aplikasi metode double difference untuk relokasi hiposenter gempa

advertisement
JTM Vol. XVI No.1/2009
APLIKASI METODE DOUBLE DIFFERENCE UNTUK
RELOKASI HIPOSENTER GEMPA VULKANIK
GUNUNG KELUD SECARA AKURAT
David P. Sahara1, Adrianto W. Kusumo2, Sri Widiyantoro3, Rachmat Sule4
Sari
Metode double difference (DD) adalah suatu metode relokasi hiposenter relative yang dikembangkan dari metode
Geiger dengan menggunakan data waktu tempuh residual dari pasangan hiposenter ke setiap stasiun seismograf.
Lokasi hiposenter ditentukan dengan menggunakan data waktu tempuh absolute dan data diferensial waktu
tempuh gelombang P dan S yang akurat. Solusi Least Square digunakan untuk mnyelesaikan perubahan vector
(dt0,dx0,dy0,dz0) di antara pasangan hiposenter. Analisis multiplet clustering diaplikasikan untuk memilih
pasangan hiposenter yang memiliki bentuk gelombang (waveform) yang mirip dan jarak antar sumber yang relatif
dekat dibandingkan dengan jarak antara hiposenter-stasiun dan skala heterogenitas model kecepatan, sehingga
ray path antar hiposenter dalam satu cluster ke suatu stasiun hampir sama. Pada kasus ini perbedaan waktu
tempuh untuk setiap pasangan hiposenter dapat digunakan untuk menentukan jarak persebaran spasial pasangan
hiposenter dengan akurasi tinggi. Dengan semikian efek kesalahan akibat model kecepatan yang tidak diketahui
bisa diminimalkan. Algoritma yang diterapkan di sini hanya menggunakan data gelombang P, akan tetapi mampu
memberikan perbaikan lokasi hiposenter secara signifikan. Algoritma ini berhasil membuat lokasi hiposenter hasil
Single Event Determination dan Joint Hypocenter Determination yang tersebar acak menjadi terfokus sehingga
dapat mendeliniasistruktur internal gunung Kelud dengan rinci.
Kata kunci: relokasi relatif, Gunung Kelud, double difference, multiplet clustering.
Abstract
The double-difference (DD) method is a relative hypocenter relocation method developed by extending Geiger’s
method using residual time data of pairs of events to each seismographic station. In this study, the location
determination method used absolute travel-time measurements and accurate P-and S-wave differential travel-time
measurements. A least-squares solution was employed to solve the iterative adjustment of the vector difference
(dt0,dx0,dy0,dz0) between pairs of events. A multiplet clustering analysis was applied to select the hypocenter
pairs that have similar and small separation compared to the event – station distance and the scale length of the
velocity heterogeneity, so the ray paths from the source region to a common station are similar. In this case the
difference in travel times for two events observed at one station can be used to determine the spatial (relative)
offset between the events with high accuracy. This the effect of the errors related to unknown velocity model can be
minimized. Here, the algorithm used only the P-wave travel-time measurements. However, it can provide a
significant improvement in the hypocenter location. The algorithm collapses the diffused locations obtained from
Single Event Determination and Joint Hypocenter Determination into sharp images of seismicity and defines the
internal structure of Mt. Kelud in detail.
Keywords: relative relocation, Kelud Volcano, double difference, multiplet clustering.
1)
2)
3)
4)
Program Studi Teknik Geofisika, Fakultas Teknik Pertambangan dan Perminyakan, ITB
Email : [email protected]
Program Studi Teknik Geofisika, Fakultas Teknik Pertambangan dan Perminyakan, ITB
Kelompok Keilmuan Geofisika Global, Fakultas Teknik Pertambangan dan Perminyakan, ITB
Kelompok Keilmuan Geofisika Terapan, Fakultas Teknik Pertambangan dan Perminyakan, ITB
I. PENDAHULUAN
Gunung Kelud merupakan gunung api bertipe
strato yang relatif kecil dengan ketinggian
1731 m di atas muka laut atau 1650 m di atas
Kota Kediri dan Blitar. Gunung ini terletak
kira-kira 27 km sebelah timur pusat Kota
Kediri dan dikelilingi gugusan Gunung Wilis
disebelah barat, Gunung Welirang-Arjuna
disebelah utara, dan Gunung Kawi-Butak
disebelah timur (Gambar 1).
Periode letusan Gunung Kelud berkisar antara
9-75 tahun. Selama satu abad terakhir Gunung
Kelud tercatat meletus pada tahun 1901, 1919,
1951, 1966, dan 1990. Semua letusan tersebut
mirip dan memiliki ciri waktu letusan yang
31
sangat pendek, produk letusan kecil (0.1-0.2
km3) dan VEI = 3-4 (Kusumadinata, 1979).
Bahaya utama dari letusan Gunung Kelud
adalah terjadinya erupsi lahar. Letusan terbesar
terjadi pada tahun 1919 yang menyebabkan
5160 orang meninggal. Gunung Kelud terakhir
kali meletus tahun 1990 dan menyebabkan
tujuh orang meninggal dan dua kampung
hancur .
Fokus penelitian ini adalah perkembangan
metode
penentuan
hiposenter
untuk
menghasilkan suatu lokasi hiposenter yang
lebih akurat. Beberapa penelitian sebelumnya
menyebutkan bahwa efek kesalahan model
kecepatan dapat diminimalisasi secara efektif
David P. Sahara, Adrianto W. Kusumo,
Kus
Sri Widiyantoro, dan Rachmat Sule
dengan menggunakan metode relokasi relatif
hiposenter (Poupinet et al., 1984, Got et al.,
1994). Pada tahun 2000 Waldhauser
mengenalkan suatu metode relokasi Double
Difference untuk menentukan
an posisi relatif
hiposenter dengan lebih akurat. Metode
Double Difference diaplikasikan untuk
merelokasi hasil penentuan lokasi hiposenter
Gunung Kelud dengan menggunakan metode
Single Event Determination dan Joint
Hypocenter
Determination
yang
telah
dilakukan
kukan sebelumnya (Sahara, 2009).
II. DATA GEMPA
Pusat Vulkanologi dan Mitigasi Bencana
Geologi menggunakan sistem telemetri untuk
mengumpulkan berbagai data dari lokasi yang
jauh dan mengirim informasi ke pusat instalasi
dengan memasang seismometer di 4 stasiun
(KLD, SUM, GJM, dan KWH) untuk
merekam aktivitas Gunung Kelud (Gambar 2).
Data yang dianalisis adalah data perekaman
mulai tanggal 27 September 2007 hingga 12
November 2007 oleh keempat stasiun tersebut.
Selama periode tersebut tercatat sebanyak 2293
sumber gempa vulkanik tipe A dan B (Sahara,
2009). Waktu tiba gelombang S sangat susah
diidentifikasi dengan jelas, sehingga penentuan
lokasi hiposenter hanya menggunakan data
waktu tiba gelombang P dari gempa vulkanik.
III. METODE DOUBLE DIFFERENCE
Metode double difference secara teoritis
merupakan pengembangan metode Geiger
dengan menggunakan data relatif waktu
tempuh antar dua hiposenter. Prinsip metode
ini adalah jika jarak persebaran hiposenter
antara dua gempa sangat kecil dibanding jarak
antara stasiun – sumber, maka ray path kedua
gempa dapat dianggap mendekati sama.
Dengan asumsi ini, maka selisih waktu tempuh
antara kedua gempa yang terekam pada satu
stasiun yang sama dapat dianggap hanya
sebagai fungsi jarak antara kedua hiposenter.
Sehingga kesalahan model kecepatan
kecepat
bisa
diminimalisasi tanpa menggunakan koreksi
stasiun. (Waldhauser dan Ellsworth , 2000).
2000)
Residual relatif waktu tempuh antara
hiposenter i dan hiposenter j (satu pasang
hiposenter) pada stasiun
k (
dapat di formulasikan
dengan :
dan
adalah waktu tempuh dari hiposenter i
ke stasiun k dan
adalah adalah waktu
tempuh dari hiposenter j ke stasiun k.
32
Persamaan 1 hanya berlaku bila jarak antara
kedua hiposenter dekat, tetapi bila jarak kedua
hiposenter berjauhan maka slowness model
antara kedua hiposenter tidak konstan dan
persamaan tersebut menjadi tidak stabil.
Linearisasi persamaan 1 diberikan oleh :
(2)
Persamaan 2 dapat ditulis lengkap menjadi
(3)
Dengan menggabungkan persamaan 3 untuk
semua pasangan hiposenter pada semua stasiun
pengamat dalam satu cluster maka dapat
dibuat suatu persamaan linear matriks double
difference :
(4)
Dengan G merupakan matriks partial
derivative residual waktu tempuh terhadap
parameter hiposenter. Matriks ini berukuran M
x 4N, dengan M adalah jumlah persa
persamaan
yang mungkin dibentuk dari semua pasangan
hiposenter pada semua stasiun dalam satu
cluster, dan N adalah jumlah hiposenter dalam
satu cluster. m adalah data vektor perubahan
posisi relatif antar pasangan hiposenter
terhadap posisi relatif hiposenter ddugaan
(awal) [dx,dy,dz,dt]T pada satu cluster,
sedangkan d adalah residual double difference
seluruh pasangan hiposenter. W adalah matriks
diagonal untuk pembobotan tiap persamaan.
Matriks W digunakan karena besar signal to
noise ratio berbeda untuk tiap event pada tiap
stasiun. Matriks W memberikan bobot untuk
tiap persamaaan berdasar kualitas pick tiap
event.
Pada dasarnya matriks G masih mempunyai
banyak kelemahan, salah satu kelemahannya
adalah kolom matriks G hanya memiliki 8
kolom yang tidak bernilaii nol di satu baris. Hal
ini menyebabkan solusi dari inversi menjadi
kurang stabil. Salah satu cara untuk
meningkatkan kestabilannya yaitu menyeleksi
hiposenter yang akan dimasukan ke dalam
matriks G, hiposenter yang dimasukkan
hanyalah hiposenter yang saling
ing terhubung
dengan baik atau memiliki nilai
(1) koherensi
yang cukup tinggi.
Aplikasi
plikasi Metode Double Difference Untuk Relokasi Hiposenter Gempa Vulkanik
Gunung Kelud Secara Akurat
IV. METODE MULTIPLET CLUSTERING
Analisis multiplet clustering dilakukan untuk
menentukan hiposenter yang saling terhubung
satu dengan yang lain dan kemudian
mengelompokkannya dalam satu cluster.
Multiplet mikroseismik merupakan grup
kejadian mikroseismik dengan waveform yang
mirip dan diperkirakan berasal dari shear slip
dari bidang rekah atau struktur yang sama
(Asanuma et al., 2006).
Analisis multiplet clustering dimulai dengan
analisis koherensi antar waveform.
waveform Koherensi
menunjukkan hubungan kemiripan antara dua
waveform yang ditunjukkan dalam rentang
angka 0 hingga
ngga 1. Jika nilai koherensi semakin
mendekati 1, maka kedua wavefrom makin
mirip dan sebaliknya.
Nilai koherensi didapatkan dari persamaan:
dan
(5)
adalah cross power spectral density
antara dua waveform sedangkan
dan
adalah auto power spectral density.
density
Nilai-nilai
nilai tersebut berada dalam domain
frekuensi
dan
didapatkan
dengan
menggunakan Short Time Fourier Transform
(STFT) pada sejumlah window tertentu yang
telah ditentukan.
(6)
dengan
dan
adalah fungsi waveform
dalam domain frekuensi dan
dan
adalah konjugatnya.
Analisis koherensi dilakukan terhadap semua
pasangan hiposenter. Dari hasil analisis dibuat
suatu tabel koherensi antar hiposenter.
Kemudian ditentukan satu nilai threshold
koherensi sebagai nilai minimum pasangan
hiposenter yang dapat dimasukkan ke dalam
satu cluster.
V. ANALISIS
SPATIAL
ERROR
DISTRIBUTION
Analisis error spatial distribution digunakan
untuk melihat kualitas persebaran stasiun
pengamat pada daerah studi. Ditentukan dua
33
titik sampel, satu pada koordinat (0,0,0) yang
mewakili titik di dalam area coverage stasiun
dan kedua pada koordinat (1200,1200,0) pada
luar coverage stasiun pengamat. Dibuat grid
berukuran 21 x 21 titik pada masing
masing-masing
titik sampel, dengan jarak antar titik grid
masing-masing
masing adalah 100 m pada arah X, Y,
Z. Titik sampel berada pada tengah grid. Root
Mean Square error (RMS Error) waktu
tempuh dihitung pada masing-masing
masing titik grid
terhadap waktu tempuh titik sampel dan
kemudian dibuat kontur RMS.
Hasil kontur RMS pada sampel (0,0,0)
memberikan nilai minimum global error pada
titik sampel. Secara umum bisa dianalisis
bahwa persebaran stasiun pengamat pada
lapangan cukup baik dan secara statistik nilai
hasil inversi SED memberikan lokasi pada
minimum error yang tepat. Hasil kurang baik
didapat dari kontur RMS pada sampel di luar
coverage stasiun pengamat. Minimum RMS
tidak berada pada satu titik, tetapi pada satu
trend garis, sehingga hasil inversi belum tentu
memberikan lokasi hiposenter pada minimum
error yang tepat. Dari hasil ini didapat zona
dengan tingkat kepercayaan tinggi pada radius
1000 m dari puncak kawah (0,0), di luar zona
tersebut tingkat kepercayaan hasil inversi
kurang baik. Berdasar analisis tersebut daerah
penelitian dibatasi hanya pada radius
dius 1000 m
dari puncak kawah.
VI. DISTRIBUSI HIPOSENTER HASIL
METODE
SINGLE
EVENT
DETERMINATION (SED) DAN JOINT
HYPOCENTER
DETERMINATION
(JHD)
Penentuan hiposenter gempa vulkanik Gunung
Kelud dengan metoda SED dan JHD telah
dilakukan dengan menggunakan model
kecepatan 1-D
D (Sahara, 2009). Model
kecepatan untuk analisis didapat dari apriori
informasi geologi dan survey graviti di
Gunung Kelud.
Perbedaan metode SED dan JHD terletak pada
besaran koreksi stasiun. Metode JHD secara
simultan akan menginversi waktu tempuh
sekelompok hiposenter untuk mendapatkan
lokasi hiposenter serta besaran koreksi stasiun
sebagai koreksi terhadap kesalahan akibat
model kecepatan 1-D
D yang digunakan. Pada
beberapa kasus dengan menggunakan model
kecepatan yang sama, metode JHD berhasil
mengurangi error akibat kesalahan lateral
model kecepatan dan memberikan posisi
hiposenter yang lebih baik dari pada SED
(Pujol, 2000). Dengan memperhitungkan
koreksi stasiun, maka residual waktu tempuh
David P. Sahara, Adrianto W. Kusumo,
Kus
Sri Widiyantoro, dan Rachmat Sule
yang didapatkan pada station ke-ii dapat ditulis
ditu
sebagai berikut:
(7)
adalah waktu tempuh gelombang
dengan
pada stasiun ke-ii hasil observasi dan
adalah
waktu tempuh gelombang dugaan hasil
perhitungan dari model kecepatan yang
dimiliki serta
adalah koreksi stasiun.
Pada penelitian ini hasil metode SED dan JHD
hampir sama, maksimal perbedaan lokasi
antara kedua metode tersebut adalah 20m.
Kemiripan hasil ini karena dari analisis inversi
JHD didapat nilai koreksi stasiun yang sangat
san
kecil. Rata-rata
rata nilai koreksi stasiun kurang
dari 3 ms. Nilai ini sangat kecil dibanding
dengan nilai data waktu tempuh (rata-rata
(rata
bernilai 1000 ms), sehingga nilai koreksi tidak
begitu
memberikan
perubahan
lokasi
hiposenter yang signifikan. Rata-rata
Rata
posisi
hiposenter hanya bergeser sekitar 8 m dari
posisi SED dengan trend antar hiposenter yang
sama.
Hasil metode SED dan JHD menunjukkan
bahwa
episenter
gempa
vulkanik
terkonsentrasi disekitar Kawah Gunung Kelud
(Gambar 8). Persebaran hiposenter secar
secara
keseluruhan menunjukkan suatu pola yang
teratur, dari bawah mulai dari bulan
September, terus bergerak ke atas hingga bulan
November. Hal ini berkorelasi baik dengan
pergerakan magma menuju permukaan selama
aktivitas Gunung Kelud. Selisih antara waktu
tempuh hasil pengamatan (tobs) dengan waktu
tempuh hasil perhitungan (tcal) berkisar antara 0,35 detik sampai dengan 0,35 detik (gambar
8).
VII. RELOKASI HIPOSENTER DENGAN
MENGGUNAKAN
METODE
DOUBLE DIFFERENCE
Analisis DD diawali dengan analisis multiplet
clustering untuk penentuan cluster hiposenter.
Dua hiposenter dipilih sebagai acuan analisis
koherensi dengan hiposenter yang lain.
Hiposenter acuan yang dipilih adalah
hiposenter dengan ID SEP270429
270429 dan
OKT241937.
Hiposenter
SEP270429
merupakan representasi
si gempa dalam (2459
m) dan terjadi sebelum aktivitas utama
Gunung
Kelud.
Sedangkan
hiposenter
OKT241937 merupakan representasi gempa
dangkal (131 m) dan terjadi setelah aktivitas
utama Gunung Kelud. Batas bawah koherensi
pasangan hiposenter untuk dapat dimasukkan
di
ke dalam satu cluster adalah 80%.
34
Dari analisis koherensi didapat 199 hiposenter
yang saling terhubung pada 34 cluster
hiposenter. Sedangkan hiposenter lainnya
independen terhadap hiposenter yang lain,
karena jarak antar hiposenter yang terlalu jauh
atau koherensi antar waveform yang jelek.
Hiposenter-hiposenter
hiposenter ini tidak dimasukkan
pada proses relokasi metode double diffe
difference.
Input delay time digunakan gabungan data
absolut pick dan data delay time yang lebih
akurat dengan analisis correspond the peak
(pers. comm. Asanuma, 2009).
Metode DD secara keseluruhan bisa membuat
hiposenter lebih terkonsentrasi pada satu trend
struktur.
truktur. Hasil relokasi DD menarik hiposenter
ke dalam centroid of gravity tiap cluster-nya.
Sehingga hiposenter - hiposenter tersebut
berdekatan dan berkumpul pada satu trend
bidang rekah.
VIII. ANALISIS
Secara sifat fisika (physical preperties)
preperties),
relokasi hasil metode DD mempunyai tingkat
kepercayaan yang lebih besar. Hal itu karena
dari analisis koherensi semua hiposenter dalam
satu cluster mempunyai koherensi yang sangat
mirip (mendekati satu), sehingga dapat
diinterpretasikan bahwa hiposenter-hiposenter
hiposenter
tersebut berasal dari satu mekanisme gempa
yang sama dan terletak saling berdekatan pada
satu trend bidang rekah atau struktur.
Secara stasitik hasil ini juga memiliki tingkat
kepercayaan yang lebih tinggi, karena
memiliki nilai RMS waktu tempuh
uh yang lebih
kecil dari pada metode SED dan JHD. Selain
itu analisis DD menggunakan data delay time
yang lebih akurat dengan menggunakan
analisis correspond the peak, sehingga
memiliki tingkat kepercayaan yang lebih baik.
Berdasar analisis koherensi, didapat tiga pola
mekanisme gempa sepanjang perekaman
gempa. Kelompok
ompok pertama adalah kelompok
gempa yang memiliki koherensi tinggi dengan
hiposenter acuan SEP270429
270429 (sebelum
aktivitas utama) dan terjadi mulai dari 27
September hingga 15 Oktober 2007.
Kelompok gempa ini merupakan gempa dalam
(5138 m hingga 642 m)) di bawah permukaan
air laut dengan nilai magnitudo rata
rata-rata
bernilai > 0. Gempa pada cluster ini
diinterpretasikan sebagai gempa akibat tekanan
(pressure)) yang disebabkan oleh desakan
pergerakan magma menuju permukaan. Bila
diplot berdasar waktu kejadiann hiposenter
dalam cluster ini terjadinya berurutan dari
bawah ke atas sesuai dengan pergerakan
magma.
Aplikasi Metode Double Difference untuk Relokasi Hiposenter Gempa Vulkanik
Gunung Kelud secara Akurat
Kelompok kedua, memiliki nilai koherensi
tinggi dengan hiposenter acuan OKT241937
(setelah aktivitas utama), berkumpul pada
kedalaman 230 m hingga -269 m dari
permukaan laut (kedalaman minus berarti di
atas permukaan laut) dengan nilai magnitudo
rata-rata bernilai antara -0,7 hingga 0.
Berdasarkan
apriori
informasi,
pada
kedalaman ini kemungkinan terdapat kantong
magma (magma chamber) Gunung Kelud.
Berdasar lokasi dan waktu kejadian dari
kelompok kedua, kami menginterpretasikan
pola ini sebagai gempa sebagai akibat
pelepasan energi (penurunan tekanan) pada
kantong magma setelah terjadi aktivitas utama.
Kelompok ketiga, tidak memiliki koherensi
yang baik dengan kedua hiposenter acuan dan
memiliki magnitudo sangat kecil (< -0,7).
Gempa-gempa ini terjadi sebelum dan sesudah
aktivitas utama dengan lokasi hiposenter yang
tersebar secara acak. Gempa ini kemungkinan
disebabkan oleh deformasi pada gunung api
saat aktivitas magma meningkat. Kelompok
gempa ini memiliki mekanisme pergerakan
yang independen satu sama lain dan
kemungkinan tidak memiliki korelasi dengan
pola pergerakan magma menuju permukaan.
IX. KESIMPULAN
Dari studi ini dapat ditarik beberapa
kesimpulan sebagai berikut :
1. Distribusi hiposenter terletak di bawah
kawah Gunung Kelud mulai dari
kedalaman 5138 m di bawah permukaan
hingga ke permukaan.
2. Histogram
kesalahan
penentuan
hiposenter (tobs-tcal) menunjukkan bahwa
penentuan
hiposenter
menggunakan
metode DD lebih baik dibandingkan
menggunakan metode SED.
3. Hasil relokasi hiposenter dengan metode
DD menunjukkan bahwa hiposenter bisa
lebih terkonsentrasi pada satu trend
struktur seismisitas dengan jelas.
4. Dari hasil analisis koherensi diperoleh tiga
pola mekanisme utama gempa sepanjang
aktivitas gunung Kelud antara bulan
September sampai dengan November
2007. Yang pertama diinterpretasikan
sebagai gempa akibat tekanan oleh
desakan pergerakan magma menuju
permukaan, yang kedua sebagai akibat
setelah terjadi aktivitas utama, dan yang
ketiga oleh deformasi pada gunung api
saat aktivitas magma meningkat dengan
lokasi sumber gempa tersebar secara acak.
35
UCAPAN TERIMA KASIH
DPS dan AWK menyampaikan terima kasih kepada
ITB yang telah mendanai kami untuk menyelesaikan
pemrograman algoritma metode double difference
di Tohoku University, Japan, selama 1 bulan
(2009). Riset ini didanai oleh Hibah DIKTI 2009
dan sebagian oleh Riset Insentif, RISTEK, 2009 a.n.
SW.
DAFTAR PUSTAKA
1. Asanuma, H., Hotta, A., Manthei, G.,
Niitsuma, H., 2006, Relocation of AE
events from a compression test of a Rock
Salt Specimen by Coherence Collapsing
Method, EAGE 68th conference and
exhibition, 115-133.
2. Got, J. L., Fre´chet, J., Klein, F. W., 1994,
Deep fault plane geometry inferred from
multiplet relative relocation beneath the
south flank of Kilauea, J. Geophys. Res.
99, 15,375–15,386.
3. Kusumadinata, K., 1979, Data dasar
Gunung api Indonesia. (Catalogue of
references on Indonesian volcanoes with
eruptions
in
historical
times),
Volcanological Survey of Indonesia,
820pp.
4. Poupinet, G., Ellsworth, W. L., and
Fre´chet, J., 1984, Monitoring velocity
variations in the crust using earthquake
doublets: an application to the Calaveras
fault, California, J. Geophys. Res. 89,
5719–5731.
5. Pujol, J., 2000, Joint Event Location- The
JHD Technique and Application to Data
From Local Seismic Networks, Advances
in Seismic Location, 163–204.
6. Sahara, D., P., 2009, Pengembangan dan
Aplikasi Metode Double Difference untuk
Penentuan Relokasi Hiposenter Secara
Akurat; Studi Kasus : Gunung Kelud dan
Model Sintetis Reservoar Geotermal,
Tugas Akhir Program Studi Teknik
Geofisika, ITB.
7. van Bergen, M. J., Bernard, Sumarti, S.,
Sriwana, T., Sitorus, K., 2000, Crater
lakes of Java: Dieng, Kelud and Ijen,
IAVCEI General Assembly : Excursion
Guidebook.
8. Waldhauser, F., and Ellsworth, W.L.,
2000, A double-difference earthquake
location
algorithm:
Method
and
application to the Northern Hayward
fault, California, Bull. Seismol. Soc. Am.
90, 1353–1368.
9. Zaenuddin, A. 1992, Peta Gunungapi
Kelud,
Jawa
Timur,
Direktorat
Vulkanologi, Bandung.
David P. Sahara, Adrianto W. Kusumo, Sri Widiyantoro, dan Rachmat Sule
Gambar 1. Lokasi Gunung Kelud diantara gugusan gunung api. Gunung Kelud terletak pada bagian barat dari
pola N-S gugusan gunung api Welirang-Arjuna dan Kawi-Butak (van Bergen et al., 2000).
Gambar 2. Distribusi stasiun pencatat gempa di Gunung Kelud.
36
Aplikasi Metode Double Difference untuk Relokasi Hiposenter Gempa Vulkanik
Gunung Kelud secara Akurat
Gambar 3. Ilustrasi dari algoritma metode double difference. Event i dan event j direlokasi bersama terhadap
stasiun k dan stasiun l (Waldhauser dan Ellsworth, 2000).
Gambar 4. Alur analisis koherensi dari dua data.
Gambar 5. Spatial error distribution dengan titik sampel di tengah coverage stasiun.
37
David P. Sahara, Adrianto W. Kusumo, Sri Widiyantoro, dan Rachmat Sule
Gambar 6. Spatial error distribution dengan titik sampel di luar coverage stasiun.
Gambar 7. Model geologi (kiri) dan model kecepatan (kanan) gelombang-P Gunung Kelud (Zaennudin et al.,
1992).
38
Aplikasi Metode Double Difference untuk Relokasi Hiposenter Gempa Vulkanik
Gunung Kelud secara Akurat
Gambar 8. Perbandingan lokasi hiposenter hasil lokasi metode SED (kiri), metode JHD (tengah),
dan metode DD (kanan).
39
David P. Sahara, Adrianto W. Kusumo,, Sri Widiyantoro, dan Rachmat Sule
(a)
(b)
Gambar 9. (a) Lima sampel data waveform pada satu cluster, dan (b) contoh analisis delay time dengan
menggunakan metode correspond the peak (pers. comm. Asanuma, 2009).
40
Download