dan bidangbidang lainnya, termasuk bidang teknik. Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 BAB 3 STRATEGI PROBLEM SOLVING DALAM GEOMETRI 3.1 Perkembangan Strategi Problem Solving Pandangan yang mendalam dan komprehensif tentang pemecahan masalah dalam kurikulum matematika sekolah timbul akibat dari penelitian George Polya. Penulis ini merumuskan kembali, memperluas dan menggambarkan ide-ide yang berbeda tentang temuan matematika dengan cara yang dapat diketahui dan digunakan guru (Stanic dan Kilpatrick, 1989). Dalam literatur Amerika, para peneliti pemecahan masalah matematika diilhami oleh penelitian Polya (Kilpatrick, 1969, 1985; Lester, 1980, 1994; Silver, 1987, 1994; Schoenfeld, 1985, 1992). Peneliti ini memberi kontribusi yang besar kepada pengembangan pemecahan masalah dalam kurikulum sekolah melalui pengaruhnya pada sifat yang mudah berubah dari penekanan dan metodologi penelitian. Yang terkait dengan tradisi pemecahan masalah Amerika Mason et al. (1982) dan Borgersen (1994) memperluas model empat tahap Polya dengan mempresentasikan kerangka yang dirancang untuk membantu siswa menginternalisasikan strategi polya dan mendapatkan akses kepadanya bagi diri mereka sendiri. Selama tahun 1990-an, ada tren kearah pemahaman yang lebih mendalam tentang kognisi di bidang pemecahan masalah dan pendekatan yang terilhami etnografis diadopsi banyak peneliti (Resnick, 1991; Lave dan Wenger, 1991; Chaiklin dan Lave, 1993; Wenger, 1998; Artzt dan Femia, 1999; Bjuland, 2002). Ditahuntahun belakangan ini para peneliti juga terfokus pada pemikiran matematika siswa dalam memecahkan masalah (Wyndhamn dan Saljo, 1997; Lithner, 2000; Lith23 Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 24 ner, 2003) dan proses pertimbangan siswa yang bekerja dalam kelompok kerja kolaboratif. a. Apakah siswa memperhatikan refleksi atas proses pembelajaran mereka setelah mengerjakan soal-soal geometri dalam kelompok-kelompok kecil ? b. Elemen-elemen refleksi manakah yang dapat diidentifikasi dalam komunikasi siswa melalui aktivitas pemecahan masalah kolaboratif ? Disadari sekali perlu kiranya fokus pada masalah guru masa depan manakala mereka bercermin pada tugas matematika yang berusaha mereka selesaikan sendiri. Apakah fakta bahwa mereka melakukan persiapan untuk menekuni profesi mengajar memegang peranan dalam refleksi ini? Dengan kata lain apakah siswa bercermin pada pengalaman mereka sebagai pelajar matematika atau sebagai guru matematika ? Dalam sebuah studi sebelumnya (Bjuland, 2002), pengamatan, analisa dan penafsiran tentang diskusi diantara guru yang bekerja secara kolaboratif dalam kelompok-kelompok kecil dalam konteks pemecahan masalah. Lebih spesifik lagi, tujuannya adalah untuk memberi kontribusi kepada pemahaman tentang bagaimana proses berpikir terekspresikan dalam komunikasi siswa. Berupaya untuk mengidentifikasi bagaimana elemen-elemen pertimbangan yang berbeda diverbalisasikan dalam dialog dan fokus pada strategi heuristik yang digunakan dua kelompok siswa dengan latar belakang matematika yang berbeda manakala mereka mengerjakan dua soal geometri. Hal ini sangat memperhatikan strategi heuristik dalam mengajukan pertanyaan terbuka karena ada alasan untuk yakin bahwa verbalisasi ini berfungsi sebagai pemicu untuk proses berfikir dan untuk meng- Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 25 hasilkan strategi yang digunakan dalam proses penyelesaian. 3.2 Penelitian yang berkaitan dengan Problem Solving Strategi probem solving sudah berkembang pada abad ke 18 di negaranegara maju, seperti Eropah dan Amerika. Banyak tokoh-tokoh yang sudah melakukan penelitian tentang problem solving ini pada pembelajaran matematika, termasuk pada geometri. Strategi ini merupakan satu strategi yang dikembangkan oleh tokoh-tokoh yang beraliran kontsruktivisme, salah satu diantaranya adalah Piaget. Dalam sejarahnya, Dewey diakui sebagai pemrakarsa utama konsep refleksi diabad dua puluh (Hatton dan Smith, 1995). Dewey menganggapnya merupakan bagian khusus dari pemecahan masalah, dengan berpikir memecahkan masalah yang terlibat dalam pengurutan dengan cermat ide-ide yang masingmasing dihubungkan dengan pendahulunya. Menurut Hatton dan Smith (1995), timbul empat isu utama dari tulisan awal Dewey dan penafsirannya selanjutnya sepanjang menyangkut refleksi. Isu pertama berkenaan dengan apakah refleksi terbatas pada proses berpikir tentang tindakan atau apakah lebih terkait dengan tindakan. Isu kedua terkait dengan kerangka waktu di dalam mana refleksi terjadi. Isu ketiga berkenaan dengan apakah refleksi bersifat terpusat masalah atau tidak. Terakhir isu keempat fokus pada sejauh mana orang yang melakukan refleksi mempertimbangkan nilai-nilai atau keyakinan-keyakinan sejarah, budaya dan politik yang lebih luas dalam membatasi dan membatasi kembali masalahmasalah praktis untuk mana penyelesaian akan dicari (Hatton dan Smith, (1995), p.34). Proses ini diidentifikasi sebagai refleksi kritis (Gore dan Zeichner dalam Hatton dan Smith, op. cit). Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 26 Tidak sedikit perhatian diberikan kepada konsep refleksi dalam literatur dalam 20 tahun terakhir. Menurut Mason dan Davis (1991), kata ”berefleksi” secara harfiah berarti ”melihat kembali kebelakang”. Penulis ini menekankan bahwa orang yang menyelidiki pengalamannya sendiri untuk mengkhususkan diri pada generalitas dan melihat apakah itu berarti baginya telah bergelut dalam aktivitas refleksi. Refleksi juga bisa didefinisikan sebagai pemikiran dengan sengaja atas pengalaman pengalaman pribadi (Dewey, 1993; Inhelder dan Piaget, 1958; Hiebert, 1992; Wistedt, 1994), yang sering dalam menetapkan hubungan antara ide-ide atau tindakan-tindakan (Hiebert, 1992). Dalam pembelajaran matematika, refleksi dicirikan oleh menjauhkan diri seseorang dari tindakan mengerjakan matematika (Sigel, dalam Wheatley, 1992). Menurut Wheatley, adalah satu hal memecahkan masalah dan adalah hal lain lagi menganggap tindakan seseorang sebagai objek refleksi. Ia menegaskan bahwa tidaklah cukup siswa menyelesaikan tugas-tugas, tetapi mereka harus didorong untuk berefleksi atas aktivitas mereka. Sebagai contoh misalnya, dengan disuruh membenarkan metode penyelesaian akan meningkatkan refleksi. Ini bisa terjadi dalam konteks kelompok kecil saat seorang partisipan bertanya: ”Akankah itu berhasil ?” atau mungkin terjadi dalam diskusi seluruh kelas ketika presenter diminta menjelaskan suatu penjelasan. Dalam tradisi pemecahan masalah, tahap melihat kembali ke belakang yang diajukan Polya (1957) kerapkali terkait dengan aktivitas refleksi karena dimungkinkan meningkatkan penyelesaian atau pemahaman tentang penyelesaian. Dengan melihat kembali kebelakang pada penyelesaian, siswa bisa mengonsolidasikan penge- Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 27 tahuan mereka dan mengembangkan kemampuan mereka untuk memecahkan masalah. Dalam suatu studi (Bjuland, 2002) tentang tugas-tugas pemecahan masalah dan usaha siswa untuk sampai pada argumen yang menyakinkan, dibedakan antara melihat kembali kebelakang dan berefleksi. Melihat kebelakang pada proses penyelesaian dan pada penyelesaian itu sendiri dianggap merupakan strategi heuristik yang berfungsi mencari penyelesaian, sementara berefleksi berkenaan dengan usaha keras memodifikasi penyelesaian. Refleksi juga dikaji dalam kerangka yang digunakan dalam pendidikan guru. Schon (1987) berbicara tentang refleksi-dalam-tindakan, yang mengisyaratkan pemikiran dan modifikasi tindakan dengan sengaja yang hampir seketika dan refleksi-atas- tindakan, yang mengisyaratkan memikirkan tindakan dengan sengaja setelah tindakan tersebut terjadi. Sehubungan dengan kerangka refleksi Schon yang terkait dengan pendidikan guru dan menyesuaikan dengan konteks khusus dimana guru fokus pada tugas pemecahan masalah dalam kelompok-kelompok kecil. Melihat kebelakang pada proses penyelesaian dan berefleksi pada penyelesaian yang baru diperoleh terkait dengan bagian refleksi-dalam-tindakan dari kerangka Schon. Selama mengerjakan soal-soal dalam kelompok-kelompok kecil, siswa diharapkan berefleksi pada pekerjaan kelompoknya dan proses pembelajaran mereka di akhir setiap pertemuan. Dianggap bahwa refleksi ini sebagai refleksi-atastindakan. Dapat dikatakan bahwa refleksi-atas-tindakan melibatkan melihat kebelakang pada tindakan setelah suatu waktu setelah tindakan tersebut terjadi (Hatton dan Smith, 1995). Salah satu isu utama Dewey berkenaan dengan refleksi terkait dengan kerangka waktu di dalam mana refleksi terjadi. Dewey tam- Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 28 paknya mengajukan bahwa kerangka waktu luas dan sistemik dan bukan segera dan jangka pendek (Hatton dan Smith, op. cit.). Akan tetapi, dalam kedua episode yang dipresentasikan disini difokus pada refleksi siswa atas proses pembelajaran yang dipilih dan pertemuan ketiga dan keempat, yang mengisyaratkan bahwa siswa telah berpengalaman dalam bekerja sama dalam kelompok-kelompok kecil dan mengerjakan soal-soal khusus ini untuk tiga atau empat pertemuan. Selama tahun 1980-an, penelitian fokus pada studi kasus dan penelitian wawancara dengan menggunakan protokol yang dipikirkan dengan cermat untuk berusaha memastikan perbedaan dalam pendekatan terhadap pemecahan masalah antara pemecah masalah yang berhasil dan yang tidak berhasil, yang disebut juga dengan ahli dan tidak ahli (Lester, 1994) Temuan-temuan Schoenfeld (1985, 1992), yang didasarkan pada materi empiris lebih dari seratus video tape mahasiswa dan siswa sekolah menengah atas, yang mengerjakan soal-soal yang asing, menunjukan bahwa siswa biasanya menghabiskan waktu 20 menit untuk sesi soal dalam eksplorasi berstruktur. Kira-kira 60% upaya penyelesaian mempunyai profil penyelesaian dimana siswa membaca soal dan memilih pendekatan dengan cepat terhadap soal tersebut, dan mengerjakannya dengan arah pendekatan tersebut tanpa mempertimbangkannya kembali atau merevisinya. Schoenfeld (1992) menunjukan grafik garis waktu dari proses penyelesaian untuk siswa umumnya dan grafik garis waktu ahli matematika, yang berupaya memecahkan masalah non standar. Walaupun siswa umumnya menghabiskan sebagian besar waktunya dalam eksplorasi tidak berstruktur atau bergerak cepat ke dalam implementasi soal, ahli menghabiskan lebih dari setengah waktunya berusaha mengartikan soal. Ahli matematika tidak bergerak ke arah implementasi Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 29 sebelum ia yakin ia bekerja dalam arah yang benar. Studi lain yang dilakukan Goos dan Galbraith (1996) menegaskan fakta bahwa siswa tidak menghabiskan banyak waktu dalam mengartikan soal yang masih asing baginya. Penulis ini berfokus pada sifat dan kualitas interaksi antara siswa sekolah menengah berusia enam belas tahun yang mengerjakan soal aplikasi secara kolaboratif. Struktur usaha pemecahan masalah siswa menunjukan adanya loncatan segera kedalam implementasi setelah membaca awal dengan cepat dan analisa masalah. Carlson dan Bloom (2005) menggunakan kerangka pemecahan masalah multidimensi dengan empat tahap (orientasi, perencanaan, pelaksanaan dan pemeriksaan) untuk menggambarkan perilaku pemecahan masalah 12 ahli matematika saat mereka mengerjakan empat soal matematika. Efektifitas para ahli ini dalam mengambil keputusan cerdas, dalam menghasilkan penyelesaian matematika yang bersumber dari kemampuan mereka memanfaatkan berbagai atribut pemecahan masalah mereka (pengetahuan konseptual, affek, heuristik dan pemonitoran) sepanjang proses pemecahan masalah. Studi-studi dari pemecahan masalah ahli matematika secara individu (Carlson dan Bloom, op. cit), dari pemecah masalah yang tidak berpengalaman (Schoenfeld, op. cit), dan dari interaksi antara siswa yang bekerja secara kolaboratif (Goos dan Galbraith,op. cit), menunjukkan bahwa kesadaran metakognitif merupakan unsur penting agar berhasil dalam pemecahan masalah. Dalam penelitiannya tentang penelitian pemecahan masalah matematika, Lester (1994) juga menegaskan bahwa metakognisi dipandang sebagai gaya penggerak dalam pemecahan masalah. Ia menyatakan bahwa penelitian baru saja dimulai untuk Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 30 memahami sampai sejauh mana metakognisi mempengaruhi aktivitas pemecahan masalah. Akan tetapi, Lester terfokus pada beberapa hasil yang sudah diterima secara umum. Salah satu hasil ini menunjukkan bahwa aktivitas metakognitif efektif selama pemecahan masalah sangatlah sulit. Ini bukan hanya membutuhkan adanya pengetahuan tentang apa yang akan dan kapan memonitor, tetapi juga bagaimana memonitor. Hasil-hasil menunjukkan bahwa adalah tugas yang sulit mengajarkan kepada siswa bagaimana memonitor perilaku mereka. Selama tahun 90-an, penelitian dalam pendidikan matematika terfokus pada interaksi sesama teman dalam kelompok-kelompok kecil sebagai isu penting (Cobb, 1995; Healy et al., 1995; Hoyles et al., 1991; Kieran dan Dreyfus, 1998). Dengan mengikuti penelitian Brodie (2000), konteks sedemikian bisa penting sebagai arena pembelajaran karena interaksi sesama teman dianggap memberikan dukungan untuk pembentukan arti matematika oleh siswa. Itu juga memungkinkan lebih banyak waktu bagi siswa berbicara dan beraktivitas. Menurut Farr (1990), dinamika kelompok tiga orang berubah drastis dibandingkan dengan kelompok dua orang, karena dimungkinkan membentuk koalisi dalam ukuran kelompok yang disebut pertama, tetapi tidak dalam kelompok yang disebut terakhir. Sepanjang menyangkut kelompok lima orang dalam penelitian saya, dinamika kelompok sangat kompleks karena perspektif setiap siswa bisa dibawak ke dalam diskusi matematika. Dengan menggunakan terminologi Vygotskian, Forman (1989) menyebutkan tiga kondisi yang dibutuhkan untuk Zona Perkembangan Proksimal, yang diciptakan oleh siswa yang bekerja sama, agar supaya efektif: Siswa harus saling menghargai perspektif satu dengan lainnya tentang tugas, harus ada distribusi penge- Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 31 tahuan yang merata dan harus ada distribusi kekuasaan yang merata. Menurut Hiebert (1992), bila siswa mengekspresikan diri mereka, mereka mengungkapkan cara-cara pikir yang berbeda, cara-cara yang bisa didapat anggota kelompok lainnya. Dengan mengungkapkan ide-ide dan membelanya dalam menghadapi pertanyaan orang lain, dan dengan mempertanyakan ide orang lain, siswa dipaksa mengatasi perbedaan. Siswa pastikan bahwa ini bisa merangsang siswa untuk menguraikan, menjelaskan dan mungkin menata ulang pemikiran mereka sendiri. Goos et al. (2002) melaksanakan studi tiga tahun tentang pola interaksi siswa-siswa yang mengantarai aktivitas metakognitif di ruangan kelas matematika sekolah menegah. Analisa dialog pemecahan masalah kelompok kecil yang fokus pada bagaimana zona kolaboratif perkembangan proksimal dapat diwujudkan melalui interaksi antar sesama teman dengan keahlian yang sebanding. Pemecahan masalah yang tidak berhasil terkait dengan keputusan metakognitif buruk siswa selama proses pemecahan masalah dan ketiadaan tantangan kritis mereka terhadap pemikiran satu dengan lainnya. Hasil yang berhasil terungkap jika siswa menentang dan menolak ide yang tidak membantu dan aktif mendorong strategi konstruktif. Perlu kiranya bertanya, secara kritis, apakah sudah cukup menempatkan siswa dalam kelompok-kelompok kolaboratif untuk meningkatkan pemikiran matematika. Lebih khusus lagi seperti pertanyaan yang diajukan Stacey (1992): Apakah dua kepala lebih baik dari satu kepala? Dalam sebuah studi yang dilaksanakan Stacey (op. cit) dimana siswa tahun ke 9 (rata-rata berusia 14 tahun) diberi tes tertulis tentang pemecahan masalah, kelompok-kelompok siswa tidak memperoleh hasil yang lebih baik dari pada kinerja siswa perorangan sewaktu memecahkan masalah yang sama. Untuk menyelidiki mengapa ini terjadi yang didasarkan pada analisa dari dialog siswa saat memecahkan masalah dalam Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 32 kelompok-kelompok, Stacey (op. cit) mengamati bahwa banyak ide dibawak ke dalam diskusi, tetapi siswa mengalami kesulitan dalam memilih ide mana yang akan efektif. Ide konstruktif ditolak demi memilih ide yang lebih sederhana tetapi salah. 3.3 Problem Solving Dalam Matematika Dasar Lambdin (2003) menggambarkan pemecahan masalah sebagai bersifat siklik dan saling tergantung dengan pemahaman. ”Pemahaman meningkatkan pemecahan masalah...... belajar melalui pemecahan masalah mengembangkan pemahaman” (seperti yang dikutip dalam Lester & Charles, Eds., NCTM, 2003). Seperti halnya Lambdin (2003), Wilson, Fernandez & Hadaway (1993) juga mengisyaratkan bahwa pemecahan masalah bersifat siklik. Bila siswa fokus pada suatu masalah, anggap ia memahaminya, dan mengajukan rencana penyelesaian, serangkaian tahapan (proses) dimulai dan direvisi seiring dengan terus berkembangnya pemikiran siswa tersebut. Namun sewaktu melaksanakan rencana tindakan, ia menemukan ketidaktetarikan dalam pemahaman tentang masalah yang mengharuskannya meninjau masalah kembali. Dengan demikian, tampak bahwa pemecahan masalah adalah suatu proses iteratif dan jika memang demikian halnya, semua guru sekolah dasar, sekolah menengah dan sekolah menengah atas mungkin ada baiknya memasukkan pemecahan masalah dalam sebagian besar pengajaran matematika mereka. Van de Walle (2004) menyebut pemecahan masalah ”strategi pengajaran dasar” yang digunakan untuk menjadikan siswa benarbenar larut dalam pembelajaran matematika penting, dengan demikian, tampak bahwa pemecahan masalah mungkin bukan hanya merasuki hampir setiap tugas Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 33 matematika, tetapi juga kehidupan pada umumnya. Pertanyaan yang sesungguhnya adalah: Bagaimana anak-anak menggunakan pemecahan masalah dan bagaiman pemilihan alat, manipulatif atau bahan mereka bisa menciptakan dan menunjukkan penyelesaian mereka tampak serupa? Reusser (2000) mengajukan bahwa, ”anak-anak adalah individu-individu aktif yang benarbenar membentuk dan memodifikasi pengetahuan dan keahlian matematika mereka melalui interaksi dengan lingkungan fisik, materi guru dan anak-anak lainnya”. Bukankah situasi sehari-hari dalam kehidupan hampir semua orang yang mengisyaratkan pengetahuan tentang keahlian pemecahan masalah? Dan, bila perlu, tidakkah hampir semua orang memecahkan masalah-masalah ini dengan relatif efisien? Ternyata menggunakan pemecahan masalah secara teratur dan biasanya tugas pemecahan masalah ini tampaknya terkait dengan suatu bentuk alat, wujud atau manipulatif (ban, pengukur tekanan udara, jenis cereal, ukuran dan sifatsifat, dan lain sebagainya...). Jika pemecahan masalah semacam ini terkait secara langsung maupun tidak langsung dengan pemecahan masalah dengan angka-angka dan matematika, mungkinkah ini menjadi saluran alami untuk memperdalam rasa pengetahuan dalam matematika? Yang menjadi tujuan disini adalah menunutun anak-anak sekolah dasar untuk memanfaatkan pengetahuan berbasis kinerja dari memilih dan menggunakan materi berbasis manipulatif, seperti yang dijelaskan sebelumnya, menjadi pembentukan model-model yang, selanjutnya, terkait dengan angka-angka dan algoritma. Dalam kenyataannya, kadang-kadang orang dewasa berasumsi terlalu jauh tentang potongan-potongan sambungan puzzle dan cepat-cepat melalui pelajaran singkat tentang rangkaian tahap-tahap yang dibutuhkan untuk mengikat sepatu Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 34 (pemposisian ordinal) atau apa sesungguhnya yang dinyatakan temperatur, dalam angka (derajat). Untuk yang disebut terakhir, temperatur kerap kali dilaporkan kepada anak-anak sebagai panas atau dingin, berawan atau cerah, berangin atau lembab, dan bukan secara angka-angka dengan uraian yang jelas dan akurat. Anak-anak sangat mampu menguraikan mengapa 18 derajat Fahrenheit dingin dan 88 derajat Fahrenheit ”panas”, secara numerik dan secara matematika, bila dibolehkan menggunakan pemecahan masalah dalam situasi sedemikian dengan tuntunan guru. Bila guru menggunakan bahasa matematika dan metodologi yang akurat untuk menguraikan perbedaan (70 derajat) antara kedua temperatur sebagai bagian dari proses, ini akan sangat mungkin menjadi bagian fungsional dari proses pemecahan masalah si anak dan memberikan kepada mereka kesempatan yang lebih besar untuk mengembangkan pemahaman nyata. 3.4 Peranan Guru dan Problem Solving Pada dasarnya, kebanyakan guru ternyata mengajarkan pemecahan masalah sebagai serangkaian tahap dan/atau dengan cara linier, sementara kebanyakan siswa bukan hanya membutuhkan serangkaian tahapan, tetapi juga susunan lengkap kesempatan yang berkelanjutan dan didukung untuk mengembangkan secara tidak langsung dan mengasah teknik pemecahan masalah. Pengembangan pemecahan masalah secara mendalam ini tidak menyatakan pemahaman sepenuhnya tentang tugas matematika yang dihadapi, juga tidak mengisyaratkan bahwa itu dilakukan secara tersendiri, melainkan biasanya dicapai melalui larut dalam masalah dimana anak-anak menghubungkan informasi baru dan informasi sebelumnya (Lambdin, 2003). Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 35 Salah satu kriteria paling penting untuk meningkatkan keahlian pemecahan masalah pada anak-anak tampaknya adalah melibatkan pengajaran oleh guru yang dapat memfasilitasi dan bukan mengarahkan pembelajaran. Desoete, Roeyers dan Buysse (2001) mengkaji hubungan antara metakognisi dan pemecahan masalah pada 80 anak sekolah dasar kelas tiga dan menemukan bahwa hubungan antara kedua variabel ini terjadi lebih signifikan pada siswa diatas rata-rata dari pada siswa baru. Ini mungkin menunjukkan bahwa anak-anak yang lebih banyak mengalami kesempatan berfikir metakognitif atau introspektif mungkin selanjutnya menjadi pemecah masalah yang lebih kuat, yang mungkin menunjukkan bahwa pendekatan yang lebih interaktif terhadap pengajaran bisa mengembangkan pemikir dan pemecah masalah yang lebih kuat. Juga penting dikaji berbagai strategi untuk menuntun guru yang enggan mengadopsi metode manipulatif dan metode berbasis masalah di ruangan kelas mereka. Sebagian dari apa yang terjadi bila guru enggan menggunakan pendekatan yang inovatif, berbasis manipulatif dan berbasis masalah bersumber dari persepsi tentang seperti apa tampaknya pemecahan masalah dan pembelajaran matematika dalam pembelajaran mereka sendiri paling mungkin masalah kata abstrak atau algoritma ditulis di papan tulis. Dalam kenyataannya, teknik yang disebut terakhir ini merupakan pendekatan dengan jangkauan relatip luas terhadap pemecahan masalah yang akan terjadi setiap hari. Ini menjadi daya dorong untuk berusaha keras mengaplikasikan situasi realistis sehari-hari pada pengembangan keahlian matematika di ruang kelas dengan menggunakan konteks situasional atau konteks dunia nyata untuk mengajar dan belajar didalam, yang mengisyaratkan bahwa guru matematika harus memperhatikan, memfasilitasi dan menumbuhkembangkan pemecahan masalah didalam dan diantara bidang keahlian akademik Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 36 untuk menuntun pendekatan alamiah dan tidak mengancam terhadap masalah sehari-hari. Pendekatan sedemikian juga mengurangi abstraksi pemecahan masalah, yang memindahkannya ke dalam lingkungan konkrit berbasis realitas. Situasi konkrit dan yang tidak begitu abstrak bisa timbul selama kelompok bacaan dimana anak-anak kiranya perlu menentukan jumlah halaman yang dibaca setiap hari untuk menyelesaikan sebuah bab buku dalam kurun waktu dua minggu atau berapa banyak anak-anak yang perlu masuk dalam setiap kelompok jika terdapat tiga puluh satu anak-anak secara keseluruhan dan setiap kelompok membutuhkan lima anggota. Bila anak-anak didorong untuk berpikir seperti pemecah masalah secara teratur dan setiap hari, mereka akan sangat mungkin menjadi pemecah masalah matematika yang efektif dan yakin selama pengajaran dan penggunaan matematika. 3.5 Strategi Mengajar dan Menilai Pemecahan Masalah Guru sekolah yang baik adalah guru yang memodelkan strategi yang tepat untuk anak-anak. Mereka memanfaatkan otomatisitas, atau kefasihan, mereka untuk menguasai keahlian mengajar dalam matematika manakala mereka bukan hanya menggunakan angka-angka, algoritma-algoritma dan proses-proses yang dibutuhkan untuk memecahkan masalah spesifik, tetapi juga menunjukkan, melalui pemodelan interaktif, seperti apa sesungguhnya masalah itu. Bagi banyak anakanak, inilah saat pencerahan dalam pembelajaran matematika mereka karena mereka benar-benar dapat melihat dan menyentuh masalah sambil menghubungkan model dengan bilangan-bilangan. Inilah esensi dari belajar-mengajar berbasisalat dan berbasis-masalah yang, pada gilirannya, memberikan kepada anak-anak, Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 37 berbagai kesempatan untuk membangun pengetahuan matematika sambil membentuk hubungan yang layak dengan tugas-tugas sehari-hari. Inilah penghubung nyata antara yang konkrit dan yang abstrak. Walaupun pengujian formal pengetahuan akan tetap tampak jelas dalam menentukan seberapa banyak orang tahu tentang topik tertentu, namun ”pengujian tersebut tidak perlu harus merupakan koleksi latihan-latihan keahlian tingkat rendah” (Van de Walle, 2003). Penilaian tentang pembelajaran matematika haruslah terkait erat dengan pengajaran matematika, yang tidak jarang dilakukan dengan menggunakan model dan/atau manipulatif. Van de Walle (2004) mengajukan bahwa dalam tes dengan struktur yang ditata dengan jelas ”jauh lebih banyak informasi yang dapat ditemukan daripada jumlah jawaban yang benar atau salah”. Hal ini penting karena pengajaran yang baik (sebelum pengu- jian) haruslah mencakup penggunaan berbasis-kinerja dari model-model, gambargambar dan gambar-gambar representasi lainnya melalui mana siswa mengembangkan pemahaman rasional lebih lanjut antara konsep-konsep matematika. Kemudian, selama pengujian, model dan/atau manipulatif yang sama haruslah tercakup sebagai penggalan penilaian yang relavan dan bukan hanya merupakan potongan-potongan pembelajaran tes secara sendiri-sendiri (penilaian berbasiskinerja) atau ”tes yang memungkinkan siswa beroleh kesempatan untuk menunjukkan apa yang mereka ketahui” (Van de Walle, 2003). Penelitian tentang penggunaan manipulatif dalam pemecahan masalah di lingkungan ruangan kelas kerapkali memperlihatkan guru yang berinvestasi dalam memenuhi aneka ragam kebutuhan semua siswa (Prinsip Pemerataan, Principles and Standards for School Mathematics, NCTM, 2004), tetapi yang mengelak Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 38 untuk menggunakan manipulatif karena berbagai alasan. Guru penting sekali mengetahui kapan, mengapa dan bagaimana menggunakan manipulatif dengan efektif di ruangan kelas dan juga kesempatan untuk mengamati, secara langsung, dampak memperbolehkan belajar melalui eksplorasi dengan objek-objek yang konkrit. Konstruktivisme berkembang dari teoritikus seperti Jean Piaget (1965) dan Lev Vygotsky (1962). Piaget (1965) mendekati pembangunan pengetahuan melalui pengajuan pertanyaan dan pembangunan jawaban anak-anak sambil mereka membangun pengetahuan sementara Vygotsky (1962) merasa bahwa anak-anak bisa dituntun ke arah pemahaman matematika yang lebih kuat begitu mereka menganalisa sendiri secara progresif keahlian-keahlian yang kompleks dengan guru ada di dekat mereka untuk menjadi penyangga atau memfasilitasi bilamana perlu. Sebelum membahas strategi spesifik, perlu kiranya dijelaskan beberapa patokan yang diperlukan untuk penggunaan manipulatif yang efektif. Pertama, guru penting sekali menyadari dampak menyebut manipulatif sebagai alat-alat untuk membantu siswa mempelajari matematika dengan lebih efisien dan efektif dan bukan sebagai mainan atau benda-benda permainan. Jika manipulatif disebut sebagai ”mainan”, siswa akan memandangnya sebagai sesuatu untuk dimainkan dan bukan sebagai alat untuk bekerja guna lebih memahami matematika. Kedua, manipulatif haruslah diperkenalkan dengan format rinci dengan serangkaian harapan perilaku yang tetap dipegang teguh agar siswa mulai mengembangkan landasan pengetahuan yang mengagumkan tentang penggunaan manipulatif untuk pembelajaran matematika. Ketiga, manipulatif perlu sering-sering dimodelkan dan secara langsung oleh guru untuk membantu siswa mengetahui relevansi dan kegunaannya dalam pemecahan masalah dan dalam berkomunikasi secara matematik. Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 39 Dan, terakhir, manipulatif haruslah terus-menerus diikutkan sebagai bagian dari pos kerja eksplorasi atau waktu kerja begitu eksplorasi terbuka selesai. Guru yang dengan konsisten dan efektif memodelkan manipulatif di depan semua siswa akan secara otomatis menawarkan kepada semua siswa keyakinan bahwa menggunakan objek konkrit untuk memahami konsep abstrak bisa diterima dan memang diharapkan. 3.6 Hierarki Konsep dan Kaitannya dengan Dinamika Geometri Urutan dan ketergantungan adalah dua konsep dasar matematika. Dalam esai tentang kreasi matematik ini, Poincare mengajukan bahwa memahami urutan merupakan syarat perlu agar penemuan terjadi. Urutan konstruksi-konstruksi geometrik di atas kertas, walaupun penting dalam konstruksi yang kompleks atau konstruksi lanjutan, tidak penting dalam banyak konstruksi dasar. Tetapi dalam Dinamika Lingkungan Geometri (Dynamic Geometry Environment (DGE) ) urutan dan ketergantungan elemen-elemen dan tindakan-tindakan matematika penting sejak dari awal. Sebagai contoh misalnya, dengan konstruksi kertas-danpensil, konstruksi geometrik suatu titik pada garis atau sebuah garis melalui suatu titik adalah identik secara geometrik (keduanya dapat dinyatakan sebagai A ∈ a), tetapi dalam DGE, bila suatu titik A dikonstruksi pada garis tertentu, titik tersebut hanya dapat ditarik pada garis tersebut. Dalam kasus ini penarikan tidak mempengaruhi komponen-komponen konstruksi lainnya. Akan tetapi, bila sepenggal garis dikonstruksi melalui suatu titik A, maka titik A bisa ditarik dengan bebas ke tempat manapaun pada bidang, dan lokasi garis berubah sesuai dengan titik tersebut. Kedua konstruksi alternatif mempunyai perilaku Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 40 dinamik yang berbeda. Dengan perilaku dinamik (Dynamic Behavior (DB) ), mengacu kepada perubahan berikut yang terjadi pada layar sewaktu menarik suatu benda: a. Derajat kebebasan benda yang ditarik: Apakah mungkin menarik benda, dan jika ya, sepanjang jalur mana? b. Reaksi benda-benda terkait: Benda mana yang mengubah lokasinya pada layar selama penarikan? Di mana lokasi barunya? Dan, kuantitas atau hubungan mana yang tetap tidak berubah? Sewaktu melaksanakan konstruksi geometrik dalam DGE perlu kiranya dinyatakan hubungan antara benda-benda. Hubungan ini menetapkan hierarki ketergantungan antara elemen-elemen konstruksi. Sebagian elemen bebas, tak terkait dengan elemen sebelumnya, elemen lainnya tergantung pada elemen sebelumnya. Digunakan istilah induk dan anak untuk menggambarkan hubungan ini. Suatu elemen yang terkait dengan elemen sebelumnya adalah anak; elemen sebelumnya adalah induknya, yang menciptakan hubungan induk-anak yang menggambarkan hierarki ketergantungan antara elemen-elemen konstruksi. Hubungan induk-anak bersifat intrinsik pada kajian dengan DGE. Sebagai contoh misalnya, simetri hubungan antara (j) dan (k), seperti yang dinyatakan dalam pernyataan ”(j) dan (k) saling tegak lurus” tidak ada sewaktu bekerja di dalam DGE. Harus mengkonstruksi (j) sebagai tegak lurus dengan (k) atau (k) sebagai tegak lurus dengan (j). Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 41 Gambar 3.1 : Mengkonstruksi suatu titik pada garis atau garis melalui suatu titik Gambar 3.2 : Dua prosedur yang berbeda untuk konstruksi yang sama DB dari (j) berbeda dari DB dari (k). Kemiringan (j) bisa diubah dengan manipulasi langsung (j); kemiringan (k) bisa diubah hanya secara tak langsung dengan menarik (j). Kemiringan (k) tergantung pada kemiringan (j), dan bukan sebaliknya. Contoh berikut menggambarkan lebih lanjut pengaruh hubungan indukanak pada DB dalam DGE. Prosedur A dan B dalam gambar di atas berikut memperlihatkan tahap-tahap dua konstruksi yang menghasilkan diagram berikut: Pada prosedur A, garis tegaklurus (k) adalah induk suatu titik pada garis (E); pada prosedur B, garis tegaklurus (k) adalah anak dari titik (E). Perbedaan hubungan induk-anak ini menghasilkan selisih DB. Dengan menarik titik E pada konstruksi B akan memindahkan garis tegaklurus (k) dan titik C, tetapi tidak berpengaruh pada penggal garis AB (j). Proses ini bisa menghasilkan gambar yang diperlihatkan pada gambar 3.3, yang tidak Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 42 bisa dihasilkan dengan menarik titik-titik konstruksi A. Titik yang bersesuaian pada konstruksi A, titik E, hanya bisa ditarik pada garis tegaklurus (k), yang tidak mengubah lokasinya sewaktu menarik E. Gambar 3.3 : Konstruksi B : (k) adalah garis tegak lurus terhadap B melalui E (titik di luar AB) Gambar 3.4 : Grafik yang menggambarkan hubungan induk-anak antara elemenelemen dua konstruksi A dan B Seiring meningkatnya kompleksitas konstruksi (jumlah elemen yang berpartisipasi dan tingkatan hierarki), efek hubungan induk-anak pada DB menjadi lebih penting dan lebih rumit. Tambahan lagi, hubungan induk-anak tidak terisolir; dua prosedur yang mencakup hubungan induk-anak yang berbeda biasanya juga mencakup beberapa elemen yang berbeda. Sebagai contoh misalnya, prosedur B mencakup konstruksi titik perpotongan antara segmen awal dan tegak lurus, yang Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 43 tidak ada pada prosedur A. Berdasarkan perbedaan antara figure dan drawing yang dibuat Parzysz (1988), Laborde (1993) mengajukan bahwa DB bisa memegang peranan prosedur tertulis. Gerakan yang dihasilkan cara tarikan adalah cara mengeksternalisasikan rangkaian hubungan yang mendefinisikan gambar (figure) (Laborde, 1993). Syarat perlu agar konstruksi tepat adalah kemampuan menghasilkan dari konstruksi tersebut beberapa (atau sejumlah takhingga) gambar (drawing) yang tidak mengubah sifat-sifat yang diinginkan bila elemen-elemen tidak tetap gambar (figure) dimodifikasi. Tes tarik ini menjadi alat penting dalam menganalisa persepsi siswa dan membentuk tugas pembelajaran (Jackiw dan Finzer, 1993; Holzl, 1996, 2001; Mariotti, 2000, 2001, 2002; Straesser, 2001). Ada beberapa studi yang mengajukan perlunya meneliti aspek-aspek ketergantungan, urutan konstruksi dan hierarki yang terlibat dalam proses belajar Geometri dan DGE (Hazzan dan Goldenberg, 1997; Chazan dan Yerushalmy, 1998; Goldenberg dan Cuoco, 1998; Mariotti, 2000, 2001; Holzl, 2001; Strraesser, 2001). Holzl (1996) menemukan bahwa siswa mengalami kesulitan dalam mengembangkan kesadaran akan ketergantungan fungsional. Healy dan Hoyles (2001) menemukan bahwa makro yang sama, dengan benda-benda yang dipilih dengan urutan yang persis sama, mempunyai dua hasil yang berbeda dan menyebabkan kebingungan di kalangan siswa. Jones (2000) mengajukan beberapa isu tentang cara siswa menafsirkan lingkungan software, dengan menegaskan aspek ketergantungan fungsional sebagai salah satu dari tiga aspek yang penting bagi siswa dalam mengenali urutan untuk Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 44 melihat geometri melalui software. Jones menyebutkan bahwa walaupun guru mengacu kepada ketergantungan dan menjelaskan bagaimana titik-titik perpotongan tergantung pada benda lain, siswa mengembangkan penafsiran sendiri, yang agak berbeda, dan sewaktu menyebut titik perpotongan mereka gunakan istilah lem (glue). Jones juga mencatat bahwa siswa ternyata terkejut dengan fakta bahwa penghapusan objek juga menghilangkan semua anaknya. Terakhir, Mariotti (2002) melaporkan bahwa sewaktu meminta siswa menilai apakah penyelesaian benar, satu-satunya elemen yang digunakan untuk memeriksa kebenaran adalah pengukuran dan presisi yang terkait dengannya, dan bukan penarikan. Mariotti mengajukan bahwa orang harus menyadari bahwa hierarki konstruksi merealisasikan hubungan logis antara sifat-sifat tertentu dan sifat-sifat yang dipersepsikan sebagai tidak berubah pada mode penarikan. Dalam dinamika gambar Cabri, hubungan antara sifat-sifat geometrik dinyatakan secara global, sehingga siswa bisa melewatkan sebagian hubungan ketergantungan logis tersembunyi. Mariotti membedakan objek tertentu dengan sifat-sifat intrinsiknya, yang dirancang dan direalisasikan untuk tujuan mencapai tugas tertentu, dari objek tertentu dan sarana kegunaannya, sebagaimana dijelaskan oleh pengguna tertentu. Seperti halnya Rabardel dan Bourmaud (2003), ia menyebut artefak yang disebut pertama dan yang disebut terakhir, instrumen. Proses penguraian skema penggunaan yang berbeda dan skema penggunaan terkoordinir dan hubungan yang berkembang antara pengguna dan artefak sebagai genesis instrumental. Studi ini dituntun oleh gagasan instrumen (yang dibedakan dari gagasan artefak) dan mengajukan bahwa tindakan yang dilaksanakan siswa bersama-sama dengan pengetahuan yang mereka bangun dibentuk oleh artefak yang mereka gu- Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 45 nakan (Artigue, 2002; Mariotti, 2002). Studi ini meneliti instrumen yang dikembangkan berbagai pengguna sewaktu penarikan dengan DGE. Yang dimaksud dengan penarikan adalah pilihan untuk memilih suatu titik dan menggerakkannya secara kontinu pada bidang. Pilihan penarikan tidak unik sifatnya pada software geometri. Pilihan penarikan juga ada pada berbagai program gambar dan program rancangan. Sebut penarikan di dalam DGE sebagai artefak yang dikembangkan untuk tujuan mengkaji geometri. Instrumen penarikan mencakup artefak, yaitu sifat-sifat geometrik penarikan, dan penafsiran individual pengguna. Cara dengan mana pengguna menggunakan penarikan, yang mencakup penyerahan skema yang ada di satu pihak dan skema mental yang dihasilkan penarikan atau yang dikembangkan pengguna dengan menggunakan artefak di lain pihak, merupakan genesis instrumental. Studi tentang genesis instrumental penarikan kerapkali melibatkan pemecahan masalah (konstruksi atau eksplorasi masalah terbuka). Holzl (1996) mengkaji efek penarikan pada penyelesaian masalah geometrik yang tidak asing lagi yang sifatnya bisa digambarkan sebagai statis, dan mengikuti cara dengan mana siswa mengaplikasikan penarikan pada masalah dengan sifat ini. Arzarello et al. (2002) menganalisa sebagian sarana yang mencirikan transisi mulus dari eksplorasi ke perkiraan dan pembuktian dalam Cabri, dan mengidentifikasi tiga sarana penarikan dengan terfokus pada pengaruh-mempengaruhi persepsi, gerakan dan pemikiran; penarikan ngeluyur, penarikan acak yang digunakan sewaktu mengeksplorasi konstruksi; tes tarik, penarikan acak yang digunakan untuk mendiagnosa ketepatan konstruksi; dan penarikan lieu muet, penarikan titik dengan cara yang mempertahankan sebagian sifat. Smith (2002) menyebutkan yang lain: penarikan terbatas, penarikan suatu titik sepanjang lintasan yang dipersepsikan. Arzarello et Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 46 al. (2002) menemukan bahwa sarana-sarana penarikan yang berbeda penting untuk pergeseran produktif ke arah pendekatan formal. Mereka menguraikan proses penyelesaian di lingkungan Cabri dan membandingkan dengan proses kertas-danpensil. Smith (2002) menggunakan sarana penarikan ini sewaktu mengkaji hubungan antara tindakan siswa dan pertimbangan pada masalah geometri Cabri. Studi ini memandang penggunaan penarikan sebagai alat untuk jenis-jenis pemecahan masalah yang berbeda (pengkonstruksian, perkiraan, pemecahan atau pembuktian) yang pada pokoknya terfokus pada genesis instrumental. Mengkaji prediksi pengguna tentang DB untuk belajar tentang gambar-gambar penarikannya. Karena ini bukan fokus pada penarikan sebagai cerminan ketepatan prosedur, juga bukan pada hubungan antara tindakan siswa dan pertimbangan dalam pemecahan masalah geometri. Mengkaji persepsi pengguna yang berpengalaman tentang penarikan dan pada pokoknya terfokus pada sampai sejauh mana prediksi ini sesuai dengan hubungan induk-anak. Menurut Piaget, kemampuan memprediksi penyelesaian suatu tindakan adalah salah satu sifat dari perkembangan konsep. Sebagai contoh misalnya, tindakan yang terinternalisasi diindikasikan oleh kemampuan subjek melaksanakan tindakan secara mental. Subjek yang interiorisasinya lebih maju ”bisa menjalani gerakan-gerakan yang sama” hanya saja ”ia melaksanakannya di dalam pikirannya sebelum benar-benar melakukan sesuatu dengan tangannya” (Piaget, 1976). Arnon et al. (2001) menjelaskan peranan penting prediksi dalam diagnosis perkembangan konsep sebagai berikut : Dalam rangka mengembangkan konsep dari Tindakan ke arah Proses, berkembanglah sifat-sifat aktivitas pribadi tertentu: seseorang menjadi menyadari aktivitas secara lambat laun dan dapat menguraikan Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 47 secara verbal bagian-bagian yang semakin besar dari aktivitas tersebut. Jika tindakan konkrit, siswa bisa melaksanakan bagian-bagian yang semakin besar dari tindakan tersebut di mata pikirannya sebelum, atau sebagai ganti, melaksanakannya secara fisik. Mereka dapat memprediksi resolusinya dan menemukan jalan pintas. Mereka puas dengan rincian tindakan dan dapat mengambil kesimpulan tentang bagian-bagian lain yang belum dilaksanakan. Berdasarkan asumsi bahwa prediksi adalah tahap dalam perkembangan kognitif, studi mengkaji persepsi pengguna tentang DB sebagaimana dinyatakan dalam prediksi dan penjelasan. Menganalisa kombinasi terminologi dan tindakan dimana siswa menguraikan DB yang diperkirakan dan belajar tentang instrumen penarikan yang mereka kembangkan. Studi ini terfokus pada penafsiran tentang hubungan antara hubungan induk-anak di dalam DGE dan DB elemen-elemennya. 3.7 Kurikulum Geometri dan Teori Pembelajarannya Sebutkanlah geometri dan sekolah dalam kalimat yang sama kepada semua orang yang telah lulus sekolah lanjutan sebelum tahun 1970, dan itu hanya berarti satu hal: geometri dalam tradisi Euclid. Ternyata, hingga sekitar pergantian abad ke-20, bagi mereka yang mampu belajar di sekolah, itu berarti Euclid sebagaimana ditulis Euclid, mungkin dalam terjemahan bahasa Inggris tetapi mungkin sebagaimana diterjemahkan ke dalam bahasa Latin (mungkin berasal dari abad ke-15 atau 16), atau bahkan dalam bahasa Yunani asli. Dengan mengetahui bahwa buku-buku Euclid pada pokoknya merupakan kompilasi yang rapi dari apa yang diketahui tentang geometri dan aritmetika pada saat buku tersebut ditulis (sekitar tahun 300 SM), dan bukan program pengajaran seperti yang dikenal dewasa Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 48 ini, penggunaan buku Elements karya Euclid sebagai buku teks sekolah bukannya tanpa masalah. Yang jelas, cikal-bakal Asosiasi Matematika UK dibentuk pada tahun 1871 sebagai Asosiasi Peningkatan Pengajaran Geometri. Isu utama pada masa itu adalah apakah setiap bukti yang diharuskan harus direproduksi siswa persis dengan bentuk yang diberikan dalam Euclid (termasuk urutan bukti yang muncul dalam Euclid). Bagi sebagian besar siswa pengalaman geometri mereka jauh dari positif. Begitu geometri Euclid kehilangan statusnya sebagai satu-satunya geometri, menyusul tulisan tentang geometri lain pada pertengahan abad ke-20, geometri Euclid hanya sedikit lebih dari minat sejarah di tingkat penelitian universitas. Geometri lain menjadi objek penelitian. Kemudian, dengan kejutan yang ditimbulkan peluncuran Sputnik oleh Uni Soviet pada tahun 1957, dimulailah revisi besar-besaran atas matematika (dan sains) sekolah di sebagian besar negara barat. Salah satu ide reformasi adalah mendasarkan jauh lebih banyak matematika sekolah pada ide fungsi dan lebih ditujukan pada matematika yang akan menghasilkan kalkulus dan aljabar linier. Ruang untuk inovasi ini dimungkinkan dengan merumuskan ulang seluruh bagian kurikulum matematika, tetapi efek praktisnya tampaknya adalah menggeser geometri benda padat dan mengkonversi komponen trigonometri menjadi bagian dari mata pelajaran tentang fungsi. Dampak dari perubahan ini adalah mengurangi jumlah geometri sambil, dalam waktu yang bersamaan, meningkatkan penekanan pada geometri koordinat dan memasukkan beberapa elemen geometri transformasi dan topologi. Akibatnya, jumlah geometri yang diajarkan dengan cara Euclid mungkin menjadi banyak berkurang. Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 49 Dari berbagai kajian teoritis tentang ide-ide geometrik, yang mungkin paling terkenal adalah kajian Piaget (dan kawan-kawan) dan kajian Hiele. Tulisan Piaget mempunyai dua tema utama. Tema pertama adalah bahwa gambaran mental tentang ruang bukanlah merupakan ”pembacaan” perseptual tentang apa yang ada di sekitar. Namun, dari gambaran mental membangun dunia melalui penataan ulang progresif manipulasi aktif sebelumnya tentang lingkungan tersebut. Kedua, penataan progresif ide-ide geometri mengikuti urutan yang sudah tertentu dan urutan ini lebih bersifat pengalaman (dan mungkin lebih bersifat logika matematika) daripada bersifat historis. Yaitu, hubungan-hubungan topologik awal, seperti keterhubungan, ketertutupan dan kontinuitas, dibangun, yang diikuti dengan hubungan proyeksi (rectilinieritas) dan hubungan Euclid (angularitas, keparalelan dan jarak). Tema pertama tulisan Piaget ini, tentang proses pembentukan gambaran ruang, tetap mendapat dukungan yang cukup nyata dari penelitian. Hipotesa kedua, paling banter, mendapat dukungan yang campur aduk. Bukti yang ada menunjukkan bahwa segala jenis ide geometrik ternyata berkembang seiring berjalannya waktu, yang semakin terpadu dan tersintesa. Model van Hiele juga mengajukan bahwa pelajar maju melalui tingkatantingkatan pemikiran dalam geometri. Van Hiele mencirikan tingkatan-tingkatan ini sebagai visual, deskriptif, abstrak/hubungan dan deduksi formal. Di tingkat pertama, siswa mengidentifikasi bentuk-bentuk dan gambar-gambar menurut contoh konkritnya. Di tingkat dua, siswa mengidentifikasi bentuk-bentuk menurut sifat-sifatnya, dan di sini siswa mungkin memikirkan rhombus sebagai gambar dengan empat sisi yang sama. Di tingkat tiga, siswa dapat mengidentifikasi hubungan antara kelas-kelas gambar (misalnya, bahwa bujursangkar adalah bentuk khusus dari persegi empat) dan dapat menemukan sifat-sifat dari kelompok- Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 50 kelompok gambar dengan deduksi logika sederhana. Di tingkat empat, siswa dapat menghasilkan rangkaian singkat pernyataan untuk membenarkan suatu kesimpulan secara logika dan bisa memahami bahwa deduksi adalah metode pemastian kebenaran geometrik. Menurut model ini, kemajuan dari satu tingkat Van Hiele ke tingkat berikutnya lebih tergantung pada metode mengajar daripada usia. Dengan memperhatikan metode mengajar tradisional, penelitian menunjukkan bahwa sebagian besar siswa sekolah lanjutan pertama berprestasi di tingkat satu atau dua dengan hampir 40% siswa tamat sekolah lanjutan di bawah tingkat dua. Penjelasan akan hal ini, menurut model van Hiele, adalah bahwa guru diminta mengajarkan kurikulum yang berada pada tingkat yang lebih tinggi dari tingkat kemampuan siswa. Menurut model van Hiele siswa tidak dimungkinkan siswa membypass suatu tingkatan. Mereka tidak bisa melihat apa yang dilihat guru dalam situasi geometrik dan karenanya tidak memperoleh keuntungan dari pengajaran sedemikian. Walaupun penelitian umumnya mendukung tingkatantingkatan van Hiele berguna dalam menguraikan perkembangan konsep geometrik siswa (tanpa adanya yang lebih baik), namun masih belum jelas sejauh mana teori mencerminkan gambaran mental siswa akan konsep-konsep geometrik. 3.8 Ide-ide Pokok Dalam Belajar-Mengajar Geometri Untuk mengajar geometri dengan cara paling efektif, dan memberikan ketekunan dalam mengerjakan tugas-tugas di kelas, akan membantu jika, dalam persiapan dan pengajaran perlu ditegaskan dimana memungkinkan ide-ide pokok geometri. Ini meliputi : Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 51 Invariansi (kekekalan): pada tahun 1872, pakar matematika Felix Klein merevolusi geometri dengan mendefinisikannya sebagai kajian tentang sifat-sifat konfigurasi yang tidak berubah dengan serangkaian transformasi. Contoh proposisi kekekalan adalah banyak teorema sudut bidang (seperti teorema Thales), dan teorema yang melibatkan segitiga (seperti jumlah sudut-sudut sebuah segitiga sama dengan 180?). Siswa tidak selamanya merasa gampang menentukan sifatsifat khusus mana yang tidak berubah. Penggunaan software geometri dinamik bisa sangat membantu dalam hal ini. Simetri: simetri, tentu saja, bukan satu-satunya ide pokok dalam geometri tetapi juga di seluruh matematika, namun geometrilah yang paling dekat mencapainya. Secara teknik, simetri dapat dianggap sebagai transformasi benda matematik yang meninggalkan sebagian sifat tak berubah. Simetri sering digunakan untuk menjadikan argumen menjadi lebih sederhana, dan biasanya lebih kuat. Salah satu contoh dari geometri bidang adalah bahwa semua sifat penting paralellogram dapat diperoleh dari fakta bahwa paralellogram mempunyai simetri setengah-putaran mengelilingi titik perpotongan diagonal-diagonal. Simetri juga merupakan prinsip penataan utama dalam matematika. Sebagai contoh misalnya, mungkin cara terbaik mendefinisikan kwadrilateral (kecuali untuk trapesium umum, yang bukan merupakan kwadrilateral penting dalam kasus manapun, karena tidak ada teorema yang menarik yang melibatkan trapesium yang juga tidak berlaku untuk kwadrilateral umum), adalah melalui simetrinya. Transformasi: transformasi memungkinkan siswa dapat mengembangkan konsep kongruensi dan persamaan yang luas dan mengaplikasikannya pada semua gambar. Sebagai contoh misalnya, gambar-gambar yang kongruen selalu di- Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 52 hubungkan oleh pencerminan, rotasi, translasi atau pencerminan glide. Mengkaji transformasi bisa memungkinkan siswa dapat menyadari bahwa foto-foto adalah objek geometrik, bahwa semua parabola serupa karena bisa dipetakan pada satu dengan lainnya, bahwa grafik dari y = cos x dan y = sin x adalah kongruen, bahwa matriks mempunyai aplikasi geometrik yang kuat, dan lain sebagainya. Transformasi juga memegang peranan penting dalam karya seni banyak budaya misalnya, muncul pada pola barang-barang tembikar, ubin dan hiasan. 3.9 Belajar-Mengajar dan Pengalaman Empirik dalam Geometri Walaupun metode deduktif sangat penting dalam matematika dan berhubungan erat dalam perkembangan geometri, namun memberikan pengalaman berpikir deduktif yang berarti bagi siswa di sekolah ternyata sulit. Penelitian selalu menunjukkan bahwa siswa gagal mengetahui perlunya bukti dan tidak dapat membedakan antara bentuk-bentuk pemikiran matematika yang berbeda seperti penjelasan, argumen, verifikasi dan bukti. Sebagai contoh misalnya, sebuah survei berskala besar di AS menemukan bahwa hanya sekitar 30% siswa yang menyelesaikan mata pelajaran geometri setahun penuh yang mengajarkan bukti mencapai tingkat penguasaan 75% dalam penulisan bukti. Bahkan siswa berprestasi-tinggi ternyata memperoleh sedikit matematika yang berarti dari mata pelajaran geometri tradisional yang terorientsi pada penerapannya di sekolah lanjutan atas. Penelitian lanjutannya menunjukkan bahwa strategi problem solving mampu meningkatkan hasil belajar siswa untuk menyelesaikan soal-soal aplikasi yang disusun dalam bentuk soal-soal cerita. Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 53 Namun demikian, meskipun sangat sulit belajar membuktikan dan banyak bukti yang menunjukkan betapa sulitnya belajar membuktikan bagi siswa, ada sedikit studi yang menunjukkan bahwa siswa bisa belajar berargumentasi secara matematik. Satu pendekatan yang meyakinkan adalah pendekatan yang dikembangkan Villiers (De Villiers 1999). De Villiers menegaskan bahwa, selain penjelasan, bukti mempunyai banyak fungsi, yang meliputi komunikasi, penemuan, tantangan intelektual, verifikasi, sistematisasi, dan lain sebagainya. Berbagai fungsi ini, demikian menurut de Villier, harus dikomunikasikan kepada siswa dengan cara yang efektif agar bukti dan pembuktian menjadi kegiatan yang berarti bagi mereka. Ternyata, de Villiers mengajukan bahwa ada baiknya memperkenalkan berbagai fungsi bukti kepada siswa dengan rangkaian yang ditunjukkan seperti skema berikut. Dengan terfokus pada penjelasan, de Villiers mengajukan, akan menjadikan siswa menjadi terbiasa melihat geometri hanya sebagai akumulasi fakta-fakta yang ditemukan secara empiris di mana penjelasan tidak memegang peranan. Hal ini menunjukkan bahwa pembelajaran yang terfokus pada ide pembuktian rumus-rumus seperti yang termuat pada pembelajaran konvisional akan bersifat monoton dan kurang menumbuhkan kretivitas dan daya nalar siswa. Pembelajaran suatu konsep geometri (tentunya berkaitan atau dibangun beberapa konsep prasyarat lainnya) dengan menggunakan strategi problem solving akan memberikan keleluasan berkreasi dan bernalar kepada siswa untuk memaknai masalah, menyusun langkah-langkah penyelesaian, memodelkan dan sekaligus Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 54 menyelesaikannya. Misalnya penerapan strategi problem solving akan memungkin bagi siswa itu sendiri memiliki kreativitas dan nalar yang baik untuk mampu mengkaitkan dan menggunakan konsep segitiga siku-siku dan teorema Phytagoras untuk menentukan panjang diagonal ruang suatu kubus yang diketahui panjang sisinya. Dalam hal ini tentunya konsep diagonal ruang suatu kubus sudah dipahami terlebih dahulu. 3.10 Proses dan Strategi Problem Solving Di dalam pembelajaran matematika, khususnya tentang pembelajaran pemecahan masalah, ada empat langkah pemecahan masalah sebagai strategi umum yang harus dilakukan, yaitu : 1. Memahami masalahnya 2. Menyusun rencana yang bisa dipakai untuk memecahkan masalah 3. Melaksanakan rencana 4. Melakukan refleksi terhadap penyelesaian yang diperoleh Model empat langkah pemecahan masalah di atas dikenal dengan nama yang berbeda yaitu: kenali, susun rencana, lakukan, periksa kembali ( see, plan, do, check). Kemampuan pemecahan masalah akan terbantu perkembangannya jika pada diri siswa tersebut memiliki beraneka ragam strategi pemecahan masalah sehingga membantu siswa dalam menyusun rencana pemecahan masalah tersebut. Beberapa strategi yang disajikan dibawah ini yakni: Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 55 1. Membuat tabel Penggunaan tabel untuk mengolah informasi yang diberikan dalam soal ternyata sangat membantu siswa menemukan pola yang muncul dan membantu mereka menemukan informasi yang hilang. 2. Membuat gambar Penggunaan gambar memungkinkan siswa secara visual mengkonstruksi masalahnya. Beberapa masalah dapat diselesaikan lebih mudah setelah ada gambarnya. Penggunaan gambar juga membantu siswa menemukan hubungan. Dengan menggunakan gambar, siswa terbantu belajar menemukan informasi kunci di dalam suatu masalah serta mengabaikan informasi yang tidak perlu. 3. Menyuarakan proses berpikir Dengan mendorong siswa untuk menyuarakan pemikiran yang sedang berlangsung dalam pikirannya, mereka akan mampu mendengarkan verbalisasinya. Hal ini memungkinkan terjadinya dua proses sekaligus yaitu berpikir dan berbicara yang membantu siswa memecahkan masalah. Menyuarakan proses berpikir membantu komunikasi serta mendorong proses refleksi. 4. Melakukan atau menjalankan Siswa melakukan atau menjalankan, sehingga diperoleh pemahaman yang benar terhadap masalah tersebut. Dengan memodelkan proses yang tercermin di dalam masalah siswa akan mampu mengenali masalahnya dan mampu mengidentifikasi dengan baik apa yang sebetulnya terjadi. Ini merupakan suatu hal yang bermanfaat untuk memecahkan masalah. Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 56 5. Menemukan pola Menemukan pola dalam bilangan serta dalam gambar merupakan keterampilan yang penting untuk kompetensi berpikir dalam matematika dan perlu ditingkatkan secara terus menerus oleh siswa tersebut. 6. Duga dan periksa Strategi duga dan periksa berguna dan hendaknya didorong sebagai salah satu dari sekian banyak strategi. Ketika menggunakan dugaan siswa memerlukan kemampuan mengidentifikasi informasi penting dan beberapa strategi untuk pemecahan masalahnya. 7. Mengidentifikasi informasi yang tidak diinginkan Diperlukan kemampuan untuk mengidentifikasi informasi mana yang penting dan mana yang baik sehingga informasi yang tidak diperlukan dapat diabaikan. 8. Menggunakan contoh yang lebih sederhana Suatu masalah sering kali berubah menjadi masalah yang kompleks atau rumit seiring dengan bertambah besarnya ukuran bilangan yang ada atau seiring dengan hakikat pola yang digunakan. Dengan mengubah masalah menjadi lebih kecil atau lebih sederhana, mengurangi ukuran pola atau memecah masalah kedalam komponen yang lebih kecil, maka masalah itu akan lebih mudah dikelola. Oleh karena itu siswa mencoba untuk menyederhanakan masalah sampai ditemukan suatu pola maka masalah itu akan dapat diselesaikan dengan mudah. Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 57 9. Mengidentifikasi alternatif lain Mendorong siswa untuk menemukan alternatif memungkinkan mereka menghasilkan cara baru memandang masalah dan cara menyelesaikannya. Salah satu caranya adalah dengan mendorong mereka melakukan diskusi kelompok. Memberi kesempatan kepada siswa untuk mendengarkan bagaimana orang lain memecahkan masalah dan jawabannya memungkinkan mereka menemukan bentuk-bentuk alternatif terhadap tugas yang sama. 10. Membuat generalisasi Memfokuskan kepada sifat umum dari suatu masalah bisa menghasilkan pemahaman yang lebih mendalam pada siswa. Apabila siswa sudah mampu memahami sifat umum dari bilangan, mereka akan bisa lebih mudah menguasai pemikiran aljabar yang tidak lagi memerlukan bilangan. 11. Bekerja mundur Strategi bekerja mundur mendorong siswa untuk melihat informasi terakhir yang diberikan dan kemudian secara sistematis berangkat dari informasi itu ke informasi sebelumnya. Demikian secara berkelanjutan sehingga akhirnya dicapai yang diinginkan. 12. Memeriksa ulang jawaban Strategi yang paling penting untuk dipelajari siswa adalah memeriksa ulang jawabannya. Kegiatan ini memungkinkan mereka mengidentifikasi kesalahan yang mungkin terjadi baik jawaban maupun prosesnya. Dalam rangka memeriksa ulang jawaban ini mereka bisa melakukannya dengan mengajukan pertanyaan-pertanyaan untuk dijawab sendiri. Misalnya pertanyaanpertanyaan itu sebagai berikut : Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 58 (a) Apa jawaban ini masuk akal? (b) Asumsi apa yang saya gunakan dalam memecahkan masalah ini? (c) Apa ada alternatif jawaban lainnya? (d) Apakah ada cara lain yang bisa digunakan untuk menjawab masalah ini? (e) Apakah ini cara yang paling efisien? (f) Dimana letak kelemahan dari proses penyelesaian ini? (g) Kalau ini harus dipertanggungjawabkan kepada orang lain kira-kira bagian mana yang akan masih dipertanyakan? Dengan cara ini siswa akan memiliki pemahaman yang lebih komprehensif terhadap jawaban siswa terhadap masalah tersebut dan menjadikan siswa lebih yakin terhadap kebenarannya. Berikut ini dalah contoh soal strategi problem solving yang terkait dalam dinamika geometri yang diberikan dengan pengalaman empiris dari peneliti di kelas terhadap siswa. Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 59 Masalah Andi mempunyai tiga roda sepeda motor yang disusunnya dalam sebuah gudang. Tiga roda itu tampak tersusun bersama-sama dengan baik dan Andi memotretnya seperti tampak pada gambar dibawah ini. Dari soal diatas diketahui jari-jari roda yang terbesar adalah 16 cm dan jari-jari roda yang berukuran sedang adalah 9 cm. Berapa besarnya jari-jari roda yang terkecil dimiliki Andi? Bagaimana masalah tersebut diselesaikan? Seperti banyaknya permasalahan yang berhubungan dengan dinamika geometri lainnya anda dapat menggunakan bermacam-macam strategi, untuk soal ini anda dapat menggunakan suatu teori yang anda ketahui. Untuk permasalahan ini adalah digunakan Teorema Pythagoras. Ini adalah aplikasi sulit dari Teorema Pythgoras karena pertama-tama anda tidak dapat berpikir untuk menggunakannya. Dimana pusat tiga lingkaran tersebut tidak terletak pada suatu sudut segitiga yang benar. Anda dapat memeriksa dengan menggunakan suatu ukuran Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 60 gambar. Ini berarti bahwa pertama-tama anda perlu memikirkannya. Tujuan Prestasi Temukan panjang dan sudut dalam masalah praktisnya yang dapat dimodelkan dengan segitiga, gunakan ukuran gambar, sifat-sifat sudut segitiga, teorema Pythgoras, perbandingan trigonometri dan aturan sinus atau kosinus. Proses matematika Merencanakan dan menggunakan strategi problem solving untuk mengeksplorasi situasi secara matematika (menjadikan sistematis, memikirkan). Hasil pembelajaran spesifik Siswa mampu mengaplikasikan teorema Pythgoras untuk menyelesaikan suatu masalah matematika. Urutan pengajaran 1. Mintalah siswa untuk menuliskan sesuatu yang mereka ketahui ketika mereka menemukan suatu masalah (lingkaran, jari-jari, keliling, diameter, menggambar diagram ) 2. Menyusun rencana yang bisa dipakai untuk memecahkan masalah 3. Menjalankan rencana dan mendiskusikan yang mana satu mereka telah pikirkan Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 61 berguna dan cocok dalam menyelesaikan masalah tersebut. 4. Anda boleh juga berbicara tentang keterampilan yang mereka miliki untuk mencari tahu suatu panjang yang belum diketahui. Ini mungkin membantu seseorang menyebutkan teorema pythgoras meskipun hubungannya mungkin belum tampak. Pada tahap ini hindari menyampaikan pada siswa bahwa teorema pythagoras akan diperlukan dan jangan memberikan pendapat sebelumnya. 5. Sementara siswa menyelesaikan masalah dalam berkelompok bertanyalah dan meminta siswa untuk menerangkan penalaran mereka. Jika siswa tidak dapat memberikan jawaban selanjutnya, kemudian anda mungkin ingin lebih langsung menyarankan dengan menggunakan Pythagoras. 6. Berikan solusi Perluasan masalah Dapatkah anda menemukan suatu formula untuk jari-jari roda yang paling kecil tersebut yang berkenaan dengan jari-jari dua roda lainnya? Dengan kata lain, jika anda diberikan dua lingkaran besar berjari-jari a dan b, dapatkan anda menemukan c yang berkenaan dengan a dan b? Solusi Pada masalah ini sepertinya tidak menerapkan Pythgoras, semuanya harus dikerjakan dengan menemukan segitiga. Misalkan jari-jari roda yang paling kecil adalah c. untuk solusi ini akan memerlukan tiga persamaan. Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 62 Pada segitiga ABB 0, AB = 16 + 9 = 25 dan AB 0 = AD − BC = 16 − 9 = 7 (BB 0)2 = AB 2 − (AB 0)2 = 252 − 72 = 576. Pada segitiga AEF 0, AE = 16 + c dan AF 0 = 16 − c, dan (F 0E)2 = AE 2 − (AF 0)2 = (16 + c)2 − (16 − c)2 = 64c Pada segitiga BEF, BE = 9 + c dan BF = 9 − c, dan F E 2 = BE 2 − BF 2 = (9 + c)2 − (9 − c)2 = 36c Tetapi BB 0 = F 0E + EF , maka : √ √ √ √ √ 576 = 64c + 36c = 8 c + 6 c √ 14 c = 24 √ c = 12/7 c = 144/49 Perluasan : Gunakan perhitungan aljabar secara tepat pada masalah diatas dengan 16 diganti oleh a dan 9 diganti oleh b sehingga diperoleh formula berikut: √ √ c = ab/( a + b)2 Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 BAB 4 KESIMPULAN DAN SARAN Dari seluruh pembahasan dan uraian yang telah disampaikan pada bab-bab sebelumnya dapatlah diberikan kesimpulan dan saran sebagai berikut: 4.1 Kesimpulan 1. Geometri merupakan bagian matematika yang memuat konsep-konsep yang bersifat dinamis untuk geometri sendiri dan untuk bidang lain. 2. Tahapan dari problem solving dimulai dari memahami masalah, mentransfer masalah dalam model, menemukan strategi penyelelesaian, dan melakukan refleksi hasil dengan situasi awal. 3. Berdasarkan karakteristik geometri, strategi problem solving merupakan suatu strategi yang relevan digunakan memahami konsep-konsep geometri. 4. Geometri merupakan suatu ilmu yang sangat berkaitan dengan masalah kehidupan nyata. 4.2 Saran Mengingat dinamisnya konsep-konsep geometri untuk perkembangan ilmu lainnya dan juga dalam kehidupan nyata, maka sebaiknya strategi problem solving merupakan strategi yang layak digunakan untuk mempelajari geometri mulai sejak pendidikan dasar sampai pendidikan tinggi. 63 Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 DAFTAR PUSTAKA Bold, Benyamin. Famous Problems of Mathematics: A History of Constructions With Straight Edge and Compasses. New York: Van Nostrand Reinhold, 1969. Brodie (2000) dalam Bjuland,Raymond.(2007). Adult Students ”Reasoning in Geometry: Teaching Mathematics throught Collaborative Problem Solving in Teacher Education”, Agder University College, Kristiansand, Norway. Carlson & Bloom. (2005) dalam Bjuland,Raymond.(2007). Adult Students ”Reasoning in Geometry: Teaching Mathematics throught Collaborative Problem Solving in Teacher Education”, Agder University College, Kristiansand, Norway. Catherine A. Kelly. (2006). Using Manipulatives in Mathematical Problem Solving: A Performance Based Analysis, University of Colorado at Colorado Springs. Goos. (2000) dalam Bjuland,Raymond.(2007). ”Adult Students” Reasoning in Geometry: Teaching Mathematics throught Collaborative Problem Solving in Teacher Education, Agder University College, Kristiansand, Norway. Gorgorio, N and Jones, K. (1996), Elements of the Visualisation Process within a Dynamic Geometry Environment. Invited paper presented to Topic group on The Future of Geometry at the 8th International Congress on Mathematical Education, Seville, Spain, July 14-21 1996. 6pp. Greenberg, Marvin J. Euclidean and Non-Euclidean Geometries-Development and History. New York: W. H. Freeman and Company, 1997. Heath, T.L. The Thirteen Books of Euclids Elements(Three Volumes). New York, 1956. Heath, Sir Thomas L., trans. The Thirteen Books of Euclid’s Elements. New York: Dover Publications, Inc., 1956. Hoehn,Larry: ”Problem Posing in Geometry”. Mathematics Teacher Jan.1991: (10 14). Jones, K. (2002), Issues in the Teaching and Learning of Geometry. In: Linda Haggarty (Ed), Aspects of Teaching Secondary Mathematics: perspectives on practice. London: RoutledgeFalmer. Chapter 8, pp 121-139. Jurgensen. Geometry. 2000. National Council of Teachers of Mathematics. (NCTM:2000). Principles and Standards for School Mathematics. Reston, VA: NCTM. Polya, George. How to Solve It: A New Aspect of Mathematical Method, Princeton, NJ: Princeton University Press, 1957. Polya,G.(1962). Mathematical discovery: On understanding, learning and teaching problem solving (vol.1). New York: Wiley. 64 Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008 65 Polya,G.(1973). How to solve it. Princton, NJ: Princeton University Press. (Originally copyrighted in 1945). Putman, Ralp.T.(1987). Mathematics knowledge for understanding and problem solving. International Journal of Educational Research.11.(16).P.67-70. Ralston, Anthony and Steven S. Willoughby. ”Realistic Problem Formulation and Problem Solving” Mathematics Teacher Sept. 1997: 430-433. Showalter, Millard E. ”Using Problems to Implement the NCTMs Professional Teaching Standards” Mathematics Teacher Jan. 1994 : 5-7. VardaTalmon and Michal Yerushalmy. (2004). Understanding Dynamic Behavior: Parent-Child Relations in Dynamic Geometry Environments. Educational Studies in Mathematics 57: 91-119, 2004. Hasiholan Sitompul:Strategi Problem Solving Dalam dinamika Lingkungan Geometri, 2008. USU e-Repository © 2008