BAB I

advertisement
BAB III
TEORI FISIKA BATUAN
III.1. Teori Elastisitas
Proses perambatan gelombang yang terjadi didalam lapisan batuan dikontrol oleh
sifat elastisitas batuan, yang berarti bahwa bagaimana suatu batuan terdeformasi
(mengalami perubahan bentuk) yang disebabkan oleh gaya yang bekerja pada
batuan tersebut. Setiap batuan mampunyai sifat keelastisitasan yang berbeda, oleh
karena itu batuan lunak akan menghasilkan strain yang berbeda jika dibandingkan
batuan lain yang lebih keras. Teori elastisitas berhubungan dengan deformasi
yang disebabkan oleh tekanan yang dikenakan pada batuan tertentu. Tekanan atau
Stress (σ) adalah gaya per satuan luas sedangkan Strain (e) adalah jumlah
deformasi material per satuan luas. Jika stress diterapkan pada batuan maka
batuan tersebut akan terdeformasi yang menyebabkan terjadinya strain.
Hukum Hooke
Hukum Hooke menyatakan bahwa terdapat hubungan linier antara stress dan
strain pada batuan (antara gaya yang diterapkan dan besarnya deformasi).
t
tt
σ = C.e
(3.1)
Strain (e) dan Stress (σ) adalah besaran tensor, sedangkan C adalah konstanta
yang berupa matriks (tensor) dengan 81 koefisien yang menentukan sifat-sifat
dasar elastik batuan. Pada material isotropik, 81 koefisien matriks C tersebut
28
direduksi menjadi dua macam parameter elastik independen yang mencirikan
sifat-sifat elastik batuan. Beberapa kombinasi dari kedua parameter bebas ini
disebut Modulus Elastik dan dapat diukur dalam percobaan laboratorium.
Beberapa modulus elastik tersebut adalah:
1. Modulus Young (E)
Modulus Young didefinisikan sebagai perubahan panjang (longitudinal strain)
dari sebuah material ketika suatu stress longitudinal mengenai material tersebut.
(lihat gambar 3.1)
σl = E
dengan : σl
ΔL
,
L
(3.2)
= strain longitudinal,
E
ΔL/L
= modulus Young,
= perubahan panjang relatif
Gambar 3.1 Modulus Young. (Canning, 2000)
29
2. Modulus Shear – Rigiditas (μ)
Modulus Shear adalah tetapan elastik yang menghubungkan antara shear strain
dan shear stress.(lihat gambar 3.2)
σs = μ
ΔY
,
X
(3.3)
dengan : σs = tekanan yang bekerja pada benda,
ΔY = besarnya pergeseran benda,
X
= tinggi benda,
θ = sudut pergeseran benda terhadap bentuk semula.
Gambar 3.2 Modulus Shear – Rigiditas. (Canning, 2000)
3. Modulus Bulk – Incompresibilitas (K)
Modulus Bulk adalah modulus elastik yang mengukur resistansi suatu material
terhadap stress volumetrik (suatu gaya yang bekerja secara seragam pada semua
arah / tekanan hidrostatik). Untuk lebih jelasnya lihat gambar 3.3.
30
P=K
dengan P
ΔV
,
V
(3.4)
= tekanan hidrostatik
ΔV
V
= perubahan volume relatif
K
= modulus Bulk (N/m2).
Gambar 3.3 Modulus Bulk – incompresibility. (Canning, 2000)
Dalam AVO, modulus Bulk adalah modulus elastik yang sering dipakai dalam
analisa. Tabel 3.1 memperlihatkan nilai modulus bulk untuk beberapa batuan dan
fluida dengan satuan 1010 Dynes/cm2. Terdapat perbedaan nilai modulus bulk
yang sangat besar antara batuan yang kompak dengan fluida.
31
Tabel 3.1 Harga modulus Bulk batuan.
Jenis zat
Modulus Bulk (1010
Dynes/cm2)
Batugamping
60
Batupasir
40
Air
2.38
Minyak
1.0
Gas
0.021
Konstanta Lame (λ)
Konstanta Lame adalah modulus elastik batuan yang menggambarkan sifat
inkompressibilitas suatu batuan. Modulus ini bukan merupakan sifat yang
langsung dapat diukur di laboratorium, tetapi bisa ditentukan dari modulus elastik
lainnya:
K = λ + 2/3 μ,
(3.5)
Dengan : K adalah modulus Bulk
λ adalah konstanta Lame
μ adalah modulus geser
Poisson Rasio (σ)
Didefinisikan sebagai rasio negatif antara strain longitudinal dan strain axial.
σ =−
E xx
E zz
(3.6)
32
Selain itu poisson ratio juga bisa diungkapkan dalam besaran kecepatan
gelombang seismik, yaitu :
2
⎛Vp ⎞
⎜⎜ ⎟⎟ − 2
V
σ= ⎝ s⎠2
⎡⎛ V p ⎞
⎤
2⎢⎜⎜ ⎟⎟ − 1⎥
⎢⎣⎝ Vs ⎠
⎥⎦
(3.7)
Dari persamaan diatas, poisson ratio mengukur besarnya Vp/Vs. Besarnya nilai
Poisson rasio adalah berkisar antara 0 sampai 0,5. Poisson ratio akan bernilai 0
⎛Vp
jika nilai ⎜⎜
⎝ Vs
⎞
⎟⎟ = 2 , dan poisson ratio akan bernilai 0,5 jika Vs = 0
⎠
Nilai poisson ratio sangat berarti untuk mengenali kandungan fluida dalam
batuan, seperti misalnya air, minyak ataupun gas. Dengan kata lain perbedaan
kandungan fluida di dalam batuan dapat ditunjukkan dalam perbedaan poisson
ratio-nya. Nilai poisson ratio berbagai jenis batuan dapat dilihat
pada tabel
dibawah ini.
Tabel 3.2 Harga rasio Poisson dari batuan sediment (Ostrander,1984).
No
Jenis batuan
Poisson Ratio
Sumber
1
Lempung Green River
0.22-0.30
Podio et al (1968)
2
Sedimen laut dangkal
0.45-0.50
Hamilton (1976)
3
Sedimen Consolidated
Gregory (1976)
Tersaturasi Brine
0.20-0.30
Tersaturasi Gas
0.01-0.14
33
4
5
Batuan Pasir sintetik
Domenico (1976)
Tersaturasi Brine
0.41
Tersaturasi gas
0.1
Batuan pasir Otawa
Domenico (1976)
Tersaturasi Brine
0.41
Tersaturasi gas
0.1
III.2 Kecepatan dan Impedansi Gelombang
Gelombang elastik yang merambat dalam bumi dibagi menjadi 2 macam yaitu
gelombang tubuh (body wave) dan gelombang permukaan (surface wave). Pada
kesempatan kali ini yang akan menjadi fokus pembicaraan hanya gelombang
tubuh. Body wave dapat dibagi menjadi dua tipe yaitu gelombang P (Pressure
wave) dan gelombang S (Shear wave). Gelombang Pressure (P) yang disebut juga
gelombang kompresi atau gelombang longitudinal adalah gelombang yang
mempunyai arah gerakan partikel yang
searah dengan arah penjalaran
gelombang. Sedangkan Gelombang shear, disebut juga gelombang sekunder yang
kecepatannya lebih rendah dari gelombang P. Gelombang ini disebut juga
gelombang S atau transversal yang memiliki gerakan partikel yang berarah tegak
lurus terhadap arah penjalaran gelombang. Jika arah gerakan partikel merupakan
bidang horizontal, maka gelombang tersebut adalah gelombang S Horizontal (SH)
34
dan jika pergerakan partikelnya vertikal, maka gelombang tersebut adalah
gelombang S Vertikal (SV).
(a)
(b)
Gambar 3.4 Ilustrasi trayektori gerakan partikel dari (a) gelombang pressure
(gelombang longitudinal), (b) gelombang transversal. (John Wiley and Sons,
1999)
Kedua tipe gelombang tersebut mempunyai kecepatan tertentu jika merambat
melalui batuan. Besarnya kecepatan masing-masing gelombang tersebut
tergantung pada sifat elastik batuan yang dilalui. Satu hal yang perlu dicatat
bahwa gelombang S tidak bisa merambat dalam zat cair.
Besarnya kecepatan gelombang P dan gelombang S dapat dinyatakan sebagai
berikut :
VP =
Vs =
K + 3 4μ
ρ
μ
ρ
(3.8)
(3.9)
dengan : Vp = kecepatan gelombang P (m/s)
K = modulus Bulk
μ = modulus geser
35
ρ = densitas
Berdasarkan kedua persamaan diatas, kecepatan gelombang S dipengaruhi oleh
densitas dan modulus shear. Sedangkan kecepatan gelombang P dipengaruhi oleh
dua modulus elastik, yaitu modulus bulk dan modulus shear. Dengan kata lain
modulus bulk hanya mempengaruhi kecepatan gelombang P. Hubungan antara
kedua kecepatan diatas adalah parameter utama yang dianalisa dalam analisa
AVO.
Impedansi gelombang merupakan hasil perkalian antara kecepatan dan densitas,
yang merupakan sifat dasar batuan.
Ip = Vp .ρ dan Is = Vs .ρ
(3.10)
Impedansi berperan penting dalam penentuan reflektivitas pada sudut datang
normal. Pada sudut datang normal, refleksi dari batas antara dua lapisan dengan
impedansi lapisan atas Ip1 dan impedansi lapisan bawah Ip2 dapat dirumuskan
sebagai berikut :
R NI =
I p 2 − I p1
I p 2 + I p1
=
ΔI p
Ip
(3.11)
RNI adalah koefisien refleksi untuk kasus normal incidence, menunjukkan
perubahan relatif impedansi.
36
III.3 Hubungan Vp, Vs, dan Densitas
III.3.1 Mudrock Line
Dari percobaan fisika batuan ditunjukkan bahwa kebanyakan batupasir memiliki
hubungan linier antara kecepatan gelombang P dengan kecepatan gelombang S
untuk saturasi cair. Hubungan ini akan bervariasi untuk jenis batuan dan daerah
yang berbeda (Canning, 2000). Untuk merumuskan suatu hubungan antara
kecepatan gelombang P dan kecepatan gelombang S didefinisikan persamaan
Mudrock Line sebagai hubungan Vp dan Vs untuk saturasi cair. Di Teluk
Meksiko, Castagna (1993) merumuskan persamaan Mudrock Line sebagai :
Vp = 1.16 ⋅ Vs + 1.36 , secara umum hubungan ini ditulis:
Vp = A ⋅ Vs + B ,
(3.12)
dengan A dan B adalah konstanta spesifik untuk setiap kasus tertentu.
III.3.2 Relasi Gardner
Relasi Gardner adalah relasi antara kecepatan gelombang P dan densitas yang
didefinisikan oleh Gardner (1974) berdasarkan dari data percobaan.
Relasi ini diungkapkan dalam skala logaritmik sebagai berikut :
log( ρ ) = A ⋅ log(Vp ) + B ,
(3.13)
dengan A dan B adalah konstanta spesifik untuk setiap kasus tertentu.
Dari percobaannya didapatkan hasil:
log( ρ ) = 0.25 ⋅ log(Vp ) − 0.51
(3.14)
Nilai ini dapat digunakan sebagai parameter dasar jika tidak tersedia data lokal.
37
III.4 Substitusi fluida Gassmann
Salah satu fenomena penting dalam reservoir dan menjadi kajian dalam seismik
rock physics adalah fenomena substitusi fluida. Substitusi fluida tertentu oleh
fluida lain menyebabkan terjadinya perubahan respon seismik. Respon seismik
yang berubah mengindikasikan adanya perubahan dalam properti seismik. Pada
masalah substitusi fluida, sangat penting untuk mengetahui kecepatan gelombang
seismik, sebagai salah satu properti seismik, pada batuan yang tersaturasi oleh
berbagai fluida yang berbeda. Batuan yang tersaturasi oleh fluida yang berbeda
mempunyai kecepatan seismik yang berbeda pula. Dari kecepatan seismik ini kita
bisa mendapatkan berbagai macam parameter elastis batuan lain seperti accoustic
impedance, shear impedance, poisson ratio, lamdha, dan mhu yang sangat berguna
dalam karakterisasi reservoir.
Substitusi fluida adalah salah satu bagian penting dalam analisa seismik atribut
karena substitusi fluida merupakan alat bagi interpreter dalam mengukur dan
memodelkan berbagai macam skenario fluida yang mungkin bisa menjelaskan
anomali AVO yang teramati. Pemodelan dalam substitusi fluida harus terlebih
dahulu menghilangkan pengaruh dari fuida yang pertama. Pendekatan empirik
yang memodelkan hubungan kecepatan dan porositas dalam kaitannya dengan
substitusi fluida pernah diusulkan oleh Wyllie et al (1956, 1958) dan kemudian
dimodifikasi oleh Raymer et al (1980). Pendekatan pada frekuensi seismik yang
lebih sering digunakan adalah pendekatan yang diusulkan oleh Gassmann (1951)
38
yang menghubungkan modulus bulk dari batuan dengan properti dari matriks,
rangka, serta fluida pori.
III.5 Asumsi Dasar Persamaan Gassmann
Lima asumsi dasar yang digunakan dalam persamaan gassmann adalah :
1. Batuan (matiks dan frame) secara mikroskopik adalah homogen.
Asumsi ini adalah asumsi umum yang digunakan oleh teori propagasi
gelombang di batuan porous. Asumsi ini menegaskan bahwa panjang
gelombang seismik yang digunakan relatif besar jika dibandingkan dengan
ukuran butir dan pori. Untuk sebagian besar batuan, gelombang dengan
frekuensi diantara seismik dan laboratorium dapat memenuhi asumsi ini.
2. Semua pori dalam batuan terhubungkan.
Asumsi kedua ini menyatakan secara tidak langsung bahwa porositas dan
permeabilitas batuan adalah besar dan tidak ada pori yang terisolasi atau tidak
terhubungkan secara baik. Dengan dipenuhinya asumsi ini maka akan tercipta
kesetimbangan aliran fluida pori. Keterhubungan antar pori ini berhubungan
dengan panjang gelombang atau frekuensi. Untuk persamaan Gassmann yang
mengasumsikan bahwa panjang gelombangnya adalah tak terhingga (frekuensi
nol),
sebagian
besar
batuan
bisa
memenuhi
asumsi
ini
walaupun
keterhubungan antar porinya sangat buruk.
39
3. Semua pori diisi oleh fluida baik itu cair, gas, atau campuran yang bebas dari
gesekan.
Asumsi ini menunjukkan bahwa viskositas dari fluida adalah nol, sehingga
akan tercipta kesetimbangan dalam aliran fluida pori. Asumsi ini juga berkaitan
dengan panjang gelombang dan frekuensi. Jika viskositas fluida nol maka
fluida pori akan setimbang dengan mudah. Pada kenyataannya, karena semua
fluida mempunyai viskositas tertentu dan semua gelombang mempunyai
panjang gelombang yang terbatas maka sebagian besar perhitungan dengan
menggunakan persamaan gassmann akan melanggar asumsi ini.
4. Sistem batuan-fluida adalah sistem yang tertutup.
Sistem batuan-fluida adalah sistem yang terisolasi sehingga tidak fluida yang
mengalir keluar dari permuakaan batuan.
5. Fluida pori tidak berinteraksi dengan bagian solid batuan
Asumsi ini mengeliminasi berbagai efek kimia dan fisika yang dihasilkan oleh
interaksi antara fluida pori dan matriks batuan.
III.6 Teori Biot-Gassmann
Persamaan gassmann (1951) digunakan untuk menghitung efek dari substitusi
fluida pada properti seismik dengan menggunakan properti dari rangka batuan.
Persamaan Gassmann menghitung modulus bulk dari batuan porous yang
tersaturasi fluida dengan menggunakan modulus bulk dari matiks, modulus bulk
dari frame, dan modulus bulk dari fluida pori yang telah diketahui sebelumnya.
40
Besarnya modulus bulk dari batuan porous yang tersaturasi fluida dinyatakan
dalam persamaan berikut :
⎛1 − K d
⎞
⎜
⎟
K
m⎠
K ∗ = Kd + ⎝
φ 1−φ Kd
+
+ 2
Kf
Km
Km
(3.15)
Dengan K* : Modulus bulk batuan yang tersaturasi fluida
Kf : Modulus bulk fluida
Kd : Modulus bulk frame
Km : Modulus bulk grain
φ : Porositas
Tidak seperti modulus bulk batuan yang dipengaruhi oleh saturasi fluida, modulus
shear dari batuan tidak dipengaruhi oleh saturasi fluida. Oleh karena itu modulus
shear batuan sama dengan modulus shear frame seperti ditunjukkan oleh
persamaan dibawah :
G ∗ = Gd
(3.16)
Dengan G* : Modulus geser batuan
Gd : Modulus geser dari batuan
Sedangkan densitas dari batuan yang tersaturasi fluida didefinisikan sebagai
ρ ∗ = ρ d + φρ f
(3.17)
ρ d = (1 − φ )ρ m
(3.18)
Dengan ρ* : Densitas batuan tersaturasi fluida
ρd : Densitas batuan kering
41
ρf : Densitas fluida pori
ρm : Densitas matriks
Modulus shear dan modulus bulk dari frame batuan dihitung dengan
menggunakan kecepatan gelombang seismik yang diukur di frame batuan dan
dinyatakan sebagai berikut :
K d = ρ d (V P2 − 43 VS2 )
(3.19)
Gd = ρ d VS2
(3.20)
Hal penting yang perlu digaris bawahi dalam pembahasan mengenai modulus
frame adalah bahwa nilai modulus frame tidak sama dengan nilai modulus pada
saat kondisi batuan kering. Untuk menggunakan persamaan gassmann secara tepat
maka modulus frame harus diukur pada kondisi irreducible saturation (fluida sisa)
dari fluida yang lebih membasahi batuan yang umumnya fluida tersebut adalah
air. Fluida sisa atau irreducible fluid ini adalah bagian dari frame batuan bukan
bagian dari ruang pori, oleh karena itu mengeringkan batuan dalam laboratorium
akan menghasilkan hasil perhitungan persamaan gassmann yang salah.
Jika fluida yang mengisi pori adalah campuran tiga fluida yaitu air, minyak, dan
gas maka modulus bulk dari fluida campuran tersebut dapat dihitung dengan
persamaan wood (wood,1994) :
Sg
S
S
1
= w + o +
Kf
Kw Ko K g
(3.21)
Dengan Kw dan Sw : Modulus bulk air dan saturasi air
Ko dan So : Modulus bulk minyak dan saturasi minyak
Kg dan Sg : Modulus bulk gas dan saturasi gas
42
Persamaan wood diatas menegaskan bahwa fluida pori terdistribusi secara merata
dalam rongga pori. Sedangkan modulus bulk dari fluida campuran ini dinyatakan
oleh persamaan :
ρ f = S w ρ w + So ρo + S g ρ g
(3.22)
Dengan ρw, ρo, dan ρg adalah densitas bulk air, densitas bulk minyak, dan
densitas bulk gas.
Semua persamaan yang berkaitan dengan gassmann diatas membutuhkan
beberapa input parameter untuk menghitung efek fluida pada kecepatan
gelombang seismik. Biasanya modulus shear dan bulk frame, porositas, densitas
grain, dan modulus bulk fluida didapat dari pengukuran laboratorium. Jika data
laboratorium tidak ada kadang-kadang digunakan data well-log atau data hasil
perhitungan hubungan empiris yang didapat dari literatur. Sebagai contoh
porositas bisa didapat dari log neutron atau log akustik dan modulus bulk frame
didapat dari persamaan gasmann yang telah dimodifikasi seperti dibawah :
⎛ φK
⎞
K ∗⎜ m +1−φ ⎟ − Km
⎜ K
⎟
⎝ f
⎠
Kd =
∗
φK m K
+
−1− φ
Kf
Km
(3.23)
Nilai modulus bulk dan modulus shear dari grain (matriks) didapat dari modulus
mineral yang menyusun batuan tersebut. Jika mineralogi dari suatu batuan
diketahui, maka perhitungan Voight-Reuss-Hill (VRH) average (Hill, 1952) bisa
43
digunakan untuk menghitung Km dan Gm yang efektif, seperti yang dinyatakan
dalam persamaan dibawah :
M =
1
2
(M V
+ MR)
(3.24)
Dengan M adalah modulus grain efektif (bisa merepresentasikan Modulus bulk
dan Modulus geser), Mv adalah modulus rata-rata Voight (1028) dan MR adalah
modulus rata-rata Reuss (1929) yang didefisikan sebagai berikut :
n
M V = ∑ ci M i
(3.25)
n
c
1
=∑ i
M R i =1 M i
(3.26)
i =1
Dengan ci dan Mi adalah fraksi volume dan modulus dari komponen ke-i.
44
Download