BAB IV ANALISIS Dalam bab ke-4 ini dibahas mengenai analisis dari hasil pengolahan data dan kaitannya dengan tujuan dan manfaat dari penulisan tugas akhir ini. Analisis dilakukan terhadap data pengamatan dan pengolahan data GPS beserta hasilnya. Selain itu dilakukan juga analisis terhadap besar dan vektor pergeseran (komponen horisontal dan vertikal) dalam dua kala dan implikasi dari pergeseran tersebut. Data pengamatan GPS Pangandaran baik kala ke-1 maupun kala ke-2 memiliki lama pengamatan berkisar antara 10-20 jam. Pada umumnya dari lama pengamatan ini sudah cukup untuk mendapatkan posisi dengan ketelitian hingga level milimeter sehingga diharapkan dapat melihat sinyal deformasi postseismik pasca Gempa Pangandaran 2006. Jumlah titik pengamatan pada kala ke-1 adalah 28 titik, sedangkan pada kala ke-2 berjumlah 30 titik. Dari jumlah tersebut terdapat 26 titik yang diamati dalam dua kala maka didapat 25 titik (1 titik lainnya merupakan titik pengamat) dalam sistem koordinat toposentrik yang dapat membantu penulis dalam melihat pola deformasi postseismik di Pangandaran. Lama pengamatan survei GPS ditunjukkan pada gambar 4.1 di bawah ini: Lama Pengamatan GPS Episodik 1 Episodik 2 25 20 15 10 5 Gambar 4.1 Perbandingan lama pengamatan GPS Pangandaran kala 1-2 56 LGJW KRTW 1322 Titik GP01 1321 1320 1276 1275 1272 1270 0472 0471 0468 0466 0465 0464 0462 0461 0459 0457 0456 0455 0452 0448 0437 0 0270 Jam Pengamatan 30 Pengolahan data GPS Pangandaran ini menggunakan software ilmiah Bernese 5.0. Seperti yang telah dijelaskan sebelumnya, dalam pengolahan data ini penulis menggunakan tool BPE sehingga pemrosesan jaring pengamatan GPS dilakukan secara otomatis. Dalam pengolahan data ini setiap sesinya dihasilkan solusi jaring yang berbeda berdasarkan kriteria-krteria tertentu antara lain panjang baseline dan jenis receiver yang digunakan sehingga membuat jaring tersebut memiliki nilai optimum (OBS-MAX). Baseline jaring yang terbentuk berkisar antara 10 sampai 15 baseline dalam setiap sesinya dengan panjang baseline terpendek 45 km dan baseline terpanjang 1900 km. Salah satu hal terpenting dalam pengolahan data GPS adalah bagaimana dalam memecahkan ambiguitas fase sehingga ketelitian data fase menjadi lebih baik. Dari hasil pengolahan data tersebut, terdapat beberapa baseline dengan pemecahan ambiguitas fase yang kurang baik antara lain 9 baseline pada kala 1 dan 10 baseline pada kala 2. Resolusi dari pemecahan ambiguitas fase dari baseline yang kurang baik tersebut berkisar di bawah 60 %. Kondisi resolusi ambiguitas fase yang kurang baik tersebut menyebabkan ketelitian koordinat yang dihasilkan menjadi kurang baik. Kondisi dari resolusi pemecahan ambiguitas yang kurang baik dapat dilihat pada gambar 4.2 dan gambar 4.3 di bawah ini: Baseline 2006 dengan Resolusi Ambiguitas Fase yang kurang baik 70 60 % 50 40 30 20 10 0 0462-GP01 0464-BAKO 1321-GP01 0461-BAKO COCO-LGJW 0455-GP01 0456-BAKO 0457-BAKO Baseline Gambar 4.2 Baseline pengamatan GPS 2006 dengan resolusi ambigutas fase yang kurang baik 57 Baseline 2007 dengan Resolusi Ambiguitas Fase yang kurang baik 60 50 % 40 30 20 10 0 0462-GP01 0464-BAKO 1275-BAKO 0461-GP01 GP01-LGJW 0466-GP01 0455-GP01 0437-BAKO 0457-GP01 Baseline Gambar 4.3 Baseline pengamatan GPS 2007 dengan resolusi ambigutas fase yang kurang baik Hasil dari pengolahan data GPS ditampilkan dalam sistem koordinat toposentrik beserta standar deviasinya. Dari 28 titik pada kala ke-1 dan 30 titik pengamatan pada kala ke-2, semua titik menghasilkan standar deviasi dalam fraksi milimeter dengan ketelitian komponen utara lebih baik dari komponen timur dan komponen tinggi. Hal tersebut dikarenakan lama pengamatan yang cukup lama dan penggunaan software ilmiah sehingga dapat mereduksi atau mengeliminasi efek dari kesalahan dan bias dalam pengamatan data. Namun dari pola standar deviasi tersebut, terdapat beberapa titik yang memiliki nilai standar deviasi yang cukup besar yaitu 5 titk pada kala ke-1 dan 4 titik pada kala ke-2. Titik-titik tersebut antara lain titik 0462, titik 1321, titik 0461, titik LGJW, titik 0466, titik 1320 dan titik 0455. Ketelitian yang kurang baik tersebut bisa dilihat dari persentase resolusi ambiguitas keenam titik yang rendah jika dibandingkan dengan titik-titik lainnya. Selain itu, ketelitian yang lebih rendah tersebut juga bisa dilihat dari lama pengamatannya, misal titik LGJW dan 0466 hanya diamati dalam waktu 9 jam pengamatan. Analisis ketelitian hasil juga dapat dilihat dari obstruksi pengamatan misal pada titk 0462, titik LGJW, titik 0455 dan titik 0461 dikelilingi pepohonan sehingga dapat terjadi multipath dan sedikitnya satelit yang bisa ditangkap oleh receiver GPS. Faktor lain yang dapat mempengaruhi hasil pengolahan adalah jenis receiver. Idealnya jenis receiver yang digunakan dalam 2 kala pengamatan adalah sama agar kesalahan karena pusat fase antena juga sama. 58 Hal tersebut dapat dilihat pada titik LGJW, jika pada kala pertama titik ini menggunakan receiver tipe ASHTECH Z-XII3, maka pada kala ke-2 receiver yang digunakan adalah tipe TRIMBLE 4000SSI. Hasil ketelitian pengolahan data dapat dilihat dari grafik standar deviasi sistem koordinat toposentrik pada gambar 4.4 dan gambar 4.5 sebagai berikut : komponen utara komponen timur LGJW KRTW 1322 GP01 1321 1320 1276 1275 1272 1270 0472 0471 0468 0466 0465 0462 0461 0459 0457 0456 0455 0452 0448 0437 komponen tinggi 0270 Standar Deviasi (mm) Ketelitian Hasil Pengolahan Data Kala 2006 3.5 3 2.5 2 1.5 1 0.5 0 Tahun Gambar 4.4 Standar deviasi koordinat Pangandaran 2006 3 2.5 2 komponen utara 1.5 komponen timur 1 komponen tinggi 0.5 LGJW KRTW GP01 1322 1321 1320 1276 1275 1272 1270 0472 0471 0468 0466 0465 0462 0461 0459 0457 0456 0455 0452 0448 0437 0 0270 Standar Deviasi (mm) Ketelitian Hasil Pengolahan Data Kala 2007 Tahun Gambar 4.5 Standar deviasi koordinat Pangandaran 2007 Setelah membahas data pengamatan dan hasil pengolahannya, maka tahapan selanjutnya adalah membahas vektor pergeseran titik dari dua kala, baik komponen pergeseran horisontalnya maupun komponen pergeseran vertikalnya. Dalam menentukan vektor pergeseran ini, terlebih dahulu koordinat hasil pengolahan beserta standar deviasinya ditransformasi ke dalam sistem koordinat toposentrik. Dari hasil plotting data menggunakan GMT, semua vektor pergeseran titik menuju arah tenggara dengan besar pergeseran horisontal berkisar antara 3-5 cm kecuali titik 0462 yang bergeser lebih dari 10 cm dan titik 1321 59 yang bergeser sejauh 7 cm. Sedangkan untuk komponen vertikalnya, titik-titik pengamatan mengalami pergeseran baik naik maupun turun. Dari 25 vektor pergeseran, terdapat empat titik yang mengalami penurunan yaitu titik 0471, titik 1272, titik 1321 dan titik LGJW, sedangkan 21 titik lainnya mengalami pengangkatan. Perbedaan komponen vertikal ini bisa disebabkan oleh hasil pengolahan yang kurang baik (ditunjukkan oleh standar deviasi) atau faktor-faktor lain seperti sifat fisis batuan yang dapat mempengaruhi pergeseran. Walaupun vektor pergeseran Pangandaran ini memiliki trend naik, namun mengacu kepada dasar teori bahwa pada tahapan postseismik seharusnya daerah pengamatan mengalami penurunan karena pengangkatan terjadi pada tahapan interseismik. Oleh karena itu dapat sangat sulit untuk menyatakan bahwa titik-titik pengamatan mengalami pengangkatan. Titik-titik pengamatan GPS terletak pada salah satu lempeng yang mengalami pergerakan setiap tahunnya yaitu lempeng eurasia dan pulau jawa merupakan bagian dari Sunda block yang memiliki pergerakan ke arah timur dengan kecepatan 2 cm/tahun (komponen northing sebesar -0,2 cm/tahun dan komponen easting sebesar 2 cm/tahun). Pergerakan sunda block tersebut ditentukan menggunakan model Euler Pole (Bock et al, 2003) dengan lintang Euler pole =38,9° dan bujur euler pole =-86,9° (mekanisme perhitungan sunda block dapat dilihat pada lampiran). Oleh karena itu, vektor pergeseran toposentrik di atas masih dipengaruhi oleh pergerakan sunda block tersebut. Dengan demikian, vektor pergeseran di atas harus dikurangi dengan vektor pergeseran dari sunda block di setiap titik pengamatan sehingga dihasilkan vektor pergeseran postseismik akibat gempa Pangandaran 2006. Dari hasil pengurangan sunda block tersebut, komponen utara menjadi sedikit lebih pendek dan komponen timur menjadi lebih ke selatan sehingga vektor pergeseran menjadi berubah arahnya lebih ke selatan. Sedangkan komponen tinggi tetap karena pergerakan sunda block ini hanya berpengaruh kepada komponen horisontal. 60 Adapun pergeseran postseismik tersebut ditampilkan pada tabel 4.1 di bawah ini. Tabel 4.1 Vektor Pergeseran Postseismik Gempa Pangandaran 2006 No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Titik 0270 0437 0448 0452 0455 0456 0457 0459 0461 0462 0465 0466 0468 0471 0472 1270 1272 1275 1276 1320 1321 1322 GP01 KRTW LGJW Pergeseran Utara ΔN-Sb (cm) Pergeseran Timur Pergeseran Tinggi ΔE-Sb ΔU (cm) (cm) -2.41 -3.23 -3.34 -4.29 -3.93 -4.56 -3.41 -3.28 -3.70 -3.27 -3.30 -4.66 -4.09 -3.07 -4.06 -2.47 -1.31 -3.95 -2.07 -2.15 -6.41 -3.07 -2.74 -3.76 -2.24 1.52 1.02 0.43 2.51 0.22 0.95 1.07 0.66 1.59 8.38 -0.16 -2.22 1.02 0.46 0.36 -0.49 0.65 0.88 1.28 0.07 -1.63 0.92 0.70 -1.04 -1.91 61 3.83 2.83 0.49 0.87 3.37 4.30 2.08 4.15 1.95 9.70 3.03 1.64 2.35 -19.54 3.56 1.47 -7.23 2.26 2.94 3.87 -17.05 2.00 0.82 0.44 -7.75 Pergeseran Postseismik Pangandaran 2006 (efek dari pergerakan Sunda Block telah dihilangkan) ditunjukkan pada gambar 4.6 di bawah ini : Gambar 4.6 Plotting Vektor Pergeseran Postseismik Gempa Pangandaran 2006 62 Dari hasil plotting vektor pergeseran postseismik akibat gempa Pangandaran 2006, terlihat ada 2 titik yang berbeda sekali dengan pola pergeseran yang terjadi yaitu titik 0462 dan titik 1321. Kemungkinan pertama bahwa pengamatan dan pengolahan datanya mengalami error atau kesalahan seperti yang sudah dijelaskan sebelumnya. Kemungkinan lainnya adalah bahwa di daerah kedua titik tersebut, mugkin saja terdapat patahan-patahan lokal sehingga dapat diindikasikan bahwa pergerakan yang terjadi pada kedua titik tersebut adalah benar-benar deformasi. Oleh karenanya diperlukan studi lebih lanjut untuk memastikan bahwa pergeseran yang terjadi di kedua titik tersebut adalah deformasi atau hanya error. Hasil vektor pergeseran dalam dua kala tersebut dilakukan uji statistik agar secara kualitatif vektor pergeseran tersebut mengindikasikan baik tidaknya hasil pengolahan vektor pergeseran titik-titik di sekitar Pangandaran. Uji statistik ini dilakukan dengan cara menguji variabel pergeseran titik (Pij) dari pengamatan kala i ke kala j yang nilainya dapat dihitung dengan menggunakan rumus : Pij = ( dNij2 + dEij2 + dUij2 ) Hipotesa nol yang digunakan pada uji statistik ini adalah titik tidak bergeser dalam selang i ke j sehingga : Hipotesa nol Ho : Pij = 0 Hipotesa alternatif Ha : Pij ≠ 0 Statistik yang digunakan dalam menguji pergeseran titik-titik pengamatan di Pangandaran adalah : T = Pij / SPij Dimana Spij adalah standar deviasi dari Pij dan T adalah besaran yang menunjukkan signifikan tidaknya pergeseran yang terjadi. Pergeseran dinyatakan signifikan atau hipotesa nol ditolak adalah (Wolf and Ghilani, 1997) : T > t df,α/2 Dimana df adalah derajat kebebasan dan α adalah level signifikan yang digunakan untuk uji statistik. Dalam kasus penentuan vektor pergeseran menggunakan GPS, data yang teramati sangatlah banyak. Oleh karena itu df diasumsikan tidak terhingga. Dengan level kepercayaan 99 %, maka nilai t df,α/2 adalah 2,576 (Wolf and Ghilani, 1997). Hasil vektor 63 pergeseran Pangandaran diuji dengan menggunakan formula ini dan hasil uji statistik menyatakan bahwa 25 vektor pergeseran titik pengamatan di Pangandaran kala 2006 dan 2007 mengalami pergeseran yang signifikan (hasil perhitungan uji statistik ini dapat dilihat pada lampiran). Analisis di atas baik dari segi data, pengolahan data hingga vektor pergeseran yang didapat menunjukkan terjadinya pergeseran pada titik-titik di sekitar Pangandaran selama selang waktu 2006-2007. Hal tersebut memiliki implikasi ke beberapa hal. Pertama, titik-titik yang diukur merupakan titik-titik BPN dan BAKOSURTANAL yang merupakan titik-titik ikat dan digunakan sebagai referensi dalam berbagai keperluan. Karena titik-titik ikat tersebut mengalami pergeseran sekitar 2-4 cm akibat deformasi postseismik gempa Pangandaran 2006. Perubahan koordinat tersebut akan berpengaruh dalam keperluan-keperluan yang menuntut ketelitian tinggi. Oleh karena itu titik-titik pengamatan tersebut perlu direvisi kembali sehingga didapat koordinat-koordinat baru. Seperti yang telah dijelaskan pada bab sebelumnya bahwa untuk melihat mekanisme dari gempa bumi dan tsunami di Pangandaran adalah dengan cara melihat deformasi yang mengeringi tahapan mekanisme setelah terjadinya gempa bumi yaitu coseismik dan postseismik. Pergerakan coseismik yang terjadi akibat gempa Pangandaran 2006 adalah 2 cm dengan arah menuju pusat gempa di selatan pantai Pangandaran (www.gd.itb.ac.id). Sedangkan pada tahapan postseismik dari hasil pengolahan data GPS ini, penulis dapat mengetahui besaran dan pola deformasi postseismik akibat gempa Pangandaran 2006 sebesar 2-4 cm. Pola deformasi postseismik yang terjadi merupakan titik-titik yang merepresentasikan pergeseran menunjukkan sinyal deformasi postseismik dengan arah selatan atau dengan kata lain pola postseismik yang terjadi memiliki arah yang sama dengan pergeseran kerak bumi akibat deformasi coseismik. 64