3 2 TINJAUAN PUSTAKA 2.1 Osteoarthritis (OA) Osteoarthritis yang juga sebagai penyakit degeneratif pada sendi adalah bentuk penyakit radang sendi yang paling umum dan merupakan sumber utama penyebab rasa sakit dan lumpuh, terutama pada orang lanjut usia (lansia). OA merupakan penyakit degeneratif kronik pada sendi yang terjadi akibat menipisnya lapisan tulang rawan yang melindungi ujung tulang sejati. Tulang rawan menjadi kasar sehingga menimbulkan gesekan dan peradangan. Bentuk kerusakan yang terjadi ialah perubahan struktural dan pengikisan kartilago yang menimbulkan rasa sakit dan kaku (Kralovec dan Barrow 2008). OA dapat disebabkan oleh penekanan beban tubuh yang secara terus-menerus terhadap persendian, sehingga mengakibatkan kerusakan terhadap tulang rawan sendi. Akibat lanjut dari OA diantaranya adalah timbulnya rasa nyeri karena terjepitnya ujung-ujung saraf sensoris oleh osteofit-osteofit yang terbentuk serta adanya pembengkakan dan penebalan jaringan lunak di sekitar sendi yang akan mengakibatkan deformitas, terlepasnya osteofit pada suatu gerakan menimbulkan krepitasi pada sendi tersebut (Carter 1995 dalam Utami 2010). 2.2 Glukosamin hidroklorida (GlcN HCl) Glukosamin hidroklorida memiliki nama lain yakni 2-amino-2-deoxy-Dglucopyranose, kitosamin hidroklorida, dan D-(+)-glukosamin hidroklorida. Secara struktural, glukosamin merupakan gula beramin dengan rumus molekul C6H13NO5HCl dan massa molekul 215,63 Da. Glukosamin dalam bentuk murni berbentuk serbuk kristal putih dengan titik leleh 190-194 oC. Glukosamin memiliki kelarutan tinggi dalam air dengan titik larut 100 mg/mL pada suhu 20 oC (Kralovec dan Barrow 2008). Struktur kimia glukosamin hidroklorida ditunjukkan oleh Gambar 1. Glukosamin merupakan senyawa alami yang terdapat dalam tubuh manusia yang merupakan unsur pokok dari GAG pada tulang rawan dan cairan synovial. Glukosamin dalam tubuh berfungsi untuk memproduksi cairan synovial sebagai bahan pelumas pada tulang rawan. Kekurangan cairan synovial dalam tubuh dapat 4 Gambar 1 Struktur kimia glukosamin hidroklorida (Mojarrad et al. 2007) menimbulkan kekakuan pada sendi sehingga menyebabkan penyakit osteoarthritis (OA). Pemberian glukosamin sulfat secara oral dapat membantu produksi cairan synovial untuk mencegah dan mengobati penyakit OA (Williams 2004 dalam Afridiana 2011). Penelitian Kulkarni et al. (2012) menunjukkan bahwa konsumsi glukosamin hidroklorida dan atau glukosamin sulfat terhadap pasien penderita OA (tingkat sedang) berpengaruh nyata terhadap pengurangan rasa nyeri pada sendi. Dosis harian untuk konsumsi glukosamin menurut Badan Pengawas Obat dan Makanan Republik Indonesia (BPOM RI) tahun 2004 adalah 1500 mg/ hari. Hasil penelitian Hathcock dan Andrew (2006) menunjukkan bahwa asupan glukosamin secara oral pada dosis 2000 mg/ hari aman untuk dikonsumsi. Adapun efek konsumsi glukosamin terhadap tubuh dapat dilihat setelah satu bulan pemakaian. Mutu glukosamin hidroklorida menurut standar United State Pharmacopeia (USP) ditunjukkan pada Tabel 1. Glukosamin dapat dihasilkan dengan beberapa cara ekstraksi yakni proses hidrolisis kimiawi, proses enzimatis, proses fermentasi, dan proses gabungan antara ketiganya. Produksi glukosamin dengan proses ekstraksi enzimatis dan fermentasi biasanya dilakukan pada skala laboratorium. Proses ekstraksi yang paling umum digunakan pada produksi glukosamin skala industri adalah proses hidrolisis kimiawi dengan kombinasi asam HCl dan basa NaOH dengan konsentrasi tertentu. Menurut Kralovec dan Barrow (2008) angka hidrolisis kitin menjadi glukosamin menurun ketika konsentrasi asam yang digunakan kurang dari 9 M. Kadar asam yang rendah menyebabkan terjadinya hidrolisis yang tidak sempurna dan terbentuknya kitosan oligomer. Hidrolisis yang tidak sempurna juga dapat disebabkan oleh kurangnya waktu reaksi meskipun konsentrasi asam yang digunakan mencapai 10 M. 5 Tabel 1 Spesifikasi mutu glukosamin hidroklorida (GlcN) menurut (USP) Uji USP-NF Spesifikasi USP-NF Penampakan Serbuk putih Spesifik rotasi Antara +70.0o sampai +73.0o (larutan uji 25 mg/mL) pH 3.0-5.0, dalam larutan 20 mg/mL Pengurangan bobot Pengeringan pada 105 oC selama 2 jam, pengurangan akibat pemanasan bobot <= 1.0% Sisa pembakaran <= 0.1% Sulfat 0.10 g dilarutkan dalam 0.25 mL asam sulfat 0.020 N, kadar sulfat <= 0.24% Besi <= 10 ppm Klorin <= 17% Logam berat 0.001% Kemurnian 98.0 sampai 102.0% (basis kering) Sumber: USP 2006 dalam Cargill Inc. 2006 2.3 Kitin Kitin adalah polisakarida struktural yang umum digunakan untuk menyusun eksokleton dari artropoda (serangga, laba-laba, krustase, dan hewan-hewan lain sejenis). Kitin juga tergolong homopolisakarida linear yang tersusun atas residu N-asetilglukosamin pada rantai beta dan memiliki monomer berupa molekul glukosa dengan cabang yang mengandung nitrogen. Kitin murni mirip dengan kulit, namun akan mengeras ketika dilapisi dengan garam kalsium karbonat CaCO3. Kitin membentuk serat mirip selulosa yang tidak dapat dicerna oleh vertebrata (Sugita et al 2009). Keberadaan kitin di alam umumnya terikat dengan protein, mineral, dan berbagai macam pigmen. Contohnya, kulit udang mengandung 25-40% protein, 40-50% CaCO3, dan 15-20% kitin, tetapi besarnya komponen tersebut masih bergantung pada jenis udangnya (Altschul 1976 dalam Sugita et al. 2009) sedangkan kulit kepiting mengandung protein (15,60-23,90%), kalsium karbonat (53,70-78,40%) dan kitin (18,70-32,20%), hal ini tergantung pada jenis kepiting tempat hidupnya (Focher 1992 dalam Sugita et al. 2009). Secara kimia, struktur kitin merupakan poli (2-asetamido-2-deoksi-β-(1→4)D-glukopiranosa) dengan rumus molekul (C8H13NO5)n yang tersusun atas 47% C, 6% H, 7% N, dan 40% O. Struktur kitin menyerupai struktur selulosa dan hanya berbeda pada gugus yang terikat di posisi atom C2. Gugus pada C2 selulosa 6 adalah gugus hidroksil -OH, sedangkan pada C2 kitin adalah gugus N-asetil (Muzzarelli 1977). Struktur kimia kitin ditunjukkan oleh Gambar 2. Gambar 2 Struktur kimia kitin (Muzzarelli 1977). Kitin tidak larut dalam pelarut biasa tetapi cenderung stabil dalam asam maupun basa lemah. Kitin dapat dideasetilasi sehingga membentuk produk turunan seperti kitosan, oligosakarida, dan glukosamin. Bentuk turunan ini memiliki manfaat lebih besar sebagai neutraceutical (Kralovec dan Barrow 2008). Proses isolasi kitin pada dasarnya terdiri dari tiga tahap, yaitu: tahap pemisahan protein (deproteinasi), tahap pemisahan mineral (demineralisasi), dan tahap penghilangan warna (depigmentasi) (Savitri et al. 2010). 2.4 Kitosan Kitosan merupakan produk deasetilasi kitin melalui proses reaksi kimia menggunakan basa natrium hidroksida atau reaksi enzimatis menggunakan enzim kitin deacetylase. Kitosan merupakan biopolimer yang resisten terhadap tekanan mekanik. Unsur-unsur yang menyusun kitosan hampir sama dengan unsur-unsur yang menyusun kitin yaitu C, H, N, O dan unsur-unsur lainnya. Kitosan adalah turunan kitin yang diisolasi dari kulit kepiting, udang, rajungan, dan kulit serangga lainnya. Kitosan merupakan kopolimer alam berbentuk lembaran tipis, tidak berbau, terdiri dari dua jenis polimer, yaitu poli (2-Deoksi-2-asetilamin-2-Glukosa) dan poli (2-Deoksi-2 Aminoglukosa) yang berikatan β-D (1–4 ) (Hirano 1986). Kitosan tidak beracun dan mudah terbiodegradasi. Kitosan tidak larut dalam air, dalam larutan basa kuat, dalam H2SO4 dan dalam beberapa pelarut organik seperti alkohol dan aseton. Kitosan sedikit larut dalam asam klorida dan asam 7 nitrat serta larut baik dalam asam lemah seperti asam formiat dan asam asetat (Sugita et al 2009). Struktur kimia kitosan ditunjukkan pada Gambar 8. Gambar 3 Struktur kimia kitosan (Hirano 1986). Tahap utama yang berperan penting dalam proses transformasi kitin menjadi kitosan ialah tahap deasetilasi dengan penggunaan basa kuat KOH atau NaOH. Proses deasetilasi gugus asetil pada asetamida kitin dapat dijelaskan sebagai berikut: gugus karbon karbonil diserang oleh nukleofil OH-, akibatnya terjadi reaksi adisi sehingga terbentuk zat antara. Zat antara ini selanjutnya mengalami reaksi elimininasi sehingga gugus asetil pada asetamida kitin lepas membentuk asetat. Proses pelepasan gugus asetil dari gugus asetamida kitin berhubungan dengan konsentrasi ion OH- pada larutan. Konsentrasi OH - akan lebih besar pada larutan basa kuat. Semakin kuat suatu basa semakin besar konsentrasi OH- dalam larutannya. Dengan demikian kekuatan basa mempengaruhi proses deasetilasi gugus asetil dari gugus asetamida kitin (Azhar et al. 2010). Penggunaan larutan NaOH 50% (b/v) pada proses deasetilasi kitin menjadi kitosan dimaksudkan untuk memutus ikatan antara gugus asetil dengan atom nitrogen, sehingga berubah menjadi gugus amina (-NH2). Larutan basa dengan konsentrasi tinggi ini digunakan karena ikatan antara nitrogen N dengan gugus asetil sangat kuat. Hal ini disebabkan karena unit sel kitin berstruktur kristalin dan adanya ikatan hidrogen yang meluas antar atom nitrogen dengan gugus karboksil tetangganya (Karmas 1992). Proses deasetilasi ini bertujuan untuk memutuskan ikatan kovalen antara gugus asetil dengan nitrogen dalam gugus asetamida kitin sehingga berubah menjadi gugus amina (-NH2) dengan demikian pelepasan gugus asetil pada asetamida kitin menghasilkan gugus amina terdeasetilasi. 8 2.5 Fourier Transform Infra Red (FTIR) Fourier Transform Infra Red (FTIR) merupakan suatu teknik spektroskopi inframerah yang dapat mengidentifikasi kandungan gugus fungsi suatu senyawa termasuk senyawa kalsium fosfat, namun tidak dapat mengidentifikasi unsurunsur penyusunnya. Ada dua jenis energi vibrasi yaitu vibrasi bending dan vibrasi stretching. Vibrasi bending yaitu pergerakan atom yang menyebabkan perubahan sudut ikatan antara dua ikatan atom atau pergerakan dari seluruh atom terhadap atom lainnya. Sedangkan vibrasi stretching adalah pergerakan atom yang teratur sepanjang sumbu ikatan antara dua atom sehingga jarak antara dua atom dapat bertambah atau berkurang (Samsiah 2009). Spektroskopi IR digunakan untuk menetukan struktur molekul melalui sederetan gugus fungsi yang berdasarkan pada perubahan amplitudo vibrasi yang diawali oleh terjadinya aksi antara molekul dengan radiasi infra merah yang medan listriknya memiliki frekuensi sama. Prinsip dasar dari spektrofotometri IR adalah perubahan amplitudo radiasi IR dari gugus dalam molekul pada energi (bilangan gelombang atau bilangan gelombang) yang sesuai. Pengujian FTIR memiliki beberapa keuntungan, yakni relatif cepat, sampel tidak perlu murni, dan tingkat ketelitian tinggi (Pavia et al. 2009). Identifikasi gugus fungsi biasanya dilakukan pada daerah bilangan gelombang 800-4000 cm-1. Serapan pita amida I memiliki bilangan gelombang 1655 cm-1 dan gugus hidroksil memiliki bilangan gelombang 3450 cm-1 (Sugita et al. 2009). Serapan gugus hidroksi O-H memiliki bilangan gelombang pada 3200-3400 cm-1 (H terikat) dan pada 3650-3600 cm-1 (gugus hidroksi bebas). Gugus amina N-H memiliki bilangan gelombang 3500-3100 cm-1 (vibrasi ulur) dan 1640-1550 cm-1 (vibrasi tekuk). Gugus amin C-N memiliki bilangan gelombang 1350-1000 cm-1. Gugus C-O berada pada bilangan gelombang 1300-1000 cm-1. Gugus C-H berada pada daerah bilangan gelombang 3000-2850 cm-1 (Pavia et al. 2009).