hubungan antara distribusi ikan demersal, makrozoobenthos, dan

advertisement
HUBUNGAN ANTARA DISTRIBUSI IKAN DEMERSAL,
MAKROZOOBENTHOS, DAN SUBSTRAT
DI PERAIRAN SELAT MALAKA
ADITA DWI NUGRAHENI
SKRIPSI
DEPARTEMEN ILMU DAN TEKNOLOGI KELAUTAN
FAKULTAS PERIKANAN DAN ILMU KELAUTAN
INSTITUT PERTANIAN BOGOR
2011
PERNYATAAN MENGENAI SKRIPSI DAN SUMBER INFORMASI
Dengan ini saya menyatakan bahwa Skripsi yang berjudul:
HUBUNGAN ANTARA DISTRIBUSI IKAN DEMERSAL,
MAKROZOOBENTHOS, DAN SUBSTRAT DI PERAIRAN
SELAT MALAKA
adalah benar merupakan hasil karya sendiri dan belum diajukan dalam bentuk apa
pun kepada perguruan tinggi mana pun. Semua sumber data dan informasi yang
berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari
penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di
bagian akhir skripsi ini.
Bogor, Desember 2010
ADITA DWI NUGRAHENI
C54062990
RINGKASAN
ADITA DWI NUGRAHENI. Hubungan antara Distribusi Ikan Demersal.
Makrozoobentos, dan Substrat di Perairan Selat Malaka. Dibimbing oleh
SRI PUJIYATI dan WIJOPRIONO.
Penelitian ini menggunakan data hasil survei Balai Penelitian Perikanan Laut
(BPPL) Kementrian Kelautan dan Perikanan (KKP). Pengambilan data dilakukan
pada tanggal 12-22 Juni 2008 di perairan sekitar Pulau Bengkalis, Pulau Rupat
menuju Selat Malaka. Sampel makrozoobenthos diambil menggunakan alat Van
veen grab dengan ukuran (20x20) cm2. Pengambilan contoh ikan demersal
menggunakan alat tangkap berupa trawl. Data akustik yang diperoleh
menggunakan SIMRAD EK 60 sudah dalam bentuk echogram. Pengolahan nilai
SV dengan menggunakan perangkat lunak Echoview versi 4.0, sedangkan untuk
mengintegrasi nilai TS data akustik terlebih dahulu direkam ulang dengan
menggunakan perangkat lunak ER 60. Pengolahan nilai densitas untuk ikan
dilakukan pada Ms. Excel setelah proses integrasi SV dan TS. Penyajian data
ditampilkan dalam bentuk tabel, grafik, dan regresi linier sederhana, regresi
berganda dan principal component analysis (PCA).
Berdasarkan data hidroakustik pada penelitian ini Perairan Selat Malaka
memiliki kedalaman yang berkisar antara 13,98 m – 63,48 m, perairan ini
tergolong dangkal. Nilai SV untuk substrat berkisar antara -22,98 sampai -30,95
dB dengan tipe substrat pasir, pasir berlumpur, liat berpasir, dan liat. Nilai SV
untuk ikan berkisar antara -41,03 dB hingga -43,60 dB yang cenderung menyebar
secara merata pada setiap kedalaman, sedangkan nilai TS untuk ikan berkisar
antara -25,29 dB hingga -57,75 dB. Nilai densitas untuk ikan berkisar antara 0,18
ind/m3 hingga 4,37 ind/m3. Persebaran densitas ikan berlawanan dengan nilai TS
ikan. Makrozoobentos yang dominan berada di perairan Selat Malaka yaitu
berasal dari Genus Chamalycaeus. Hasil tangkapan trawl menunjukkan bahwa
spesies yang berada di perairan ini adalah Nibea mitsukurii (28,56%), Johnius
grypotus (24,23%), Harpadon nehereus (14,41%), Lepturacanthus savala
(9,66%), Johnius distincus (7,13%) dan lain-lain (4,80%)
Dilihat melalui regresi berganda dan PCA dapat diketahui bahwa jumlah total
makrozoobentos merupakan peubah yang lebih berpengaruh terhadap jumlah total
ikan karena perubahan tipe substrat cenderung kurang mengakibatkan perubahan
yang signifikan pada jumlah total ikan demersal.
© Hak cipta milik Adita Dwi Nugraheni, tahun 2011
Hak cipta dilindungi
Dilarang mengutip dan memperbanyak tanpa seizin tertulis dari
Institut Pertanian Bogor, sebagian atau seluruhnya dalam
Bentuk apa pun, baik cetak, fotokopi, microfilm, dan sebagainya
HUBUNGAN ANTARA DISTRIBUSI IKAN DEMERSAL,
MAKROZOOBENTHOS, DAN SUBSTRAT
DI PERAIRAN SELAT MALAKA
ADITA DWI NUGRAHENI
SKRIPSI
sebagai salah satu syarat untuk memperoleh gelar
Sarjana Ilmu Kelautan
pada Departemen Ilmu dan Teknologi Kelautan,
DEPARTEMEN ILMU DAN TEKNOLOGI KELAUTAN
FAKULTAS PERIKANAN DAN ILMU KELAUTAN
INSTITUT PERTANIAN BOGOR
2011
SKRIPSI
Judul Penelitian
: HUBUNGAN ANTARA DISTRIBUSI IKAN DEMERSAL,
MAKROZOOBENTHOS, DAN SUBSTRAT DI
PERAIRAN SELAT MALAKA
Nama Mahasiswa : Adita Dwi Nugraheni
Nomor Pokok
: C54062990
Departemen
: Ilmu dan Teknologi Kelautan
Menyetujui,
Dosen Pembimbing Utama
Dosen Pembimbing Anggota
Dr. Ir. Sri Pujiyati, M.Si
NIP. 19671021 199203 2 002
Dr. Wijopriono, M.Sc
NIP. 19600616 198603 1 006
Mengetahui,
Kepala Departemen
Ilmu dan Teknologi Kelautan
Prof. Dr. Ir. Setyo Budi Susilo, M. Sc
NIP. 19580909 198303 1 003
Tanggal Ujian: 12 Januari 2011
KATA PENGANTAR
Puji syukur kepada Allah SWT atas rahmat dan karunia yang telah diberikan
kepada penulis sehingga skripsi ini dapat selesai. Skripsi yang berjudul
Hubungan antara Distribusi Ikan Demersal. Makrozoobentos, dan Substrat
di Perairan Selat Malaka diajukan sebagai salah satu syarat untuk memperoleh
gelar kesarjanaan.
Selama penyusunan skripsi penulis banyak mendapat bantuan dari berbagai
pihak. Oleh karena itu penulis mengucapkan terima kasih kepada:
1. Orang tua dan keluarga yang selalu memberikan kasih sayang dan perhatian
serta dukungan baik secara moril maupun materiil.
2. Dr. Ir. Sri Pujiyati, M.Si dan Dr. Wijopriono, M.Sc selaku Pembimbing Skripsi
atas arahan dan bimbingan selama proses penyelesaian skripsi.
3. Dr. Ir. Henry M. Manik, M.T selaku penguji tamu pada ujian akhir penulis
yang telah memberikan masukan dan saran.
4. Dr. Ir. Neviaty P. Zamani, M.Sc selaku Pembimbing Akademik selama penulis
menuntut ilmu di Departemen ITK, FPIK, IPB.
5. M. Natsir, S.Pi, M.Si, Asep Priyatna, S.Pi, Rodo Manalu, S.Pi dan seluruh staf
Balai Riset Perikanan Laut (BRPL) serta Obed A.T. Allo, S.Pi atas bantuan dan
bimbingannya selama pengolahan data hidroakustik.
6. Yulia, S.TP, Tina Maretina, S.Hut, Tri Handayani, Josephine Vivian, S.Ik,
Rizka Rahma Dewi, S.Ik, Kristina Simamora, S.Ik, Daniel JPH Siahaan, S.Ik,
Olivier Yonathan, S.Ik atas dukungan dan kebersamaannya.
7. Teman-teman ITK 43 yang selalu memberikan semangat dan motivasi.
Penulis menyadari bahwa proposal ini jauh dari sempurna. Oleh karena itu
pada kesempatan ini penulis menerima saran dan kritik yang membangun.
Penulis berharap skripsi ini dapat menambah pengetahuan dan wawasan bagi diri
sendiri maupun pembacanya.
Bogor, Oktober 2010
Adita Dwi Nugraheni
DAFTAR ISI
Halaman
DAFTAR TABEL ........................................................................................ x
DAFTAR GAMBAR .................................................................................... xi
DAFTAR LAMPIRAN ................................................................................. xii
DAFTAR ISTILAH ...................................................................................... xiii
1. PENDAHULUAN .................................................................................... 1
1.1. Latar Belakang ................................................................................. 1
1.2. Tujuan ............................................................................................... 2
2. TINJAUAN PUSTAKA ..........................................................................
2.1. Kondisi Umum Selat Malaka ............................................................
2.2. Metode Hidroakustik.........................................................................
2.3. Ikan Demersal ....................................................................................
2.4. Makrozoobentos................................................................................
2.5. Substrat Dasar Laut ...........................................................................
2.6. Penelitian Menggunakan Hidroakustik .............................................
3
3
4
6
8
10
12
3. METODOLOGI .......................................................................................
3.1. Lokasi dan Waktu Penelitian ............................................................
3.2. Alat dan Bahan..................................................................................
3.3. Metode Penelitian .............................................................................
3.3.1. Perolehan Data............................................................................
3.3.2. Pengolahan Data .........................................................................
3.3.2.1. Pengolahan Volume Backscattering Strength (SV)............
3.3.2.2. Pengolahan Target Strength (TS) ......................................
3.3.2.3. Pengolahan Densitas ..........................................................
3.3.3. Visualisai Data ............................................................................
15
15
15
17
17
17
19
21
23
23
4. HASIL DAN PEMBAHASAN ................................................................
4.1. Sebaran Substrat................................................................................
4.1.1. Sebaran Data Akustik untuk Substrat .........................................
4.1.2. Sebaran Data Grab untuk Substrat ..............................................
4.1.3. Hubungan Data Akustik dan Grab untuk Substrat......................
4.2. Sebaran Ikan Demersal .....................................................................
4.2.1. Sebaran Data Akustik untuk Ikan ...............................................
4.2.2. Sebaran Data Tangkapan Trawl untuk Ikan................................
4.2.3. Hubungan Data Akustik dan Hasil Tangkapan Trawl ................
4.3. Sebaran Makrozoobentos ..................................................................
4.4. Hubungan Tipe Substrat, Ikan Demersal, dan Makrozoobentos.......
27
27
27
28
29
31
31
34
36
36
37
5. KESIMPULAN DAN SARAN ................................................................ 43
5.1. Kesimpulan ...................................................................................... 43
5.2. Saran.................................................................................................. 43
viii
DAFTAR PUSTAKA .................................................................................... 44
LAMPIRAN .................................................................................................. 47
RIWAYAT HIDUP ...................................................................................... 54
ix
DAFTAR TABEL
Halaman
1. Ikan-ikan utama yang termasuk ikan demersal.......................................... 7
2. Kepadatan stok (kg/km2) jenis-jenis ikan demersal di perairan Selat
Malaka....................................................................................................... 8
3. Ukuran butir untuk sedimen menurut Skala Wentworth............................ 12
4. Nilai SV substrat di beberapa penelitian.................................................... 14
5. Tipe Substrat setiap Stasiun ....................................................................... 29
6. Data trawl ikan demersal............................................................................ 34
7. Hasil regresi berganda................................................................................ 38
8. Korelasi antar parameter ............................................................................ 40
x
DAFTAR GAMBAR
Halaman
1. Cara kerja alat hidroakustik ....................................................................... 5
2. Lokasi penelitian ........................................................................................ 16
3. Diagram alir pengolahan data .................................................................... 18
4. Diagram alir proses integrasi SV max........................................................ 19
5. Diagram alir proses integrasi TS max ........................................................ 21
6. Sebaran vertikal SV substrat ...................................................................... 27
7. Sebaran horisontal SV substrat .................................................................. 28
8. Grafik SV substrat dan tipe substrat .......................................................... 30
9. Sebaran vertikal SV, TS, dan densitas ikan ............................................... 32
10. Sebaran horisontal SV, TS, dan densitas ikan ......................................... 32
11. Persentase hasil tangkapan trawl.............................................................. 35
12. Perbandingan antara densitas ikan dan hasil tangkapan trawl ................. 36
13. Grafik jumlah total makrozoobentos dan tipe substrat ............................ 37
14. Grafik interaksi data contoh ..................................................................... 38
15. Grafik kedekatan antar parameter ............................................................ 40
16. Grafik kedekatan antar stasiun ................................................................. 42
xi
DAFTAR LAMPIRAN
Halaman
1. Contoh data hasil integrasi SV................................................................... 48
2. Contoh data hasil integrasi TS ................................................................... 48
3. Contoh echogram SV substrat ................................................................... 48
4. Contoh echogram SV ikan ......................................................................... 49
5. Contoh echogram TS ikan ......................................................................... 49
6. Kepadatan makrozoobentos (ind/m2) setiap stasiun .................................. 50
7. Hasil tangkapan trawl setiap stasiun .......................................................... 50
8. Contoh genus Chamalycaeus ..................................................................... 52
9. Contoh ikan demersal................................................................................. 52
xii
DAFTAR ISTILAH
Akustik (Acoustic) : Ilmu tentang suara, sifat, dan karakteristiknya di dalam suatu
medium.
Echogram
: Rekaman dari rangkaian gema.
Echosounder
: Perangkat akustik yang digunakan untuk menampilkan data
echogram dari transducer.
E1
: Nilai hambur balik pertama dari dasar perairan (Energy of the
first bottom echo).
Thershold
: Ambang nilai yang berfungsi untuk membatasi/menapis
pantulan yang ditampilkan pada echogram.
Transducer
: Perangkat akustik yang digunakan sebagai transmitter
(pemancar) dan receiver (penerima) gelombang suara.
xiii
1. PENDAHULUAN
1.1. Latar Belakang
Indonesia memiliki berbagai sumber daya alam yang sangat potensial.
Namun, kekayaan alam yang sangat potensial itu masih banyak yang belum
tereksplorasi dan terolah dengan baik dan bijaksana. Hal ini terjadi karena
letaknya yang jauh dari jangkauan, sehingga manusia sehingga sulit untuk
mempelajarinya, apalagi pada daerah dasar laut.
Metode hidroakustik merupakan suatu usaha untuk memperoleh informasi
tentang objek di bawah air dengan cara pemancaran gelombang suara dan
mempelajari echo yang dipantulkan. Dalam pendeteksian ikan digunakan sistem
hidroakustik yang memancarkan sinyal akustik secara vertikal, biasa disebut echo
sounder atau fish finder (Burczynski, 1986 dalam Yahya et al., 2001).
Ikan demersal merupakan ikan yang hidup pada dasar perairan, termasuk
ikan-ikan karang (Nelwan, 2004). Ikan-ikan yang hidup di terumbu karang pada
umumnya memiliki daging yang tebal/kenyal dan warna yang menarik (Ikawati
dan Parlan, 2009). Beberapa ikan karang memiliki rasa enak untuk dikonsumsi
dengan harga yang relatif mahal, berkisar antara Rp 30.000 – Rp 80.000 per
kilogram.
Substrat dasar laut merupakan habitat berbagai ikan demersal. Beberapa ikan
lebih menyukai terumbu karang sebagai tempat hidupnya, namun ada beberapa
ikan yang lebih menyukai substrat pasir atau lumpur sebagai tempat hidupnya.
Pada substrat pasir atau lumpur terdapat berbagai jenis bentos yang hidup di
dalamnya (Wibisono, 2005). Bentos merupakan makanan alami bagi hewanhewan dasar terutama ikan dan udang (Yusron et al., 1990).
1
2
Guna mengetahui hubungan ikan demersal dan substrat maka diperlukannya
penelitian lebih lanjut tentang hal tersebut. Penelitian yang menghubungkan
antara ikan dengan bentos atau ikan dengan metode akustik telah dilakukan.
Beberapa contoh yang dimaksud adalah klasifikasi habitat dasar perairan (Allo et
al., 2009), hubungan nilai volume backscattering strength dasar perairan dengan
kandungan makrozoobenthos (Riantoro, 2010), serta hubungan habitat dengan
volume backscattering strength ikan demersal (Ginting, 2010).
1.2. Tujuan
Tujuan dari dilakukannya penelitian ini adalah untuk menggambarkan
hubungan antara makrozoobentos dan tipe substrat dengan hasil tangkapan ikan
demersal.
2. TINJAUAN PUSTAKA
2.1. Kondisi Umum Selat Malaka
Perairan Selat Malaka merupakan bagian dari Paparan Sunda yang relatif
dangkal (Atmaja et al., 2001 dalam Masrikat, 2003), yang berada satu bagian
dengan dataran utama Asia, beberapa laut dan teluk seperti Laut Cina Selatan,
Teluk Thailand, dan Laut Jawa (Masrikat, 2003). Bagian paling sempit dari Selat
Malaka memiliki kedalaman sekitar 30 m dengan lebarnya 35 km, kemudian
kedalaman meningkat secara gradual hingga 100 m sebelum Continental Slope
Laut Andaman. Di dasar selat ini arus pasang surut sangat kuat terjadi dan
terbentuk riak-riakan pasir besar (sand ripples) yang bentuk puncak/ujungnya
searah dengan arus pasut tersebut (Wyrtky, 1961 dalam Masrikat, 2003).
Selat Malaka merupakan jalur laut terpadat di dunia yang menjadi urat nadi
lalu-lintas transportasi minyak bumi sebesar 9,4 juta barel yang menghidupi
perekonomian dunia (IDSPS, 2008). Di samping itu, Selat Malaka juga
merupakan perairan yang sangat penting dalam menunjang perkembangan
perikanan laut di perairan teritorial maupun di perairan ZEE. Perairan ini sangat
subur mengingat banyaknya sungai besar dan kecil yang bermuara serta
banyaknya hutan mangrove di daerah pantainya. Di pandang dari sudut geografis
daerah ini sangat strategis bagi perkembangan komoditas perikanan karena
wilayah ini dibatasi oleh Indonesia, Malaysia, Thailand, dan Singapura (Sumiono,
2002).
3
4
2.2. Metode Hidroakustik
Hidroakustik merupakan suatu teknik penggunaan gelombang suara (akustik)
untuk menduga kedalaman perairan serta dapat dipergunakan untuk mendeteksi
ikan. Teknik hidroakustik baru diketahui kegunaannya sekitar tahun 1930. Sejak
saat itu hidroakustik tidak saja mempunyai peranan yang besar dalam industri
penangkapan ikan, tetapi juga penting dalam di dalam bidang penelitian
perikanan, terutama untuk menduga kelimpahan suatu sediaan ikan (Widodo,
1992). Menurut Pujiyati (2008) metode hidroakustik adalah suatu metode
pendeteksian bawah air yang menggunakan perangkat akustik, antara lain:
echosounder, fish finder, sonar, dan Acoustic Doppler Current Profiler (ADCP).
Cara kerja alat hidroakustik ditunjukkan pada Gambar 1. Pesawat
pengendali (control) mengirimkan pulsa listrik dengan frekuensi tertentu dan
mengatur pesawat transmisi yang pada gilirannya akan memodulasi pulsa tersebut
dan meneruskannya ke transducer. Selanjutnya, transducer akan mengubah pulsa
listrik tersebut ke dalam bentuk energi akustik berupa sinyal suara yang kemudian
dipancarkan ke dalam air. Gelombang akustik tersebut merambat di dalam air,
dan apabila membentur sebuah target, misalnya ikan atau dasar perairan, ia akan
dipantulkan sebagai gema (echo). Pada umumnya transducer yang sama akan
menerima gema tersebut dan mengubahnya kembali menjadi tenaga listrik.
Setelah itu, pesawat receiver-amplifier akan menerima dan kemudian memperkuat
pulsa listrik tersebut serta mengirimkannya ke pesawat peraga. Pesawat peraga
dapat berupa perekaman gema dari kertas (echogram paper) atau berupa sebuah
“oscilloscope”. Oscilloscope merupakan sebuah alat yang didasarkan atas
5
kemampuan sebuah CRT (cathode ray tube) untuk melakukan visualisasi terhadap
osilasi arus atau tegangan listrik (Widodo, 1992).
Gambar 1. Cara Kerja Alat Hidroakustik
(Sumber: Widodo, 1992)
Penggunaan metode hidroakustik mempunyai beberapa kelebihan (Arnaya,
1991 dalam Yahya et al., 2001), diantaranya: berkecepatan tinggi; estimasi stok
ikan secara langsung dan wilayah yang luas dan dapat memonitor pergerakan
ikan; akurasi tinggi; tidak berbahaya dan merusak sumberdaya ikan dan
lingkungan, karena frekuensi suara yang digunakan tidak membahayakan bagi si
pemakai alat maupun obyek yang disurvei. Penggunaan teknologi ini sangat
membantu dalam pencarian sumberdaya ikan yang baru, sehingga akan
mempercepat pengambilan keputusan atau kebijakan, terutama untuk menetapkan
daerah penangkapan ikan agar potensi ikan dapat dipertahankan (Riani, 1998
dalam Yahya et al., 2001).
6
Beberapa kendala yang mempengaruhi sinyal pantul menjadi berbeda dari
pulsa akustik yang datang atau dikirimkan (Siwabessy, 2001 dalam Pujiyati,
2008): ketidaksesuaian impedansi akustik dari air laut - dasar laut menyebabkan
pembauran permukaan dari pulsa utama; parameter akustik dari alat; penetrasi
sinyal akustik pada dasar laut menyebabkan besarnya pembauran pulsa utama;
arah pemantulan pada interface air laut – dasar laut akibat dari kekasaran dasar
laut; keterlambatan waktu kembali; respon pembauran dari permukaan laut,
gelembung-gelembung permukaan, dan lambung kapal untuk gema dasar akustik
kedua; kemiringan dasar laut; penyerapan akustik air laut; dan derau (noise).
2.3. Ikan Demersal
Ikan demersal adalah kelompok ikan yang mendiami atau mempunyai habitat
berada antara kolom air hingga dekat dasar perairan. Ikan-ikan ini umumnya aktif
mencari makan pada malam hari, dan juga bersifat pasif dalam pergerakannya,
karena tidak ada mobilitas dalam jarak yang jauh. Kelompok ikan ini adalah
termasuk jenis-jenis ikan karang (Nelwan, 2004). Biasanya para nelayan
menangkap ikan demersal dengan menggunakan cantrang, trawl, trammel net,
rawai dasar, dan jaring klitik (Ilo, 2009).
Ikan demersal dibedakan menjadi dua tipe, yaitu: round fish (misalnya ikan
cod, haddock, dan hake) dan flat fish yang beradaptasi lebih luas dengan
kehidupannya di atas dasar laut (misalnya ikan plaice, dan halibut). Ikan yang
hidup berdekatan dengan dasar akan beradaptasi terhadap lingkungannya,
memiliki modifikasi struktur, badan mereka terpipihkan dan kedua matanya
7
bergeser ke satu sisi dari kepalanya (misalnya ikan pari) (Pujiyati, 2008). Berikut
ini akan disajikan jenis-jenis ikan demersal yang ada di Indonesia (Tabel 1).7
Tabel 1. Ikan-Ikan Utama yang Termasuk Ikan Demersal
Sub
Kelompok
Demersal
Besar
Nama
Indonesia
Kakap merah
Nama Inggris
Nama Ilmiah
Barramundi
Lutjanus malabaricus
Giant sea perch
L. sanguineus
L. johni
Kerapu
Groupers
Epinephelus spp.
Manyung
Sea catfishes
Arius spp.
Senangin
Thread fins
Polynemus spp.
Eleutheroneme tetradactylum
Demersal
Kecil
Pari
Rays
Trigonidae
Remang
Murrays
Muraenesex spp.
Bawal putih
Silver pomfret
Pampus argenteus
Bawal hitam
Black pomfret
Formio niger
Tiga waja
Drums
Scianidae
Ketang-ketang
Spotted Sickelfish
Drepane punctata
Gulamah
Croackers
Scianidae
Layur
Hairtails, cutlass fishes
Trichiurus spp.
Pepetek
Pony fishes, slip mounts
Leiognathidae
Kuniran
Goatfish
Upeneus sulphureus
Beloso
Lizard fishes
Saurida spp.
Kurisi
Treadfin breams
Nemipterus spp.
Gerot-gerot
Grunters, sweetlips
Pomadasys spp.
Sebelah
Indian halibuts
Psettodidae
(Sumber: Boer, et al., 2001 dalam Pujiyati, 2008)
Tabel 2 menunjukkan kepadatan stok (kg/km2) dari jenis-jenis ikan demersal
di Selat Malaka. Dilihat dari total ikan demersal yang terdapat dalam setiap
tahunnya nenunjukkan adanya perubahan. Perubahan ini terjadi karena dampak
penghapusan trawl terhadap kepadatan stok ikan demersal di Selat Malaka.
Penghapusan trawl ini tidak sepenuhnya buruk, karena beberapa jenis ikan
demersal (terutama yang tertangkap dengan trawl) cenderung mengalami
kenaikan pada tahun 1985. Pada tahun 1997 dimana banyak kapal Pukat Ikan
8
(modifikasi dari trawl) yang beroperasi di Selat Malaka, kepadatan stok dari
beberapa jenis ikan cenderung menurun. Di lain pihak terdapat juga beberapa
jenis ikan yang dulunya tidak tertangkap, pada tahun 1997 “muncul” kembali
(Sumiono, 2002).
Tabel 2. Kepadatan Stok (kg/km2) Jenis-Jenis Ikan Demersal di Perairan Selat
Malaka
No
Famili
Nama Indonesia
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
1)
1975
51
11
92
111
153
162
103
114
21
8
45
18
27
90
14
148
1403
Tahun
1983
19853)
19
99
3
6
28
173
68
986
127
145
260
257
114
78
84
262
124
65
28
5
27
109
28
88
260
32
3
33
28
5
71
67
1228
2977
2)
19974)
30
113
4
98
91
77
64
260
137
43
154
3
335
74
4
107
53
3
68
1724
Ariidae
Manyung
Carangidae
Selar/Kuwe
Drepanidae
Ketang-ketang
Formionidae
Bawal Hitam
Gerreidae
Lontong/Serai
Leiognathidae Pepetek/Petek
Lutjanidae
Kakap Merah
Mullidae
Kuniran
Nemipteridae Kurisi
Pomadasydae Gerot-Gerot
Priacanthidae Swanggi
Psettodidae
Sebelah
Siganidae
Baronang
Sciaenidae
Gulamah/Tiga Waja
Serranidae
Kerapu
Synodontidae Beloso
Trichiuridae
Layur
Theraponidae
Lainnya
Total Demersal
Keterangan:
1) Saeger, et al. (1976) 2) Barus et al. (1983) 3) Purnomo (1985) dalam (Rusmadji dan Badrudin,
1987) dalam 4) Sumiono (2002)
2.4. Makrozoobentos
Makrozoobentos adalah organisme yang melekat atau beristirahat pada dasar
atau hidup di dasar endapan. ahampir dari semua zoobentos yang ada di perairan
merupakan makrobentos.. Hewan ini merupakan organisme kunci dalam jaring
makanan karena dalam sistem perairan berfungsi sebagai pedator, suspension
feeder, detritivor, scavenger, dan parasit (Odum, 1993). Menurut Yusron, et al.
9
(1990) bentos merupakan makanan alami bagi hewan-hewan dasar terutama ikan
dan udang. Bentos terdiri dari berbagai jenis dan tipe, baik yang hidup tertancap
(lamun, spongae); merayap (bintang laut, kepiting); maupun yang membenamkan
diri di pasir atau lumpur (kerang-kerangan, cacing) (Setyobudiandi, 1999 dalam
Allo et al., 2009).
Berdasarkan ukuran maka bentos dapat dibagi menjadi 3 (tiga) kelompok
(Wibisono, 2005):
1. Makrobenthos: yakni organisme yang tertahan pada saringan berukuran
antara 2,0-0,5 mm.
2. Meiobenthos: yakni organisme yang lolos pada saringan berukuran 1,0-0,5
mm, tapi tetahan pada saringan berukuran 0,04-1,0 mm.
3. Mikrobenthos: yakni organisme yang yang lolos pada saringan berukuran
0,04 mm.
Berdasarkan cara makan, maka organisme bentos dapat dibagi menjadi 2
(dua) kelompok (Wibisono, 2005):
1. Kelompok plankton feeder misalnya bivalvia, crustaceae (Wibisono, 2005),
moluska, dan echinodermata yang umumnya terdapat dominan di subsrat
berpasir (Darojah, 2005).
2. Kelompok detritus feeder misalnya cacing polychaeta, hewan gastropoda,
binatang mengular (Ophiuroidea), bulu babi (Diadema setosum), dan sand
dollar (Wibisono, 2005) yang umumnya banyak terdapat di substar
berlumpur (Darojah, 2005).
Pembagian berdasarkan tempat hidup, organisme bentos dapat digolongkan
menjadi 2 (dua) kelompok (Wibisono, 2005):
10
1. Epi-fauna, yakni organisme yang hidup dan mencari mangsa di atas dasar
perairan.
2. In-fauna, yakni organisme yang hidup dan mencari mangsa dengan
menggali lubang dalam sedimen dasar perairan.
Komunitas bentos dapat juga dibedakan berdasarkan pergerakannya, yaitu
kelompok hewan bentos yang hidupnya menetap (bentos sesile), dan hewan
bentos yang hidupnya berpindah-pindah (motile). Hewan bentos yang hidup
sesile seringkali digunakan sebagai indikator kondisi perairan (Setyobudiandi,
1997 dalam Darojah, 2005).
2.5. Substrat Laut
Salah satu cara mengetahui karakteristik dari suatu lautan adalah dengan
mempelajari bentuk/karakteristik dari dasar perairan, berupa tipe substrat atau
sedimen beserta organisme yang hidupnya di dasar perairan. Pentingnya
mengetahui tipe substrat dasar dari suatu perairan adalah untuk mengetahui pola
sebaran dari berbagai jenis tipe substrat berdasarkan ukuran dan asal substrat
tersebut pada suatu perairan (Setyobudiandi, 1999 dalam Allo et al., 2009).
Substrat dasar perairan dapat diklasifikasikan berdasarkan ukuran partikel,
sumber, lokasi, dan warna dari sedimen tersebut (Allo et al., 2009).
Menurut Wibisono (2005) secara geologis, bila sedimen berada dekat dengan
pinggir kontinen (Continental margin) dikatakan bahwa sedimen tersebut terletak
diatas lempeng kontinen (Continental Crust). Namun bila berada jauh dari
lempeng kontinen, biasanya terletak di atas lempeng samudra (Oseanic Crust).
11
Berdasarkan asal usulnya, sedimen dasar laut dapat digolongkan menjadi 4
(empat) bagian (Wibisono, 2005):
1. Lithogenous merupakan jenis sedimen yang berasal dari pelapukan batuan
dari daratan, lempeng kontinen termasuk yang berasal dari kegiatan
vulkanik. Sedimen ini memasuki kawasan laut melalui drainase air sungai.
2. Biogenous merupakan sedimen yang berasal dari organisme laut yang telah
mati dan terdiri dari remah-remah tulang, gigi-geligi, dan cangkangcangkang tanaman maupun hewan mikro. Komponen kimia yang sering
ditemukan dalam sedimen ini adalah CaCo3 dan SiO2. Sedangkan partikelpartikel yang sering ditemukan dalam sedimen calcareous terdiri dari
cangkang-cangkang Foraminifera, Coccolithophore, dan Pteropoda.
3. Hydrogenous merupakan sedimen yang berasal dari komponen kimia yang
larut dalam air laut dengan konsentrasi yang kelewat jenuh sehingga terjadi
pengendapandi dasar laut.
4. Cosmogenous merupakan sedimen yang berasal dari luar angkasa dimana
partikel dari benda-benda angkasa ditemukan di dasar laut dan mengandung
banyak unsur besi sehingga mempunyai respons magnetik dan berukuran
antara 10-640 m.
Berdasarkan ukuran butir, maka sedimen dapat diklasifikasikan seperti pada
tabel dibawah ini.
12
Tabel 3. Ukuran Butir untuk Sedimen Munurut Skala Wentworth
Nama
Batu (Stone)
Pasir (Sand)
Lumpur (Silt)
Lempung (Clay)
Partikel
Bongkah (Boulder)
Ukuran (mm)
>256
Krakal (Cable)
64-256
Kerikil (Peble)
4-64
Butiran (Granule)
2-4
Pasir sangat kasar (v. Coarse sand)
1-2
Pasir kasar (Coarse sand)
½-1
Pasir sedang (medium sand)
¼-½
Pasir halus (fine sand)
1/8-1/4
Pasir sangat halus (very fine sand)
1/16-1/8
Lumpur kasar (Coarse silt)
1/32-1/16
Lumpur sedang (medium silt)
1/64-1/32
Lumpur halus (fine silt)
1/128-1/64
Lumpur sangat halus (v. Fine silt)
1/256-1/128
Lempung kasar (Coarse clay)
1/640-1/256
Lempung sedang (medium clay)
1/1024-1/640
Lempung halus (fine clay)
1/2360-1/1024
Lempung sangat halus (v. Fine clay)
1/4096-1/2360
(Sumber: Wibosono, 2005)
Jenis-jenis partikel tersebut sangat menentukan jenis hewan bentos yang
mendiami sedimen tersebut sebagai habitatnya, seperti untuk sedimen pebbles dan
granules setidaknya akan ditemui hewan-hewan Gastropoda. Pada jenis sedimen
sand akan mendapati hewan kerang-kerangan (Bivalvia) dan untuk sedimen silt
biasanya dapat ditemukan hewan cacing (Wibisono, 2005).
2.6. Penelitian Menggunakan Hidroakustik
Penelitian dengan menggunakan instrumen hidroakustik telah banyak
dilakukan, diantaranya penelitian mengenai target strength, backscattering
strength, volume backscattering strength, area backscattering strength, densitas,
13
klasifikasi habitat dasar perairan, kelimpahan stok sumber daya hayati laut, dan
sebagainya.
Penelitian mengenai klasifikasi habitat dasar perairan (Allo et al., 2009)
menyimpulkan bahwa tipe substrat perairan Sumur berdasarkan nilai volume
backscattering strength pada lokasi penelitian ditemukan tipe substrat perairan
berupa pasir, pasir berlumpur, lumpur berpasir, dan lumpur. Pada tipe substrat
lumpur berpasir kepadatan makrozoobenthos berada dalam keadaan tertinggi.
Selanjutnya, penelitian mengenai hubungan nilai volume backscattering
strength dasar perairan dengan kandungan makrozoobenthos (Riantoro, 2010)
mengatakan bahwa tipe substrat perairan Gugusan Pulau Pari terdiri dari pasir dan
pasir berlumpur, dengan substrat yang dominan pada lokasi penelitian adalah
pasir. Namun, pada substrat pasir berlumpurlah kepadatan makrozoobenthos
yang tertinggi. Di samping itu, pada penelitian juga dapat diketahui bahwa tipe
substrat perairan Selat Malaka terdiri dari pasir berlumpur, pasir, liat berpasir, dan
liat, dengan substrat yang dominan adalah pasir. Kepadatan makrozoobenthos
tertinggi di perairan Selat malaka terdapat pada substrat liat berpasir.
Selain dua penelitian di atas, terdapat juga penelitian mengenai hubungan
habitat dengan volume backscattering strength ikan demersal dilakukan oleh
Ginting (2010) menghasilkan bahwa ikan demersal yang berukuran kecil lebih
dominan dari pada ikan demersal yang berukuran besar. Daerah distribusi ikan
demersal yaitu, ikan-ikan kecil berada di dekat pantai dan ikan-ikan besar berada
lebih ke arah menjauhi pantai.
Adapun nilai-nilai SV untuk substrat yang didapat dari penelitian-penelitian
sebelumnya disajikan pada tabel berikut (Tabel 4.)
14
Tabel 4. Nilai SV Substrat di Beberapa Penelitian
Peneliti
Metode
Lokasi
Nilai Volume Backscattering Strength (SV)
(dB)
Pasir
Pasir
berlumpur
Lumpur
berpasir
Lumpur
Irfania,
2009
Matlab
Perairan
Arafura
-19,532
-21,832
-22,283
-25,478
Purnawan,
2009
Matlab
Pulau Pari
-16,350
-
-
-
Allo,
2008
Echoview
Perairan
Pandeglang
-18,050
-21,090
-27,040
-30,020
Pujiyati,
2008
EP 500
Perairan Babel
dan Jawa
-20,000
-
-
-35,910
Manik,
2006
Matlab
Samudra Hindia
-18,000
-
-23,000
-29,000
(Sumber: Irfania, 2009)
3. METODOLOGI PENELITIAN
3.1. Lokasi dan Waktu Penelitian
Penelitian ini menggunakan data hasil survei Badan Riset Perikanan Laut
(BRPL). Data yang diambil merupakan bagian dari penelitian BRPL yang
berjudul Riset Pengkajian Sumber Daya Ikan dan Lingkungan di Selat Malaka dan
Pantai Timur Sumatera (Gambar 2). Pengambilan data menggunakan Kapal Riset
Bawal Putih I yang dilakukan pada tanggal 12-22 Juni 2008. Data ini juga pernah
diolah oleh Riantoro (2010) dengan judul penelitian “Hubungan Nilai Volume
Backscattering Strength (SV) Dasar Perairan dengan Kandungan
Makrozoobenthos di Selat Malaka dan Gusus Pulau Pari”.
Perekaman data akustik dan pengambilan contoh/contoh oseanografi
dilakukan pada sekitar Perairan Pulau Bengkalis, Pulau Rupat menuju Selat
Malaka. Pengambilan data trawl dilakukan di sekitar Perairan Pulau Bengkalis
dan Pulau Rupat.
3.2. Alat dan Bahan
Adapun alat yang digunakan untuk pengolahan data pada penelitian ini
adalah: Personal Computer (PC), Echoview 4.0 beserta Dongle, ER 60, Minitab
14, Statistica 6, dan Microsoft Office. Bahan yang digunakan pada penelitian
adalah data akustik, data grab untuk makrozoobentos dan tipe substrat, dan data
trawl untuk ikan demersal.
15
16
Gambar 2. Lokasi Penelitian
17
3.3. Metode Penelitian
3.3.1. Perolehan Data
Data akustik yang digunakan diterima sudah dalam bentuk echogram. Data
akustik yang diolah sebanyak 20 stasiun, namun karena ada beberapa nilai TS
yang tidak sesuai maka perlu dihilangkan sehingga tersisa 14 stasiun. Perolehan
data akustik di Selat Malaka dilakukan sepanjang lintasan oleh tim BRPL.
Perekaman data menggunakan instrumen echosounder split beam EK 60.
Data makrozoobenthos yang digunakan merupakan hasil olahan Riantoro
(2010) berupa nilai kepadatan makrozoobentos. Data makrozoobenthos yang
diperoleh merupakan hasil pengambilan contoh makrozoobenthos pada beberapa
stasiun lapang. Data makrozoobentos yang diamati disesuaikan dengan data
akustik yaitu sebanyak 14 stasiun. Contoh makrozoobenthos diambil dengan
menggunakan alat Van veen grab dengan ukuran 20x20 cm2.
Data ikan demersal yang digunakan sudah dalam bentuk olahan, yaitu dalam
Miscrosoft Excel. Pengambilan contoh ikan demersal menggunakan alat tangkap
berupa trawl. Contoh ikan demersal yang diambil sebanyak 7 stasiun, namun ada
1 yang tidak sesuai dengan data akustik sehingga hanya 6 stasiun yang akan
diamati.
3.3.2. Pengolahan Data
Data yang diperoleh kemudian diolah di dalam Laboratorium BRPL. Tidak
semua data perlu diolah, hanya data akustik yang perlu dilakukan pengolahan.
Gambar 3 merupakan diagram alir pengolahan data sampai dihasilkannya suatu
hubungan dari setiap data.
18
Data Akustik
Data Grab
Klasifikasi
Dasar Perairan
Echoview
ER 60
Dongle
SV max (dB)
TS max (dB)
Ikan
Ikan
Substrat
Ms. Excel
Densitas
Ikan
SV max
Substrat
Bentos
Hubungan antara Ikan Demersal,
Makrozoobentos, dan Substrat
Gambar 3. Diagram Alir Pengolahan Data
Data akustik diolah dengan menggunakan perangkat lunak Echoview 4.0.
Cara tersebut dilakukan untuk mendapatkan nilai SV max dari ikan dan substrat.
Sebelum melakukan integrasi nilai TS max dari ikan, maka terlebih dahulu data
akustik direkam ulang dengan menggunakan perangkat lunak ER 60. Selanjutnya,
data TS max dan SV max tersebut diolah pada Microsoft Excel agar didapatkan
nilai densitas untuk ikan. Selain itu, agar dihasilkan informasi yang lebih akurat
maka perlu ditambahkan data klasifikasi untuk bentos dan data hasil trawl untuk
ikan, guna mendukung hasil integrasi SV max substrat maka perlu adanya data
grab yang telah diklasifikasi. Penggabungan dari ketiga informasi akan
menghasilkan data hubungan antara ikan demersal, makrozoobentos, dan substrat.
19
Pemaparan lebih lanjut dalam proses integrasi untuk menghasilkan nilai SV max
dijelaskan pada Gambar 4, sedangkan untuk TS max pada Gambar 5.
3.3.2. 1. Pengolahan Volume Backscattering Strength (SV)
Gambar 4 merupakan diagram alir pemaparan lebih lanjut dalam proses
integrasi SV.
Data Akustik.
dalam *.raw
Dongle
Echoview 4.0
Echogram
EV File Properties (F6)
Variable Properties (F8)
Export dalam *.csv
Posisi.
(Lintang & Bujur)
Sv max
(dB)
Depth mean
(meter)
Gambar 4. Diagram Alir Proses Integrasi SV max
Pada proses integrasi SV, data akustik yang akan diolah dan dianalisis
menggunakan software Echoview versi 4.0 beserta dongle tersimpan dalam format
*.raw. Dongle dibutuhkan agar proses integrasi melalui export dapat dilakukan.
Hal yang harus dilakukan agar data sesuai dengan informasi yang diinginkan
adalah pada menu Echoview 4 pilih echogram kemudian pilih variable properties
(F8) dan masukkan nilai-nilai yang akan diamati. Guna mengetahui nilai E1,
maka pada data ganti nilai minimun threshold dengan -50 dB dan maximum
20
threshold dengan 0 dB. Pada display, color display minimum yang digunakan
sebesar -50 dB dan color display range sebesar 50. Pada grid, distance grid
menggunakan ping number 500 sesuai dengan data terkecil dengan range grid
sebesar 50 m, hal ini dimaksudkan agar tampilan pada echogram tidak
membingungkan pembacanya. Pada ikan, nilai minimun threshold diganti dengan
-60 dB dan maximum threshold dengan -20 dB sehingga color display minimum
yang digunakan sebesar -60 dB dan color display range sebesar 40. Pada menu
grid nilainya sama dengan nilai E1.
Penentuan daerah yang akan dianalisis pada E1 dengan cara, pada menu
Echoview 4 pilih view kemudian pilih EV file properties (F6). Pada lines, pilih
new yang kemudian ganti nilai multiply depth by dengan 1 dan then add dengan 0
m, untuk line 1; sedangkan untuk line 2, ganti nilai multiply depth by dengan 1
dan then add dengan 0,2 m yaitu sesuai dengan ketebalan contoh substrat yang
diambil. Pada analisis ikan untuk nilai line 1 sama dengan nilai pada E1, namun
untuk line 2, ganti nilai multiply depth by dengan 1 dan then add dengan -5 m.
Setelah line 1 dan 2 terbentuk maka untuk E1, pada variable properties (F8) pilih
analysis, exclude above line diganti dengan line 1 dan exclude below line diganti
dengan line 2; sedangkan untuk ikan, exclude above line diganti dengan line 2 dan
exclude below line diganti dengan line 1.
Jika data yang dibutuhkan sudah disesuaikan, maka proses selanjutnya
adalah export data. Export data dilakukan dengan cara pilih echogram, pilih
export, pilih analysis by cell, kemudian pilih integration. Data tersimpan dalam
format *.csv berupa posisi lintang dan bujur, SV max, dan depth mean.
21
3.3.2.2. Pengolahan Target Strength (TS)
Gambar 5 merupakan diagram alir pemaparan lebih lanjut dalam proses
integrasi TS.
Data Akustik
dalam *.raw
ER 60
Output File
Replay
Data Akustik.
dalam *.dg
Dongle
Echoview 4.0
Echogram
EV File Properties (F6)
Variable Properties (F8)
Export dalam *.csv
Posisi.
(Lintang & Bujur)
TS max
(dB)
Ping Number
(S & E)
Gambar 5. Diagram Alir Proses Integrasi TS max
Pengolahan data untuk menghasilkan nilai TS melalui dua tahap yaitu tahap
pertama menggunakan software ER 60 dan tahap kedua menggunakan software
Echoview versi 4.0 beserta dongle. Tahap pertama adalah pada ER 60, data
akustik dalam format *.raw dilakukan perekaman ulang dengan cara pilih start
using selected setting, pilih menu operating dan kemudian pilih replay.
22
Disamping itu, agar data yang dihasilkan dapat digunakan untuk integrasi TS,
maka perlu dilakukan pengaturan pada menu output. Pertama, tentukan terlebih
dahulu tempat penyimpanan hasil rekaman dengan cara pilih output, pilih file, dan
pilih directory. Kedua, atur variabel-variabel agar hasil rekaman sesuai dengan
informasi yang diinginkan, dengan cara pilih output, pilih prosessed data, ceklist
save EK500, dan klik EK500. Di dalam tampilan EK500 akan terdapat menu
datagram, range, dan echogram. Selanjutnya ceklist semua parameter yang ada
pada menu datagram dan klik menu echo trace setup yang kemudian letakkan
parameter pada kondisi minimum dan maksimum. Pada menu range, klik surface
range, kemudian masukkan nilai start relative surface dengan 0 (nol) dan nilai
bottom range dengan 100 (tergantung kedalaman maksimum perairan). Pada
menu echogram, pilih TVG type dengan data yang dibutuhkan, yaitu TS. Setelah
dilakukan pengaturan, maka proses terakhr adalah dijalankannya perekaman
ulang. Lakukan cara yang sama pada setiap data yang akan dilakukan proses
perekaman ulang. Data hasil perekaman ulang dengan ER 60 tersimpan dalam
format *.dg.
Tahap kedua, data akustik yang ada dalam format *.dg kemudian diolah
menggunakan software Echoview versi 4.0. Proses pengaturan TS pada Echoview
versi 4.0 sama dengan proses pengaturan pada SV. Namun, pada export data
terjadi perbedaan, yaitu dengan cara pilih export, pilih anaysis by cell, dan
selanjutnya pilih frequency distribution. Data hasil integrasi juga tersimpan
dalam format *.csv berupa posisi lintang dan bujur, TS max, dan ping number.
23
3.3.2. 3. Pengolahan Densitas
Pengolahan nilai densitas untuk ikan dilakukan pada Ms. Excel. Pengolahan
dapat dilakukan setelah proses integrasi SV dan TS. Densitas dihasilkan dengan
menggunakan formula (Iida et al.,:1996):
SV (dB) = 10 log (N τbs)
= 10 log N + TS…………………………………………………...(1)
Dengan asumsi kepadatan numerik adalah sebanding dengan kepadatan individu,
maka persamaan (1) dapat ditulis kembali sebagai berikut:
SV (dB) = 10 log ρ + A…………………………………………………….(2)
Dimana: SV = volume strength (dB)
ρ = kelimpahan/densitas organisme (ind/m3)
A = target strength rata-rata (dB)
3.3.3. Visualisasi Data
Penyajian data ditampilkan dengan menggunakan Miscrosoft Excel, regresi
berganda, dan Principal Component Analysis (PCA). Penyajian data dengan
Miscrosoft Excel ditampilkan dalam bentuk grafik dan tabel. Regresi berganda
digunakan untuk melihat hubungan antara ikan demersal, makrozoobentos, dan
tipe substrat. PCA digunakan untuk menerangkan struktur ragam per ragam
melalui kombinasi linier variabel dengan konsep utama mereduksi data dan
menginterpretasikannya.
Regresi berganda adalah persamaan regresi dengan satu peubah tak bebas (Y)
dengan lebih dari satu peubah tak bebas (X1, X2, X3, ..., Xp). Hubungan antara
24
peubah-peubah tersebut dapat dirumuskan dalam bentuk persamaan (Mattjik dan
Sumertajaya, 2000):
Yi = β0 + β1X1 + β2X2 + ... + βpXp + εi..........................................................(3)
Keterandalan dari model yang diperoleh dapat dilihat dari kemampuan model
menerangkan keragaman nilai peubah Y. Ukuran ini sering disebut dengan
koefisien determinasi yang dilambangkan dengan R2. Semakin besar nilai R2
berarti model semakin mampu menerangkan peubah Y. Besarnya nilai koefisien
determinasi dapat dihitung sebagai berikut (Mattjik dan Sumertajaya, 2000):
R2 = b2.Sx2.Sy-2................................................................................................(4)
Dimana : Sx2 = Ragam dari variabel X
Sy2 = Ragam dari variabel Y
Koefisien korelasi merupakan ukuran keeratan linier antara Y dengan suatu
peubah bebas (X), yang dilambangkan dengan r. Semakin besar nilai r berarti
semakin erat hubungan antara peubah Y dan peubah X. Besarnya nilai koefisien
korelasi dapat dihitung sebagai berikut (Walpole, 1997):
r = (R2)1/2........................................................................................................(5)
PCA digunakan untuk menyusutkan dimensi dari sekumpulan variabel yang
tak bertata untuk keperluan analisis dan interpretasi sehingga variabel yang
jumlahnnya cukup banyak akan diganti dengan variabel yang jumlahnya lebih
sedikit tanpa diiringi hilangnya objektivitas analisis (Andi, 2002). Keuntungan
penggunaan PCA dibandingkan metode lain (Soemartini, 2008):
1. Dapat menghilangkan korelasi secara bersih (korelasi = 0).
2. Dapat digunakan untuk segala kondisi data/penelitian.
25
3. Dapat dipergunakan tanpa mengurangi jumlah variabel asal.
4. Walaupun metode Regresi dengan PCA ini memiliki tingkat kesulitan
yang tinggi akan tetapi kesimpulan yang diberikan lebih akurat
dibandingkan dengan pengunaan metode lain.
Metode Pengganga Lagrange dirumuskan sebagai berikut (Andi, 2002):
Y = α’Σα-λ(α’α-1).........................................................................................(6)
Dengan memaksimumkan persamaan di atas akan diperoleh komponen utamanya.
Komponen utama pertama mampu menerangkan variansi data terbesar sehingga
Var (Y1) = λ1 dan kovarians antara masing-masing komponen utama = 0. Artinya,
komponen utama tidak saling berkorelasi. Kompoen utama pertama adalah
kombinasi linier terbobot variabel asal yang dapat menerangkan keragaman
terbesar, demikian seterusnnya untuk komponen utama lain. Total varian data
yang mampu diterangkan oleh setiap komponen utama adalah proporsi antara akar
ciri (λ) komponen tersebut terhadap jumlah akar ciri atau trace matriks varians
kovarians (TrΣ ) yang dirumuskan sebagai berikut (Andi, 2002):
p
∑ λj
j =0
TrΣ = λ1 + λ2 + ... + λp………......................................................................(7)
Dengan demikian persentase variansi yang akan diterangkan oleh komponen
utama ke-j adalah (Andi, 2002):
λ
TrΣ
x100% ..................................................................................................(8)
Matriks korelasi menjelaskan hubungan antar parameter yang ada. Suatu
korelasi dinyatakan berhubungan positif atau berbanding lurus jika nilainya
0,50 – 1,00. Parameter yang dinyatakan berhubungan negatif atau berbanding
26
terbalik jika nilainya berada pada kisaran -0,50 sampai dengan -1,00 dan jika
nilainya berada diantara -0,50 hingga 0,50 dianggap tidak mempunyai pengaruh
yang nyata baik positif ataupun negatif (Legendre dan Legendre, 1983 dalam
Allo, 2008).
4. HASIL DAN PEMBAHASAN
4.1. Sebaran Substrat
4.1.1. Sebaran Data Akustik untuk Substrat
Perairan Selat Malaka merupakan bagian dari Paparan Sunda yang relatif
dangkal (Atmaja et al., 2001 dalam Masrikat, 2003), kedalaman perairan ini
meningkat secara gradual hingga 100 m sebelum Continental Slope Laut
Andaman (Wyrtky, 1961 dalam Masrikat, 2003). Berdasarkan data hidroakustik
Perairan Selat Malaka memiliki kedalaman yang berkisar antara 13,98 – 63,48 m.
Posisi terdangkal terdapat pada koordinat 1o37’10,56” LU dan 102o18’42,48” BT,
sedangkan posisi terdalam terdapat pada koordinat 3o43’20,28” LU dan
99o51’45,00” BT. Kedalaman perairan yang diperoleh menunjukkan adanya
variasi kedalaman yang berbeda untuk setiap posisi lintang dan bujur. Data
hidroakustik yang digunakan dalam penelitian ini berasal dari 14 stasiun
pengamatan.
Gambar 6 dan Gambar 7 merupakan sebaran vertikal dan horisontal dari SV
substrat berdasarkan kedalaman perairan dan stasiun pengamatan.
0
Kedalaman Perairan (m)
-10
-20
-30
-40
-50
-60
-70
-31
-30
-29
-28
-27
-26
-25
-24
SV Subs trat (dB)
Gambar 6. Sebaran Vertikal SV Substrat
27
-23
-2 2
28
Gambar 7. Sebaran Horisontal SV Substrat
Nilai SV untuk substrat berkisar antara -22,70 dB sampai -30,76 dB.
Berdasarkan Gambar 7 nilai SV rendah (-26,89 dB sampai -30,76 dB) berada pada
Stasiun 1, 4, 16, 19, 20 dan 21. Nilai SV tinggi (-22,70 dB sampai -25,59 dB)
berada pada Stasiun 2, 3, 6-9, 13, dan 18. Di lihat secara vertikal (Gambar 6)
persebaran nilai SV tinggi berada pada kedalaman perairan 23,55 m -45,88 m,
sedangkan SV rendah berada di kedalaman 13,98 m dan lebih besar dari 50,00 m,
meskipun ada juga nilai SV rendah pada kedalaman 27,72 m.
4.1.2. Sebaran Data Grab untuk Substrat
Data grab adalah data contoh yang diambil dengan menggunakan alat Van
veen grab. Pada penelitian ini melalui van veen grab maka akan didapatkan tipe
substrat yang ada di Perairan Sealat Malaka. Tabel 5 merupakan tipe substrat pada
masing-masing stasiun yang serta kaitannya dengan kedalaman perairan.
29
Tabel 5. Tipe Substrat setiap Stasiun
Stasiun
1
2
3
4
6
7
8
9
13
16
18
19
20
21
Tipe Substrat
Pasir
Liat Berpasir
Liat Berpasir
Liat
Liat Berpasir
Liat Berpasir
Pasir Berlumpur
Pasir Berlumpur
Pasir
Pasir Berlumpur
Pasir Berlumpur
Pasir Berlumpur
Pasir
Pasir
Kedalaman Perairan (m)
27,72
23,55
43,86
13,98
45,88
33,80
27,51
35,06
39,23
51,67
44,57
62,04
61,17
63,48
Berdasarkan data grab Perairan Selat Malaka memiliki empat tipe substrat
yaitu pasir (4 stasiun), pasir berlumpur (5 stasiun), liat berpasir (4 stasiun), dan
liat (1 stasiun). Hasil analisis sedimen menunjukkan bahwa pada Stasiun 1, 13, 20
dan 21 memiliki tipe substrat pasir; Stasiun 8, 9, 16, 18, dan 19 memilki tipe
substrat pasir berlumpur; Stasiun 2,3, 6 dan 7 memilki tipe substrat liat berpasir;
dan Stasiun 4 memiliki tipe substrat liat. Tipe substrat pasir terdapat pada
kedalaman 27,72 m (Stasiun 1); 39,23 m (Stasiun 13); 61,17 m (Stasiun 20); dan
63,48 m (Stasiun 21). Substrat pasir berlumpur terdapat pada kedalaman 27,51 m
(Stasiun 8); 35,06 m (Stasiun 9); 51,67 m (Stasiun 16); 44,57 m (Stasiun 18); dan
62,04 m (Stasiun 19). Kedalaman 23,55 m (Stasiun 2); 43,86 m (Stasiun 3); 45,88
m (Stasiun 6); dan 33,80 m (Stasiun 7) memiliki tipe substrat liat berpasir. Tipe
substrat liat terdapat pada kedalaman terdangkal yaitu 13,98 m (Stasiun 4).
4.1.3. Hubungan Data Akustik dan Grab untuk Substrat
Guna melihat kaitan antara data akustik dengan data grab maka perlu
dilakukan perbandingan antara keduanya. Gambar 8 merupakan interaksi antara
30
SV substrat yang dihasilkan secara akustik dan tipe substrat yang dihasilkan dari
data grab yang ada di Perairan Selat Malaka.
Gambar 8. Grafik SV Substrat dan Tipe Substrat
Berdasarkan Gambar 8 dapat diketahui bahwa substrat liat mempunyai nilai
SV sebesar -27,18 dB. Besarnya nilai SV substrat tersebut berada diantara nilai
SV pada Irfania (2009) dan Manik (2006) dalam Irfania (2009) yaitu masingmasing -25,48 dB dan -30,00 dB. Nilai SV untuk tipe substrat liat berpasir
berkisar antara -24,96 dB hingga -22,70 dB dengan rataan sebesar -23.77 dB.
Rataan nilai tipe substrat liat berpasir sebesar -23,77 dB mendekati nilai SV
Manik (2006) dalam Irfania (2009) yaitu sebesar -23,00 dB. Tipe substrat pasir
berlumpur memiliki kisaran antara -27,04 dB hingga -23,79 dB dengan rataan
sebesar -25,55 dB. Pada tipe substrat pasir kisaran nilai SV antara30,76 dB
hingga -23,61 dB dengan rataan sebesar -26,84 dB.
Kisaran nilai SV pada tipe substrat pasir berlumpur cukup besar diperkirakan
karena adanya perbedaan komposisi antara pasir ataupun lumpur yang ada di
31
masing-masing stasiun. Tipe substrat pasir berlumpur terdapat pada Stasiun 8, 9,
16, 18, dan Stasiun 19. Pada Stasiun 8 tekstur substratnya pasir 69,65%; debu
1,67%; dan liat 28,68%. Stasiun 9 memiliki tekstur substrat pasir 81,93%; debu
0,69%; dan liat 17,38%. Tekstur substrat pada Stasiun 16 adalah pasir 78,45%;
debu 2,09 %; dan liat 19,46%. Pada Stasiun 18 tekstur substratnya pasir 81,36%;
debu 1,53%; dan liat 17,11%. Stasiun 19 memiliki tekstur substrat pasir 76,04%;
debu 2,04%; dan liat 21,92%.
Pada tipe substrat pasir perbedaan nilai SV cenderung memiliki rentang yang
tinggi, hal ini disebabkan letak dari stasiun pengamatan yang relatif jauh sehingga
terdapat perbedaan ukuran fraksi yang mengakibatkan nilai SV substrat cenderung
beragam. Tipe substrat berpasir terdapat pada Stasiun 1, 13, 20 dan Stasiun 21.
Stasiun 1 terletak pada koordinat 1o23’52,85” LU dan 102o36’40,26” BT. Stasiun
13 terletak pada koordinat 3o46’25,75” LU dan 99o21’55,35” BT. Stasiun 20
terletak pada koordinat 3o38’9,42” LU dan 99o48’53,15” BT. Stasiun 21 terletak
pada koordinat 3o43’20,29” LU dan 99o51’44,96” BT.
4.2. Sebaran Ikan Demersal
4.2.1. Sebaran Data Akustik untuk Ikan
Pengamatan sebaran ikan demersal melalui metode akustik menghasilkan
nilai SV dan TS. Gambar 9 dan Gambar 10 merupakan sebaran vertikal dan
horisontal dari SV, TS, dan densitas ikan berdasarkan kedalaman perairan dan
stasiun pengamatan.
32
0
Kedalaman Perairan (m)
-10
-20
-30
-40
-50
-60
-70
-60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0
5
10 15 20 25 30 35
Sv max ikan
Ts max Ikan
Densitas Ikan (ind/m3)
Gambar 9. Sebaran Vertikal SV, TS, dan Densitas Ikan
40
30
20
10
0
-10
-20
-30
-40
-50
-60
1
2
3
4
6
Sv max ikan
Ts max Ikan
Densitas Ikan (ind/m3)
7
8
9
13
16
18
19
20
21
Stasiun
Gambar 10. Sebaran Horisontal SV, TS, dan Densitas Ikan
Gambar 9 dan Gambar 10 merupakan hasil pengolahan data hidroakustik
pada ikan. Data yang dihasilkan berupa nilai SV max dan TS max, sedangkan
nilai densitasnya dihasilkan dengan menggunakan Formula 2.
Nilai SV untuk ikan berkisar antara -40,76 dB hingga -43,20 dB yang
cenderung menyebar secara merata pada setiap kedalaman perairan. Rentang nilai
33
SV yang tidak terlalu jauh yaitu sekitar 2,50 dB, diperkirakan karena kepadatan
dari ikan demersal yang berada di perairan cenderung seragam.
Nilai TS untuk ikan berkisar antara -25,39 dB hingga -57,71 dB. Dilihat dari
Gambar 9, nilai TS yang rendah yaitu berkisar antara -57,71 dB hingga -38,85 dB
berada pada kedalaman perairan lebih dangkal dari 50,00 m, sedangkan nilai TS
tinggi yaitu berkisar antara -32,41 dB hingga -25,39 dB berada pada kedalaman
lebih dalam dari 50,00 m, meskipun ditemukan juga TS rendah di kedalaman
33,80 m. Menurut Trynor (1996) melalui formula TS = 20 log L – 66 dimana L
adalah dugaan panjang ikan dalam cm, maka dugaan panjang ikan dapat
diketahui. Mengacu pada Formula Trynor, Gambar 9 menjelaskan bahwa ikanikan berukuran kecil berada pada kedalaman perairan kurang dari 50,00 m,
sedangkan ikan-ikan berukuran besar cenderung berada di perairan yang memiliki
kedalaman lebih dari 50,00 m.
Gambar 10 menunjukkan bahwa kenaikan nilai TS berada di Stasiun 7, 16,
19, 20 dan 21. Berdasarkan hasil tangkapan trawl (Lampiran 7) ikan demersal
yang dominan tertangkap pada Stasiun 7 merupakan spesies Johnius grypotus.
Dipandang dari nilai TS yang hampir serupa antara Stasiun 7, 16, 19, 20 dan 21
maka diperkirakan spesies yang tertangkap memiliki ukuran yang sama pula.
Nilai densitas ikan berkisar antara 0,02 ind/m3 hingga 30,41 ind/m3. Dilihat
secara vertikal (Gambar 9) maupun horizontal (Gambar 10) persebaran densitas
ikan berlawanan dengan nilai TS ikan, yakni saat nilai TS ikan rendah (-57,71 dB)
maka densitas ikan menjadi tinggi (30,41 ind/m3) dan saat nilai TS ikan tinggi
(-25,39) maka densitas ikan menjadi rendah (0,02 ind/m3). Nilai TS ikan dan
34
densitas ikan berlawanan merupakan akibat dari nilai SV yang cenderung seragam
sehingga tampak hanya nilai TS yang mempengaruhi nilai densitas ikan tersebut.
4.2.2. Sebaran Data Tangkapan Trawl untuk Ikan
Tabel 6 merupakan hasil tangkapan trawl di Perairan Selat Malaka dari jenis
ikan demersal.
Tabel 6. Data Trawl Ikan Demersal
Stasiun
1
2
3
4
6
7
Jumlah
Tangkapan (ind)
167
194
710
234
512
77
Famili
Trichiuridae
Scianidae
Scianidae
Scianidae
Scianidae
Scianidae
Ikan Demersal Dominan
Spesies
Nama Indonesia
Lepturacanthus savala
Layur golok
Johnius distinctus
Gulamah
Nibea mitsukurii
Gulamah
Johnius grypotus
Gulamah
Nibea mitsukurii
Gulamah
Johnius grypotus
Gulamah
Berdasarkan hasil tangkapan trawl (Tabel 6) yang diambil pada Stasiun 1-4
dan Stasiun 7 ikan yang dominan tertangkap berasal dasi Famili Scianidae. Pada
Famili Scianidae jenis ikan yang termasuk dalam kelompok demersal biasanya
merupakan spesies dari Ikan Gulamah atau Tiga Waja. Adapun spesies dominan
yang tertangkap pada Stasiun 1-4, 6 dan 7 akan disajikan secara berurut;
Lepturacanthus savala (Layur golok), Johnius distinctus (Gulamah), Nibea
mitsukurii (Gulamah), Johnius grypotus (Gulamah), Nibea mitsukurii (Gulamah)
dan Johnius grypotus (Gulamah). Lepturacanthus savala memiliki panjang
maksimal 100,00 cm (Cuvier, 1829 dalam cmilitante, 2010), Johnius distinctus
22,00 cm (Tanaka, 1916 dalam cmilitante, 2010), Nibea mitsukurii 75,00 cm
(Jordan and Snyder, 1900 dalam cmilitante, 2010), dan Johnius grypotus 13,70
cm (Richardson, 1846 dalam cmilitante, 2010).
35
Gambar 11. Persentase Hasil Tangkapan Trawl
Gambar 11 merupakan diagram pie persentase jumlah ikan yang tertangkap
melalui trawl di stasiun 1, 2, 3, 4, dan 7. Jumlah total ikan yang tertangkap dari
keenam stasiun yaitu 1.894 ind. Berdasarkan diagram pie diketahui dapat
diketahui bahwa spesies Nibea mitsukurii merupakan spesies yang paling banyak
tertangkap yaitu sebesar 28,56%. Di samping itu juga ada spesies Johnius
grypotus dan Harpadon nehereus yang persentasenya cukup dominan yaitu
sebesar 24,23% dan 14,41%. Ada juga spesies Lepturacanthus savala dan
Johnius distincus yang jumlahnya tergolong tinggi yaitu sebesar 9,66% dan
7,13%. Lain-lain merupakan spesies yang jumlahnya lebih kecil dari 10 individu
dengan persentase sebesar 4,80%.
4.2.3. Hubungan Data Akustik dan Hasil Tangkapan Trawl
Guna melihat kaitannya antara data akustik dan hasil tangkapan trawl maka
perlu dilakukan pengujian. Gambar 12 merupakan perbandingan antara densitas
36
ikan yang dihasilkan secara akustik dan jumlah total ikan demersal setiap stasiun
melalui tangkapan trawl.
720
640
560
480
400
320
240
160
80
0
1
2
3
Densitas Ikan ((ind/10)/m3)
Jumlah Ikan (ind)
4
6
7
Stasiun
Gambar 12. Perbandingan antara Densitas Ikan dan Hasil Tangkapan Trawl
Berdasarkan grafik dapat diketahui bahwa nilai densitas ikan secara akustik
cenderung mengikuti besarnya hasil tangkapan trawl. Namun ada juga nilai
densitas secara akustik yang tidak sesuai dengan hasil tangkapan trawl. Hal ini
diperkirakan terjadi karena perbedaannya daerah pengamatan ikan secara akustik
dengan besarnya bukaan trawl. Besarnya bukaan trawl maksimal yang digunakan
dalam pengambilan contoh ikan sebesar 4 m, sedangkan pengamatan secara
akustik 5 meter dari dasar laut.
4.3. Sebaran Makrozoobentos
Selain data tangkapan trawl dilakukan pula pengambilan data in situ
makrozoobentos melalui alat Van veen grab.
37
Gambar 13. Grafik Jumlah Total Makrozoobentos dan Tipe Substrat
Berdasarkan grafik diketahui bahwa jumlah total makrozoobentos tertinggi
terdapat pada substrat liat berpasir, sedangkan jumlah makrozoobentos terendah
terdapat pada substrat pasir berlumpur. Dilihat secara menyeluruh jumlah total
makrozoobentos tertinggi terdapat di substrat liat berpasir dan jumlah total
makrozoobentos terendah terdapat di substrat liat. Hal ini terjadi karena hanya
ada 1 stasiun yang memiliki substrat liat. Makrozoobentos cenderung lebih
menyukai substrat liat berpasir disebabkan umumnya bentos mampu mendapatkan
makanan yang cukup dan dapat membenamkan diri di substrat. Berdasarkan
analisis sedimen melalui alat Van veen grab makrozoobentos yang dominan
berada di Perairan Selat Malaka yaitu berasal dari Genus Chamalycaeus.
4.4. Hubungan Tipe Substrat, Ikan Demersal, dan Makrozoobentos
Berdasarkan data Grab diketahui bahwa pada enam stasiun tempat contoh
ikan demersal diambil (melalui trawl) memiliki 3 tipe substrat yaitu pasir, liat
berpasir dan liat. Gambar 14 merupakan interaksi data contoh antara tipe substrat,
jumlah total makrozoobentos, dan jumlah total ikan.
38
Gambar 14. Grafik Interaksi Data Contoh
Gambar 14 menunjukkna bahwa jumlah total ikan demersal cenderung
mengalami peningkatan seiring dengan meningkatnya jumlah makrozoobentos,
bahkan pada jumlah total makrozoobentos yang rendah, total ikan demersal yang
tertangkap cukup tinggi. Jumlah makrozoobentos tertinggi dan terendah berada
pada tipe substrat liat berpasir, begitu pula pada ikan. Jumlah total ikan terbanyak
terdapat pada jumlah total makrozoobentos yang teringgi, begitu pula sebaliknya.
Jika dilihat kaitannya antara tipe substrat dan jumlah total ikan demersal per trawl
maka tampak bahwa ikan lebih cenderung menyukai substrat liat berpasir.
Tabel 7 akan menunjukkan hubungan antara ke tiga variabel guna melihat
kaitannya antara tipe substrat dan jumlah total makrozoobentos setiap grab dengan
keberadaan ikan demersal melaui tangkapan trawl setiap stasiun pengamatan.
Tabel 7. Hasil Regresi Berganda
Variabel
P-Value
r
R2
P-Value Regresi
Makrozoobentos/M (ind)
0,14
0,67
58,7%
0,27
Tipe Substrat/S
0,39
0,18
39
Berdasarkan hasil analisis regresi berganda maka diperoleh persamaan
regresi:
Ikan (ind) = -89 + 1,71 M (ind) + 96,0 S
dengan koefisien determinasi sebesar 58,7%. Dari analisis ragam terlihat pula
bahwa model kurang sesuai dengan nilai p-value regresi sebesar 0,27, yang cukup
jauh dari nilai 5%. Berdasarkan nilai p-value masing-masing koefisien peubah,
terlihat bahwa jumlah total makrozoobentos merupakan peubah yang lebih
berpengaruh terhadap jumlah total ikan. Ini ditunjukkan dengan besarnya p-value
jumlah total makrozoobentos (0,14) yang lebih kecil dari p-value tipe substrat
(0,39). Dengan demikian melalui model dugaan regresinya dapat dijelaskan
bahwa jika terjadi perubahan jumlah total makrozoobentos (M) sebanyak satu
satuan sedangkan tipe substrat (S) tetap, maka akan mengakibatkan kenaikan
jumlah total ikan demersal sebesar 2 satuan. Sebaliknya perubahan pada tipe
substrat cenderung kurang mengakibatkan perubahan yang signifikan pada jumlah
total ikan demersal. Ini ditunjukkan dengan nilai p-value tipe substrat sebesar 0,39
yang cukup jauh dari nilai α=5%. Hal ini juga didukung dengan nilai koefisien
korelasi antara tipe substrat dan jumlah total ikan yang relatif rendah, yaitu 0,18.
Koefisien korelasi antara jumlah total makrozoobentos dan jumlah total ikan
relatif cukup tinggi yaitu 0,67, artinya jumlah total tangkapan ikan cenderung
berkaitan erat dengan keberadaan jumlah total makrozoobentos di perairan.
Hubungan antara data yang ada dapat diamati pula melalui Principal
Component Analysis (PCA). Data yang akan diamati merupakan data yang
diambil secara akustik maupun data contoh. Data akustiknya adalah kedalaman
perairan (depth), E1 (SV substrat), SV ikan. TS ikan, dan Densitas ikan. Data
40
contohnya adalah tipe sustrat, jumlah makrozoobentos, dan jumlah ikan. Tipe
substrat diibaratkan secara numerik, pasir diganti dengan angka 1, pasir berlumpur
dengan angka 2, liat berpasir dengan angka 3, dan liat dengan angka 4.
Gambar 15. Grafik Kedekatan antar Parameter
Tabel 8. Korelasi antar Parameter
Variabel
Depth
E1
Depth
E1 (dB)
Tipe Substrat
SV Ikan (dB)
TS Ikan (dB)
Densitas Ikan (dB)
Σ Makrozoobentos (ind)
Σ Ikan (ind)
1,00
0,73
-0,17
0,43
0,09
-0,27
0,39
0,68
0,73
1,00
0,20
0,45
0,30
-0,24
-0,06
0,24
Tipe
Substrat
-0,17
0,20
1,00
0,41
-0,47
0,70
-0,27
0,18
SV
Ikan
0,43
0,45
0,41
1,00
-0,63
0,63
0,24
0,65
TS
Ikan
0,09
0,30
-0,47
-0,63
1,00
-0,94
-0,14
-0,57
Densitas
Ikan
-0,27
-0,24
0,70
0,63
-0,94
1,00
-0,02
0,39
Σ
Makrozoobentos
0,39
-0,06
-0,27
0,24
-0,14
-0,02
1,00
0,67
Faktor 1 dan Faktor 2 merupakan hasil reduksi/penyusutan parameter yang
diamati, dimana faktor tersebut jumlahnya lebih sedikit tanpa diiringi hilangnya
objektivitas. Berdasarkan Gambar 15 dapat dijelaskan bahwa faktor 1 memiliki
nilai keragaman sebesar 42,48% dengan nilai akar ciri (eigenvalue) sebesar 3,40
dan faktor 2 memiliki nilai keragaman sebesar 30,76% dengan nilai akar ciri
Σ Ikan
0,68
0,24
0,18
0,65
-0,57
0,39
0,67
1,00
41
sebesar 2,46. Penjumlahan antara dua komponen utama (faktor 1 dan faktor 2)
mampu menerangkan keragaman data sebesar 73,25%. Sehingga dapat dikatakan
bahwa data mampu menjelaskan keadaan di Peraiaran Selat Malaka sebesar
73,25%. Sebenarnya ada juga faktor lain yang memiliki nilai akar ciri lebih besar
dari 1 yaitu faktor 3 sebesar 1,45 dengan nilai keragaman sebesar 18,16%.
Penjumlahan antara faktor 1 dan faktor 3 atau faktor 2 dan faktor 3 tidak
digunakan karena menghasilkan nilai keragaman yang lebih rendah jika
dibandingkan dengan penjumlahan faktor 1 dan faktor 2.
Gambar 15 juga menjelaskan bahwa faktor 1 didukung oleh 5 parameter baik
secara positif maupun negatif. Faktor 1 positif didukung oleh parameter TS ikan,
sedangkan faktor 1 negatif didukung oleh parameter densitas ikan, tipe substrat,
SV ikan, dan jumlah ikan. Faktor 2 didukung oleh 3 parameter secara positif
yaitu jumlah makrozoobentos, depth (kedalaman perairan), dan E1 (SV substrat).
Berdasarkan nilai korelasinya (Tabel 8) dapat diketahui bahwa E1 hanya
berhubungan positif atau berbanding lurus dengan depth perairan dengan korelasi
sebesar 0,73. Densitas ikan berbanding lurus dengan SV ikan dan tipe substrat
dengan nilai korelasi masing-masing sebesar 0,63 dan 0,70, sedangkan densitas
ikan berbanding terbalik atau berhubungan negatif dengan TS ikan dengan nilai
korelasi -0,94. SV ikan berbanding lurus dengan jumlah ikan sebesar 0,65 dan
berbanding terbalik dengan TS ikan yaitu sebesar -0,63. Jumlah ikan berbanding
lurus dengan depth perairan dan jumlah makrozoobentos dengan korelasi masingmasing 0,68 dan 0,67 serta berbanding terbalik dengan TS ikan dengan korelasi
sebesar -0,57. Melalui Gambar 15 juga terlihat jelas bahwa parameter densitas
ikan berbanding tebalik dengan TS ikan, hal ini juga sesuai dengan bab
42
pembahasan sebelumnya (melalui grafik Ms. Excel). Melalui pengolahan secara
PCA juga dapat diketahui bahwa tipe substrat tidak berkaitan atau berkorelasi
linier dengan jumlah ikan, dimana hasil ini juga sama dengan pengolahan secara
regresi berganda.
Gambar 16. Grafik Kedekatan antar Stasiun
Berdasarkan grafik kedekatan antar stasiun (Gambar 16) diketahui bahwa
Stasiun 2 memiliki kedekatan dengan Stasiun 4; Stasiun 1 dengan Stasiun 7; dan
Stasiun 3 dengan Stasiun 6. Hal ini diperkirakan terjadi karena jarak antar
stasiunnya yang relatif sama sehingga memiliki kedekatan nilai-nilai parameter.
Gambar 16 menjelaskan bahwa Stasiun 2 dan Stasiun 4 dicirikan oleh
parameter tipe substrat dan densitas ikan. Stasiun 1 dan Stasiun 7 dicirikan oleh
parameter TS ikan. Stasiun 3 dan Stasiun 6 dicirikan oleh parameter SV ikan,
jumlah Makrozoobentos, jumlah ikan, depth perairan, dan E1.
5. KESIMPULAN DAN SARAN
5.1. Kesimpulan
Perairan Selat Malaka merupakan perairan yang tergolong dangkal dengan
kedalaman yang berkisar antara 13,98 m – 63,48 m. Tipe substrat yang berada di
perairan ini terdiri dari pasir, pasir berlumpur, liat berpasir, dan liat dengan
kisaran nilai SV antara -22,98 dB sampai -30,95 dB. Makrozoobentos yang
dominan berada di perairan Selat Malaka yaitu berasal dari Genus Chamalycaeus,
sedangkan dari tangkapan trawl ikan demersal yang dominan merupakan Famili
Scianidae. Ikan demersal berukuran kecil cenderung berada pada kedalaman
perairan lebih kecil dari 50,00 m, sedangkan ikan-ikan berukuran besar cenderung
berada di perairan yang memiliki kedalaman lebih besar dari 50,00 m. Jenis ikan
demersal yang tertangkap diperkirakan round fish sehingga mampu beradapatasi
pada berbagai tipe substrat.
Dilihat melalui regresi berganda dan PCA dapat disimpulkan bahwa jumlah
total makrozoobentos merupakan peubah yang lebih berpengaruh terhadap jumlah
total ikan karena perubahan tipe substrat cenderung kurang mengakibatkan
perubahan yang signifikan pada jumlah total ikan demersal. Pada penelitian ini
membuktikan bahwa bentos merupakan faktor utama bagi keberadaan ikan
demersal bukan tipe substrat.
5.2. Saran
Diharapkan adanya penelitian lanjutan mengetahui hubungan antara biota
lain dengan ikan demersal. Di samping itu sebaiknya perlu menggunakan metode
dan pengujian statistik lain dalam pengolahan data.
43
DAFTAR PUSTAKA
Allo, O. A. T, S. Pujiyati, dan I. Jaya. 2009. Klasifikasi Habitat Dasar Perairan
dengan Menggunakan Instrumen Hidroakustik SIMRAD EY-60 di Perairan
Sumur, Pandeglang-Banten. Jurnal Kelautan Nasional. 1(Edisi Khusus
Januari): 129-139.
Allo, O. A. T. 2008. Klasifikasi Habitat Dasar Perairan dengan Menggunakan
Instrumen Hidroakustik SIMRAD EY-60 di Perairan Sumur, PandeglangBanten. Skripsi. Departemen Ilmu dan Teknologi Kelautan. Fakultas
Perikanan dan Ilmu Kelautan. Institut Pertanian Bogor. Bogor. (Tidak
dipublikasikan).
Andi. 2002. 10 Model Penelitian dan Pengolahnnya dengan SPSS 14. Edisi IV.
ANDI OFFSET. Yogyakarta. WAHANA KOMPUTER. Semarang.
Cmilitante. 2010. Catalog of Fishes.
http://www.fishbase.org/summary/speciessummary.php?id=15925. [2
November 2010]
Darojah, Y. 2005. Keanekaragaman Jenis Makrozoobentos di Ekosistem Perairan
Rawapening Kabupaten Semarang. Skripsi. Universitas Negeri Semarang.
Semarang. (Tidak dipublikasikan).
Ginting, P. 2010. Hubungan Habitat dengan Volume Backscattering Strength Ikan
Demersal di Perairan Sumur Banten Menggunakan Instrumen Hidroakustik
SIMRAS EY 60. Skripsi. Departemen Ilmu dan Teknologi Kelautan. Fakultas
Perikanan dan Ilmu Kelautan. Institut Pertanian Bogor. Bogor. (Tidak
dipublikasikan).
Ikawati, Y. dan H. Parlan. 2009. Coral Reef in Indonesia. Coral reff
Rehabilitation and Management Program Phase II. Ministry of Marine
Affairs and Fisheries. COREMAP II-DKP. Jakarta.
Iida, K., Mukai, T., and Hwang, D. J. 1996. Relationship Between Acoustic
Backscattering Strength and Density of Zooplankton in the Sound-Scattering
Layer. ICES Journal of Marine Science. 53: 507–512.
44
45
Ilo. 2009. Penangkapan Ikan Demersal tetap Dibatasi. http://www.kompas.com.
[19 Agustus 2010]
Irfania, R. 2009. Pengukuran Nilai Acoustic Backscattering Strength Berbagai
Tipe Substrat Dasar Perairan Arafura Dengan Instrumen SIMRAD EK60.
Skripsi. Departemen Ilmu dan Teknologi Kelautan. Fakultas Perikanan dan
Ilmu Kelautan. Institut Pertanian Bogor. Bogor. (Tidak dipublikasikan).
Institude for Defense Security and Peace Studies [IDSPS]. 2008. Kebijakan
Umum Keamanan Nasional. Policy Paper. September. Jakarta.
Mattjik, A. A. dan I. M. Sumertajaya. 2000. Perancangan Percobaan dengan
Aplikasi SAS dan MINITAB. Jilid 1. IPB Press. Bogor.
Masrikat, J. A. N. 2003. Distribusi, Densitas Ikan dan Kondisi Fisik Oseanografi
di Selat Malaka. Makalah Pribadi Falsafah Sains. Sekolah Pasca Sarjana.
Institut Pertanioan Bogor. Bogor.
Murdiyanto, B. 2003. Ekosistem Terumbu Karang. Direktorat Jenderal Perikanan
Tangkap. Departemen Kelautan dan Perikanan. COFISH Project. Jakarta.
Nelwan, A. 2004. Pengembangan Kawasan Perairan Menjadi Daerah
Penangkapan Ikan. Makalah Pribadi Falsafah Sains. Sekolah Pasca Sarjana.
Institut Pertanian Bogor. Bogor.
Odum, E. P. 1993. Dasar-Dasar Ekologi. Diterjemahkan oleh T. Samingan. Edisi
Ketiga. Gajah Mada University Press. Yogyakarta.
Pramitasari, S. D., Asriyanto, dan N. Misuari. 2006. Studi Perikanan Demersal di
Perairan Rembang Jawa Tengah. In Prosiding Seminar Nasional Perikanan
Tangkap, 11 Agustus 2006, Bogor. Departemen Pemanfaatan Sumberdaya
Perikanan, Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor,
Bogor. Hal.: 342–351.
Pujiyati, S. 2008. Pendekatan Metode Hidroakustik untuk Analisis Keterkaitan
antara Tipe Subsrat Dasar Perairan dengan Komunitas Ikan Demersal.
Disertasi. Sekolah Pasca Sarjana. Institut Pertanian Bogor. Bogor. (Tidak
dipublikasikan).
46
Riantoro, Y. 2010. Hubungan Nilai Volume Backscattering Strength (SV) Dasar
Perairan dengan Kandungan Makrozoobenthos di Selat Malaka dan Gugus
Pulau Pari. Skripsi. Departemen Ilmu dan Teknologi Kelautan. Fakultas
Perikanan dan Ilmu Kelautan. Institut Pertanian Bogor. Bogor. (Tidak
dipublikasikan).
Soemartini. 2008. Principal Component Analysis (PCA) sebagai Salah Satu
Metode untuk Mengatasi Masalah Multikolinieritas. Jurusan Statistika.
Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Padjajaran.
Bandung.
Sumiono, B. 2002. Laju Tangkap dan Kepadatan Stok Ikan Demersal di Perairan
Selat Malaka. JPPI. Edisi Sumber Daya dan Penangkapan. 8(1): 51-56.
Trynor, J. J. 1996. Target-Strength Measurements of Walleye Pollock
(Theragrachalgramma) and Pacific Whiting (MerlucciusProductus). ICES
Journal of Marine Science. 53: 253-258.
Walpole, R. E. 1997. Pengantar Statistika. Edisi 3. Gramedia Pustaka Utama.
Jakarta.
Wibisono, M. S. 2005. Pengantar Ilmu Kelautan. Grasindo. Jakarta.
Widodo, J. 1992. Prinsip Dasar Hidroakustik Perikanan. Oseana. XVII (3): 83-95.
Yahya, M. A., Diniah, S. Pujiyati, S. Effendy, M. Sabri, A. Farhan, Parwinia, dan
Rusyadi. 2001. Pemanfaatan Sumber Daya Tuna Cakalang secara Terpadu.
Makalah Falsafah Sains. Sekolah Pasca Sarjana. Institut Pertanian Bogor.
Bogor.
Yusron, E., A. Djamali, dan O. K. Sumadhiharga. 1990. Makro Bentos di Dasar
Perairan Sekitar Mangrove Sungai Donan dan Sungai Sapuregel, Cilacap,
Jawa Tengah. In Peranan Biologi dalam Peningkatan Pengelolaan Sumber
Daya Hayati. Seminar Ilmiah Nasional, 20-21 September 1990, Yogyakarta.
Fakultas Biologi, Universitas Gadjahmada, Departemen Pendidikan dan
Kebudayaan, Yogyakarta.
LAMPIRAN
48
Lampiran 1. Contoh Data Hasil Integrasi SV (Stasiun 21)
Lat_M
3.7075646
3.7103131
3.7126525
3.7149251
3.7171496
3.719418
3.7217218
3.7238252
3.7257615
3.7277306
3.7296963
3.731764
3.7339135
3.7358119
Lon_M
99.853901
99.855326
99.856463
99.85757
99.858745
99.860002
99.861281
99.862667
99.864305
99.865917
99.867493
99.869125
99.870587
99.871451
Ping_S
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
Ping_E
499
999
1499
1999
2499
2999
3499
3999
4499
4999
5499
5999
6499
6801
Depth_mean
57.1116
59.6557
59.8441
60.4490
61.5994
61.2022
63.2805
63.9890
65.0227
66.6773
66.8367
67.5612
67.5980
67.8777
Lampiran 2. Contoh Data Hasil Integrasi TS (Stasiun 21)
Lat_M
3.710313
3.712653
3.714925
3.723825
3.729696
Lon_M
99.85533
99.85646
99.85757
99.86267
99.86749
Ping_S
500
1000
1500
3500
5000
Ping_E
999
1499
1999
3999
5499
TS_max
-25.3406
-26.8105
-26.0462
-33.2897
-30.397
Lampiran 3. Contoh Echogram SV Substrat (Stasiun 21)
Sv_max
-30.9703
-28.4095
-31.6292
-32.0454
-30.9006
-28.9880
-30.9722
-32.2496
-30.9378
-32.2033
-32.1228
-30.5413
-29.1380
-32.2559
49
Lampiran 4. Contoh Echogram SV Ikan (Stasiun 21)
Lampiran 5. Contoh Echogram TS Ikan (Stasiun 21)
50
Lampiran 6. Kepadatan Makrozoobentos (ind/m2) setiap Stasiun (Sumber
BRPL)
Stasiun
1
2
3
4
6
7
8
9
13
16
18
19
20
21
Kepadatan
Makrozoobentos (ind.m-2)
3150
275
7050
725
275
200
150
475
675
125
225
700
850
350
Jumlah
Makrozoobentos (ind)
126
11
282
29
11
8
6
19
27
5
9
28
34
14
Substrat
Pasir
Liat Berpasir
Liat Berpasir
Liat
Liat Berpasir
Liat Berpasir
Pasir Berlumpur
Pasir Berlumpur
Pasir
Pasir Berlumpur
Pasir Berlumpur
Pasir Berlumpur
Pasir
Pasir
Lampiran 7. Hasil Tangkapan Trawl setiap Stasiun (Sumber BRPL)
Stasiun
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
Famili
Scianidae
Trichiuridae
Leiognathidae
Harpadontidae
Kuriidae
Ephippidae
Ephippidae
Polinemidae
Uranoscopidae
Trichiuridae
Scianidae
Scianidae
Kuriidae
Ariidae
Ariidae
Harpadontidae
Polinemidae
Muraenidae
Cynoglosidae
Scianidae
Scianidae
Scianidae
Pomacentridae
Platycephalidae
Harpadontidae
Engraulidae
Spesies
Johnius distinctus
Lepturacanthus savala
Secutor ruchonius
Harpadon nehereus
Kurtus indicus
Pterocanthus serissophorus
Drepane longimana
Polinemus indicus
Uranoscopis sp.
Lepturacanthus savala
Johnius distinctus
Nibea mitsukurii
Kurtus indicus
Osteogenesis militaris
Arius caelatus
Harpadon nehereus
Polynemus sextarius
Oxyconger leptognathus
Paraplagusia bilineata
Nibea mitsukurii
Johnius grypotus
Johnius distinctus
Pomacentrus molucensis
Platycephalus sp.
Harpadon nehereus
Coilia macrognatus
W
0.010
0.800
0.005
0.280
0.030
1.200
0.010
0.040
0.075
0.220
1.400
0.700
0.070
0.350
0.150
3.300
0.170
0.150
0.150
10.200
4.350
3.200
0.021
0.400
6.110
0.365
N
1
144
4
12
6
7
1
1
1
7
77
8
11
3
2
69
5
1
1
257
150
26
2
1
184
66
51
Lampiran 7. Lanjutan
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
Polinemidae
Apogonidae
Lophiidae
Ariidae
Ariidae
Trichiuridae
Tetraodontidae
Ephippidae
Muraenidae
Ariidae
Apogonidae
Tetraodontidae
Muraenidae
Teraponidae
Cynoglosidae
Harpadontidae
Plotosidae
Ariidae
Ephippidae
Scianidae
Kuriidae
Trichiuridae
Stromatidae
Batrachoididae
Polinemidae
Polinemidae
Scianidae
Scianidae
Tetraodontidae
Mullidae
Ephippidae
Ariidae
Paralichthyidae
Orectolobidae
Scianidae
Scianidae
Scianidae
Pomadasidae
Pomadasidae
Pomadasidae
Harpadontidae
Teraponidae
Ariidae
Dasyatidae
Dasyatidae
Dasyatidae
Orectolobidae
Polinemidae
Eleutheronema rhadinum
Shipama versicolor
Lophiomus setigerus
Arius maculatus
Arius thalasinus
Lepturacanthus savala
Arothron sp,
Proteracanthus sarrissophorus
Oxyconger leptognathus
Arius leiotetucephalus
Shipama majimai
Arothron sp,
Oxyconger leptognathus
Terapon theraps
Paraplagusia bilineata
Harpadon nehereus
Plotossus
Arius thalasinus
Proteracanthus sarrissophorus
Johnius distinctus
Kurtus indicus
Lepturacanthus savala
Pampus argentus
Batrachomoeus trspinosus
Polynemus sextarius
Eleutheronema rhadinum
Johnius grypotus
Nibea mitsukurii
Lagocephalus inermis
Upheneus sulphureus
Drepane longimana
Arius thalasinus
Pseudorhombus sp.
Chiloschyllium punctatum
Nibea mitsukurii
Johnius distinctus
Johnius grypotus
Pomadasys longimana
Pomadasys argyreus
Pomadasys hasta
Harpadon nehereus
Terapon theraps
Arius maculatus
Dasyatis kuhlii
Dasyatis zugei
Himantura uarnak
Chiloschyllium griseum
Eleutheronema rhadinum
0.400
0.020
0.070
0.160
0.030
0.400
0.060
0.100
0.350
0.200
0.010
20.000
0.250
1.010
0.380
0.300
0.160
0.350
0.300
1.300
0.100
0.800
0.250
0.040
0.120
0.100
1.800
0.020
0.050
0.020
0.010
0.020
0.050
0.030
0.800
2.120
5.000
0.400
0.220
0.200
0.250
2.000
0.500
0.050
0.820
4.000
0.200
0.250
5
2
2
1
1
8
1
1
1
1
1
33
2
26
2
5
1
6
2
17
14
23
1
2
4
2
89
1
1
1
1
1
1
1
258
7
185
6
3
1
3
23
1
2
2
1
1
1
52
Lampiran 7. Lanjutan
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
Mullidae
Polinemidae
Trichiuridae
Apogonidae
Pomacentridae
Muraenidae
Scianidae
Scianidae
Scianidae
Pomadasidae
Pomadasidae
Pomadasidae
Teraponidae
Mullidae
Platycephalidae
Engraulidae
Upheneus sulphureus
Polynemus sextarius
Lepturacanthus savala
Shipama versicolor
Pomacentrus molucensis
Oxyconger leptognathus
Johnius grypotus
Nibea mitsukurii
Johnius distinctus
Pomadasys maculatus
Pomadasys hasta
Pomadasys unimaculatus
Terapon theraps
Upheneus sulphureus
Platycephalus sp.
Coilia macrognatus
0.050
0.150
0.060
0.010
0.070
6.000
1.000
0.500
1.100
0.250
0.300
0.100
0.300
0.010
0.050
0.040
2
6
1
1
5
1
35
17
7
7
1
1
6
1
1
1
Lampiran 8. Contoh Genus Chamalycaeus
Chamalycaeus everetti
Chamalycaeus vinctus
(sumber: science.naturalis.nl) (Sumber: www.shell.kwansei.ac.jp)
Lampiran 9. Contoh Ikan Demersal
Nibea mitsukurii
(Sumber: www.naris.go.kr)
Johnius distinctus
(Sumber: www.fishbase.org.cn)
Harpadon nehereus
(Sumber: www.parisaramahiti.kar.nic.in)
53
Johnius grypotus
Terapon theraps
(Sumber: www.catalog.digitalarchives.tw) (Sumber: www.research.kahaku.go.jp)
Proteracanthus sarrissophorus
(Sumber: www.fishbase.org)
Polynemus sextarius
(Sumber: www.enjoywithreal.com)
Arothron hispidus
(Sumber: www.discoverlife.org)
Kurtus indicus
(Sumber: www.fishbase.org)
Coilia dussumieri
Coilia neglecta
(Sumber: www.animalpicturesarchive.com)
Lepturacanthus savala
(Sumber: www.fishbase.org.cn)
DAFTAR RIWAYAT HIDUP
Penulis bernama Adita Dwi Nugraheni, merupakan anak
kedua dari tiga bersaudara dari pasangan Djoko Subagyono dan
Mimin Sri Utami, dilahirkan di Perworejo pada tanggal 26
September 1988. Pada tahun 2000 penulis menyelesaikan
pendidikan tingkat dasar di SDN Mangli 2 Jember dan
melanjutkan ke SLTPN 6 Jember sampai dengan tahun 2003.
Pada tahun 2006 penulis menyelesaikan pendidikan SMA di SMAN 5 Jember.
Penulis diterima sebagai mahasiswa di Institut Pertanian Bogor (IPB) pada
tahun 2006 melalui jalur USMI (Undangan Seleksi Masuk IPB). Pada tahun
2007, penulis diterima di Departemen Ilmu dan Teknologi Kelautan, FPIK, IPB.
Selama menjadi mahasiswa IPB, penulis aktif menjadi anggota UKM GENTRA
KAHEMAN (Kesenian Sunda) pada tahun 2006/2007 dan pengurus organisasi di
HIMITEKA (Himpunan Mahasiswa Ilmu dan Teknologi Kelautan) bagian
Departemen Kewirausahaan pada tahun 2007/2008 dan 2008/2009. Penulis juga
aktif di berbagai kepanitiaan seperti fieldtrip. Selain itu, penulis pernah menjadi
Asisten Luar Biasa mata kuliah Metode Statistika (Metstat) pada tahun 2008/2009
dan 2009/2010.
Pada tahun 2009, penulis melaksanakan kegiatan Praktek Lapang di Balai
Budidaya Air Payau (BBAP) Situbondo dengan judul “Teknologi Pengolahan
Kualitas Air pada Litopenaeus vannamei dan Cromileptes altivelis di Balai
Budidaya Air Payau Situbondo, Jawa Timur”. Pada tahun 2010, guna
menyelesaikan studi di Fakultas Perikanan dan Ilmu Kelautan, penulis
melaksanakan penelitian dengan judul “Hubungan antara Distribusi Ikan
Demersal, Makrozoobenthos, dan Substrat”.
54
Download