TUGAS AKHIR ANALISA SISTEM PEMASAKKAN PADA ALAT PEMASAK DAN PENGERING (Ala Presto) IKAN DURI LUNAK Diajukan Untuk Memenuhi Salah Satu Syarat Dalam Meraih Gelar Sarjana Strata Satu (S1) Teknik Mesin Disusun Oleh : Herry Wahyudi 01301-122 JURUSAN TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS MERCU BUANA JAKARTA LEMBAR PENGESAHAN ANALISA SISTEM PEMASAKKAN PADA ALAT PEMASAK DAN PENGERING (Ala Presto) IKAN DURI LUNAK Diajukan Sebagai Salah Satu Syarat Dalam Meraih Gelar Sarjana Strata Satu (S1) Pada Fakultas Teknologi Industri Jurusan Teknik Mesin Universitas Mercu Buana Disetujui dan diterima Oleh : Koordinator Tugas Akhir Nanang Ruhyat, ST.MT Pembimbing 1 Tugas Akhir Pembimbing II Tugas Akhir Dr. Abdul Hamid, M.Eng Nanang Ruhyat, ST.MT JURUSAN TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS MERCU BUANA JAKARTA LEMBAR PERNYATAAN Saya yang bertanda tangan dibawah ini : Nama : Herry Wahyudi Nim : 01301-122 Jurusan : Teknik Mesin Fakultas : Teknologi Industri Menyatakan dengan ini sesungguhnya Tugas Akhir yang saya buat dan susun ini merupakan hasil pemikiran serta karya saya seorang. Tugas Akhir ini tidak dibuat oleh pihak lain baik alat itu sendiri, kecuali kutipan-kutipan referensi yang telah disebutkan sumbernya. Jakarta, September 2007 Herry Wahyudi KATA PENGANTAR Assalamualaikum Wr. Wb Puji dan syukur penulis panjatkan kepada Allah SWT yang telah memberikan berkat, rahmat dan karunianya yang berlimpah sehingga penulis dapat menyelesaikan penyusunan Tugas Akhir ini. Penyusunan tugas akhir ini adalah untuk memenuhi kurikulum jurusan Teknik setiap Mahasiswa Teknik Mesin. Penulisan dan penyusunan Tugas akhir ini juga merupakan salah satu syarat untuk mendapatkan gelar Stara Satu (S1). Penulis melakukan Tugas Akhir ini dengan judul “ Analisa Sistem Pemasakkan Pada Alat Pemasak Dan Pengering (Ala Presto) Ikan Duri Lunak”. Bahasan yang diambil secara umum meliputi komponen-komponen alat tersebut serta teori dasar tentang alat itu sendiri. Pada kesempatan ini penulis mengucapkan terima kasih dan penghargaan yang sebesar-besarnya yang diajukan kepada : 1 Bpk. Ir. Yuriadi Kusuma Msc., selaku Dekan Fakultas Teknologi Industri Universitas Mercu Buana. 2 Bpk. Ir. Rully Nutranta, M.Eng., selaku Ketua Jurusan Teknik Mesin Universitas Mercu Buana. 3 Bpk. Dr. Abdul Hamid, M.Eng., selaku Pembimbing I Tugas Akhir. 4 Bpk. Nanang Ruhyat, ST.MT., selaku Pembimbing II sekaligus sebagai Koordinator Tugas Akhir. 5 Kepada Kedua Orang Tua Penulis yang telah memberikan banyak dorongan moril, materil maupun doa untuk membantu menyelesaikan Tugas Akhir ini. 6 Om Sugeng yang selalu memberikan inspirasi kepada penulis dalam menyelesaikan tugas akhir. 7 Yogi Siswadi dan Nurul Chikmah kakak dan adik Penulis yang selalu memberikan motivasi kepada penulis. 8 Yosep, Verry, Yudo, Adri, Roy, Muri, Ari, Ibnu, Roni, Jarot Kawan-kawan yang telah berbuat banyak untuk tugas akhir penulis. Thanks Brothers 9 Rekan-rekan mahasiswa teknik mesin yang telah banyak membantu dalam penyusunan tugas akhir ini. 10 Sri Nuryani, Amat, Iwan, Hendra, Galih, Retno dan rekan-rekan yang selalu memberikan dukungannya kepada penulis. 11 Semua pihak yang membantu dalam penyusunan tugas akhir ini hingga selesai, yang tidak dapat penulis sebutkan satu persatu. Semoga bantuan yang telah diberikan tersebut mendapat berkah dan rahmat yang setimpal dari Allah SWT.Amin Penulis menyadari kendati telah diupayakan sedemikian rupa tentunya masih banyak terdapat kekurangan dan kesalahan-kesalahan yang melekat pada penulisan Tugas Akhir ini. Semoga Tugas Akhir ini dapat bermanfaat bagi para pembaca khususnya rekanrekan Mahasiswa Teknik Mesin Fakultas Teknologi Industri Universitas Mercu Buana. Wassalamualaikum.Wr. Wb Jakarta, September 2007 Penulis ABSTRAK Pengolahan jenis bahan makanan seperti ikan yang telah di masak ala presto merupakan makanan yang cukup populer dewasa ini dan digemari oleh setiap orang. Karena dengan proses pemasakan ini, tulang atau duri dari bahan makanan tersebut akan lunak secara keseluruhan sehingga dapat dimakan tanpa menimbulkan gangguan duri pada mulut. Pembahasan yang dilakukan adalah menganalisa dan menghitung proses pemasakkan ditinjau dari perpindahan panas, energi dan perpindahan massa (uap air). Dengan mengambil asumsi perancangan terhadap beberapa kondisi yang perlu untuk dilakukan. Dengan standar ruang pemasak yang dijaga pada temperatur tekanan atau sama dengan 9,81 Nm2 (konstan) maka setelah dilakukan uji coba terhadap 2(dua) jenis ikan didapat hasil sebagai berikut : 1. Ikan Kakap 370 gram yang dimasak sampai lunak dalam waktu 2 jam dan berkurang beratnya hingga 19 %, sehingga mencapai berat yaitu 290 gram. 2. Ikan Bandeng 270 gram yang dimasak sampai lunak dalam waktu 2 jam dan berkurang beratnya hingga 18 %, sehingga mencapai berat yaitu 220 gram. DAFTAR ISI LEMBAR PENGESAHAN...................................................................................... i LEMBAR PERNYATAAN...................................................................................... ii KATA PENGANTAR............................................................................................... iii DAFTAR ISI............................................................................................................. vi ABSTRAK................................................................................................................. x DAFTAR GAMBAR................................................................................................. xi NOTASI..................................................................................................................... xii BAB I BAB II PENDAHULUAN 1.1. Latar Belakang.................................................................................... 1 1.2. Tujuan................................................................................................. 2 1.3. Batasan Masalah................................................................................. 2 1.4. Metodelogi Penulisan.......................................................................... 2 1.5. Sistematika Penulisan......................................................................... 3 TEORI DASAR 2.1. Proses Pemasakan (Ala Presto)........................................................... 5 2.2. Klasifikasi Alat Pemasak.................................................................... 7 2.2.1. Proses Pemasakan (Pelunakan)............................................... 9 2.3. Grafik Psycrometric............................................................................ 11 2.4. Sistem pengukuran Temperatur.......................................................... 15 vi 2.5. Prinsip Dasar Perpindahan Panas Pada Ketel..................................... 15 2.6. Analisa Energi..................................................................................... 21 2.6.1. Perhitungan Kadar Air............................................................ 26 2.7. Brikat Batubara................................................................................... 27 2.8. Efisiensi Termal.................................................................................. 28 BAB III PERHITUNGAN DAN PERANCANGAN PADA ALAT PEMASAK (Ala Presto) 3.1 Data Perancangan................................................................................ 29 3.1.1 Dimensi Rancangan Alat Pemasak......................................... 29 3.1.2 Temperatur Proses Pelunakkan............................................... 31 Analisa Energi..................................................................................... 32 3.2.1 Jumlah Panas Yang Dibutuhkan............................................. 32 3.2.2 Laju Perpindahan Uap Air...................................................... 33 3.2.3 Panas Pembentukan Uap......................................................... 33 3.2.4 Panas Pemasakan Air.............................................................. 34 3.2.5 Kebutuhan Panas Pemasakan.................................................. 34 Tekanan Uap Pada Ketel..................................................................... 35 3.3.1 Kebutuhan Panas pada Ketel.................................................. 36 3.3.2 Konsumsi Briket Batubara...................................................... 37 3.4 Laju Perpindahan panas dari Tungku ke Ketel................................... 37 3.5 Efisiensi Pemasakan............................................................................ 38 3.6 Perencanaan Biaya.............................................................................. 39 3.2 3.3 vii BAB IV PROSES PEMBUATAN ALAT PEMASAK 4.1 Diagram Alir Pembuatan Alat Pemasak............................................. 40 4.2 Tahap Pemotongan Rangka................................................................ 40 4.2.1 Pemotongan Rangka Pemasak................................................ 41 4.2.2 Pemotongan Rangka Pintu...................................................... 42 4.2.3 Skema Gambar Potongan Untuk Tungku............................... 45 4.2.4 Skema Gambar Potongan Ruang Pemassak........................... 45 4.2.5 Skema Gambar Valv Untuk Ruang Pemassak........................ 47 Tahap Pemotongan Plat...................................................................... 48 4.3.1 Potongan Plat untuk pintu....................................................... 48 4.3.2 Potongan Plat untuk Batas Ruanga Pemaasak dan Tungku.... 49 4.3.3 Pemotongan Plat Untuk Alas Tungku..................................... 50 4.3.4 Potongan Plat untuk Baterai.................................................... 50 4.3.5 Potongan Plat untuk Dinding Bagian Luar............................. 51 Tahap Perakitan.................................................................................. 54 4.3 4.4 BAB V ANALISA HASIL PERHITUNGAN DAN PENGUJIAN 5.1 Beban pemasakan................................................................................ 55 5.2 Panas Pembentukan Uap..................................................................... 56 5.3 Kebutuhan Panas Pemasakan.............................................................. 56 5.4 Jumlah Bahan Bakar yang Digunakan................................................ 56 5.5 Efisiensi Pengeringan.......................................................................... 56 5.7 Hasil Pengujian Alat........................................................................... 57 viii BAB VI PENUTUP 6.1 Kesimpulan......................................................................................... 60 6.2 Saran................................................................................................... 61 DAFTAR PUSTAKA LAMPIRAN ix NOMENKLATUR Cz = Konstanta pancaran dari Stephan-Boltzman (kJ/m2.jam.K) d = Diameter silinder (m) f = Tekanan persia uap air pada udara (Mpa) f’ = Tekanan uap air jenuh pada udara (Mpa) F = Luas Bidang yang dipanasi (m2) h1 = Entalpi air (kJ/kg) h2 = Entalpi uap (kJ/kg) ha = Koefisien perpindahan panas (W/m2 oC) Ka = Kadar air awal (%) KA = Kadar air berdasarkan berat kering (%) k = Konduktifitas termal (W/m2 oC) M = Massa ikan (kg) m = Massa alir (kg/detik) Nu = Bilangan Nusselt P1 = Tekanan (Nm2 ) Pair = Berat jenis air (kg/m3 ) Qketel = Panas yang dihasilkan dari ketel uap (kW) Qt = Panas untuk menaikan temperatur (kJ) Qw = Panas untuk memanaskan ikan (kJ) Qd = Panas untuk melunakkan ikan (kJ) Q = Kalor yang dibutuhkan selama proses pemasakan (kJ) = Kelembaban relatif (%) Q1 = Jumlah panas yang diberikan (kJ/kg) Qk = Jumlah panas yang diserahkan secara konveksi QR = Jumlah panas yang dirambatkan (kJ/kg) Qin = Panas yang dibutuhkan untuk memanaskan ketel (kJ/jam) q = Laju perpindahan panas (W) S = Produksi uap untuk memanaskan ikan (kg uap/jam) s = Tebal dinding ketel (m) T1 = Temperatur pemasakan (oC) T2 = Temperatur Lingkungan (oC) To = Temperatur Awal (oC) t1 = Jumlah temperatur awal dan temperatur akhir (K) T = Temperatur dalam Kelvin (K) T = Temperatur tungku (oC) w = Jumlah air yang diuapkan dalam proses pelunakkan (kg) W = Berat kering benih (kg) W1 = Entalpi (kJ/kg) = Angka perambatan panas (kJ/m.jam.K) = Angka Peralihan panas (kJ/m.jam.K) = Viskositas udara (kJ/detik) v = Kecepatan udara (m/detik) p = Efisiensi Pemasakan Tugas Akhir BAB I PENDAHULUAN 1.1 Latar Belakang Proses pemasakan ala presto ialah proses pengukusan bahan makanan seperti ikan, ayam, sayuran dan lain-lain, dengan suhu uap panas bertekanan tinggi ( press Cooker ). Bahan makanan yang telah di masak ala presto merupakan makanan yang cukup populer dewasa ini dan digemari oleh setiap orang. Karena dengan proses pemasakan ini, tulang atau duri dari bahan makanan tersebut akan lunak dari ekor hingga kepala sehingga dapat dimakan tanpa menimbulkan gangguan duri pada mulut. Jenis olahan ikan ala presto ini juga dapat dijadikan suatu usaha kerja yang cukup menjanjikan, selain prosesnya mudah dikerjakan dan skalanya dapat disesuaikan dengan tingkat kemampuan modal, tenaga dan pemasarannya. Keunggulan lain dari pengukusa bahan makanan bertekanan tinggi ini juga biasa membuat makanan dapat bertahan lebih lama, dari hasil pengamatan yang pernah dilakukan, ikan bandeng duri lunak yang sudah dimasak ala presto dalam kemasan plastic vakum dan disimpan pada suhu kamar masih layak dikonsumsi dalam 3 hari sejak pembuatan. Sedangkan jika disimpan pada suhu chilling / refrigerator setelah disimpan 15 hari masih layak dikonsumsi. Adapun dampak dari penyimpanan bahan makanan yang cukup lama 1 UNIVERSITAS MERCU BUANA Tugas Akhir dengan suhu chilling / refrigerator dalam prosesnya memakan biaya yang tidak sedikit.oleh karena itu perlu ada alternative lain untuk proses penyimpanan agar makan dapat bertahan lebih lama, yaitu melalui proses pengeringan. 1.2 Tujuan Tujuan dari pembuatan alat Pemasak dan Pengering ini adalah membuat suatu alat yang dapat melunakan tulang,duri dari ikan, sekaligus mengeringkan agar membuat bahan makanan tersebut tahan lama, sesuai dengan rancangan yang telah ada. 1.3 Batasan Masalah Dalam penyelesaian tugas akhir ini, penyusun hanya akan membahas tentang analisa system pemasakan pada alat pemasak dan pengering (Ala Presto ) berdasarkan data-data serta rancangan yang telah ada. 1.4 Metodelogi Penulisan Metodelogi yang dilakukan dalam pengumpulan data perancangan alat pemasak ini adalah sebagai berikut : a. Metoda observasi, yaitu metoda yang dilakukan dengan cara terjun langsung ke lapangan guna memperoleh data-data yang dibutuhkan untuk pembuatan alat ini. b. Metode Wawancara, yaitu dengan melakukan tukar pikiran dengan sesama teman mahasiswa yang lebih berpengalaman serta melakukan bimbingan kepada dosen pembimbing untuk mendapatkan petunjuk yang lebih baik lagi dalam penyusunan tugas akhir ini. c. Study literature, yaitu membaca buku-buku referensi mengenai hal-hal yang berhubungan dengan proses pembuatan. 2 UNIVERSITAS MERCU BUANA Tugas Akhir 1.5 Sistematika Penulisan Sistematika penulisan laporan tugas akhir ini terbagi dalam 6 bab yang saling berhubungan. Adapun keenam bab tersebut adalah : BAB I : PENDAHULUAN Bab ini berisi tentang latar belakang masalah, tujuan, batasan masalah, teknik pengumpulan data, dan sistematika penulisan. BAB II : TEORI DASAR Bab ini berisi tentang teori-teori yang mendasari dalam pembuatan alat pemasak dan pengering (Ala Presto) ikan duri lunak. BAB III : DATA PERANCANGAN ALAT Bab ini berisikan tentang asumsi-asumsi awal yang digunakan dalam perancangan alat pemasakan yang hasilnya berupa karakteristik alat yang dirancang kapasitas pemasakan, lama waktu pemasakan, dan perhitungan berdasarkan teori yang didapat untuk merancang alat tersebut. BAB IV : PROSES PEMBUATAN ALAT Bab ini berisi tentang proses pembuatan alat dari mulai pemotongan bahan hingga assembling dan perakitannya. 3 UNIVERSITAS MERCU BUANA Tugas Akhir BAB V : ANALISA HASIL PERHITUNGAN DAN PENGUJIAN ALAT PEMASAK DAN PENGERING (ALA PRESTO) Bab ini berisikan tentang analisa hasil perhitungan dari data-data perancangan yang telah dilakukan pada bab sebelumnya serta kecendrungan yang terjadi dalam proses pemasakan dan pengeringan. Dan analisa hasil pengujian yang telah dilakukan. BAB VI : KESIMPULAN DAN SARAN Bab ini berisikan tentang rangkuman dari seluruh proses perancangan alat pemasak dan pengering ikan bandeng duri lunak ( Ala Presto ) yang telah dilakukan dan saran-saran yang bermanfaat agar hasil perancangan sesuai dengan yang diinginkan. DAFTAR PUSTAKA LAMPIRAN 4 UNIVERSITAS MERCU BUANA Tugas Akhir BAB II TEORI DASAR 2.1 Proses Pemasakan (Ala Presto) Proses pemasakan (Ala presto) adalah proses memasak dengan memanfaatkan uap panan bertekanan tinggi yaitu dengan media perebusan air hingga menghasilkan uap panas bertekanan tinggi (press cooker) proses ini dapat melunakan ikan sampai bagian yang terkeras,seperti tulang atau duri. Proses pembentukan uap itu sendiri pada dasarnya adalah suatu proses pemanasan dengan menambah temperature untuk melepaskan ikatan molekul air sehingga terbentuk uap yang bertekanan. Pemasakan ini dilakukan dengan cara merapatkan seluruh bagian ruang pemasakan hingga uap panas tidak dapat keluar sampai mencapai suhu tekanan yang diinginkan dan secara otomatis katup pada panci akan terangkat secara otomatis dan menstabilkan uap panas dalam ruang pemasakan. Proses penekanan uap panas pada produk sampai batas tertentu bertujuan agar dapat melunakan seluruh bagian ikan dan memperlambat laju kerusakan bahan akibat biologi dan kimia setelah bahan diolah ( diproses ). Selanjutnya dijelaskan bahwa parameterparameter yang mempengaruhi waktu pelunakan adalah : 5 UNIVERSITAS MERCU BUANA Tugas Akhir a. Temperature Uap Panas Pemasakan ala presto sangat dipengaruhi oleh pengaturan temperature uap panas, semangkin tinggi suhu tekanan uap panas maka semanggkin cepat proses pelunakan pada produk.Temperature uap panas yang tinggi dan berlebihan juga dapat mengakibatkan produk menjadi rusak. b. Kecepatan Uap Panas Sistem pemasakan produk sangat dipengaruhi oleh sirkulasi uap panas dimana fungsi dari uap panas pada sistem pemasakan adalah : - Sebagai media perantara perpindahan panas. - Memberikan tekanan uap pada seluruh bagian produk. Pada prakteknya kecepatan uap panas sangat menunjang pada proses pelunakan. Semakin tinggi kecepatan uap panas maka proses pelunakan akan berlangsung cepat. Hal ini disebabkan oleh cepatnya massa uap panas masuk kedalam seluruh bagian produk. c. Perpindahan Panas dalam Kondensasi Bila uap jenuh bersentuhan dengan suatu permukaan yang suhunya lebih rendah, maka terjadilah kondensasi. Dalam keadaan normal, terbentuk suatu aliran yang malar (kontinu) pada permukaan itu dan kondensat (condensate) mengalir kebawah dalam pengaruh gravitasi. Kecuali jika kecepatan uap itu sangat tinggi atau lapisan cairan amat tebal, maka gerakan kondensat tersebut laminar dan panas berpindah dari permukaan-temu uap cairan kepermukaan dengan cara konduksi semata-mata. Oleh karana itu laju aliran panasnya bergantung terutama pada tebal lapisan kondensat, yang pada giliranya bergantung pada laju kondensasinya (mengembungnya) uap dan laju terangkatnya kondensat. Pada permukaan vertical tebal lapisan bertambah secara malar (kontinu) dari atas kebawah. 6 UNIVERSITAS MERCU BUANA Tugas Akhir Air kondensasi adalah salah satu bentuk pelapisan kandungan air pada saat pendinginan udara jenuh. Pelepasan kandungan air ini dapat berbentuk kabut atau cairan titik-titik embun. d. Dimensi Produk Dimensi produk akan mempengaruhi proses pelunakan, karena pada saat permukaan produk mulai lunak akan terjadi proses difusi menuju permukaan produk. Waktu yang diperlukan molekul air mencapai permukaan tergantung pada dimensi produk. Semakin banyak dan tebal produknya maka proses pelunakan akan berlangsung semangkin lama. e. Kadar Air Produk Kadar air produk adalah kandungan air yang terdapat didalam produk. Semakin tinggi kadar air pada produk semakin lama proses pelunakn berlangsung. Hal ini disebabkan adanya proses terangkanya kandungan uap air jenuh oleh tekanan temperature uap panas. 2.2 Klasifikasi Alat Pemasak ( Ala Presto ) Alat ini pada prinsipnya seperti ketel uap (steam boiler) yang merupakan suatu pesawat kalor yang berfungsi untuk merubah energi kimia yang diperoleh dari bahan bakar menjadi energi panas pada uap. Dengan kata lain ketel uap adalah suatu unit peralatan yang dapat menghasilkan uap dalam jumlah yang cukup besar secara terus menerus pada kondisi (tekanan dan temperature) tertentu. Ketel uap pada dasarnya terdiri dari bumbung (drum,bejana atau panci) yang tertutup pada ujung pangkalnya dan dalam perkembangannya dilengkapi dengan pipa api dan pipa air. 7 UNIVERSITAS MERCU BUANA Tugas Akhir 1. Berdasarkan fluida yang mengalir dalam pipa, maka ketel diklasifikasikan sebagai : a. Ketel pipa api Fluida yang mengalir dalam pipa adalah gas nyala, yang membawa energi panas dalam pipa, yang segera memindahkannya ke air ketel melalui bidang pemanas. Tujuan pipa-pipa ini adalah untuk memudahkan distribusi panas (kalor) kepada air ketel. b. Ketel pipa air Fluida yang mengalir pada pipa adalah air, enrgi panas dipindahkan dari luar pipa (yaitu ruang dapur) ke air ketel. 2. Berdasarkan pemakaiannya a. Ketel tetap atau stasioner b. Ketel mobil, ketel pindah atau ketel portable boiler. 3. Berdasarkan letak dapur a. Ketel dengan pembakaran didalam, dalam hal ini pembakaran hanya terjadi pada bagian dalam ketel saja. b. Ketel dengan pembakaran diluar, dalam hal ini pembakaran terjadi pada bagian luar ketel. 4. Menurut jumlah lorong a. Ketel dengan lorong tunggal b. Ketel dengan lorong ganda 5. Tergantung pada poros tutup drum a. Ketel tegak ( vertical steam boiler ) b. Ketel mendatar ( horizontal steam boiler ) 6. Menurut bentuk dan letak pipa, ketel uap diklasifikasikan sebagai : a. Ketel dengan pipa lurus dan bengkok 8 UNIVERSITAS MERCU BUANA Tugas Akhir b. Ketel dengan pipa miring dan datar 7. Menurut system peredaran air ketel a. Ketel dengan peredaran alam b. Ketel dengan peredaran paksa 8. Tergantung pada sumber panasnya untuk pembuatan uap dapat diklasifikasikan sebagai : a. Ketel uap dengan bahan bakar alami b. Ketel uap dengan bahan bakar buatan c. Ketel uap dengan dapur listrik 2.2.1 Proses Pemasakan ( pelunakan ) a. Panci presto yang sudah diisi air dan ikan bandeng ditutup dengan benar (dengan tanda antara lain posisi gagang tutup berhimpit pas dengan posisi gagang panci) dan selanjutnya dipanaskan diatas kompor. b. Ketika uap telah keluar dari pipa ventilasi dengan teratur (berarti air sudah mendidih dan udara didalam panci sudah terbuang semuanya keluar), letakkan regulator pengatur tekanan . c. Setelah tekanan uap cukup, pengukur tekanan mendorong naik alat pengunci interlock dan mengunci posisi gagang panic secara otomatis. Pada saat inilah hitungan waktu pemasakan dimulai dan intensitas nyala api tungku dapat dikecilkan seperlunya. d. Pemasakan dilakukan selama tergantung tingkat kelunakan tulang/duri yang diinginkan dan ukuran ikan. e. Setelah waktu pemasakan cukup api kompor dimatikan, dan panci presto berisi ikan bandeng yang sudah masak dibiarkan dingin. Tutup panci baru boleh dibuka 9 UNIVERSITAS MERCU BUANA Tugas Akhir setelah pengunci interlock turun membuka dengan sendirinya. Bandeng yang ada didalamnya tidak boleh diangkat sebelum cukup dingin dimana kondisinya sudah kompak. Apabila diangkat atau dikemas dalam keadaan panas akan mudah rusak,karena kodisinya masih rapuh. Aliran uap panas Gambar 2.1. Skematik Proses Presto Proses penyusunan ini dilakukan agar jumlah ikan dalam alat presto dapat masuk semaksimal mungkin sesuai dengan apa yang diinginkan, dan mendapatkan uap panas yang sama rata, sehingga proses pematangan ikan dalam alat presto akan sama rata. Gambar 2.2 Proses penyusunan ikan dalam alat presto. 10 UNIVERSITAS MERCU BUANA Tugas Akhir 2.3 Grafik Psycrometric Secara umum yang dikatakan udara adalah campuran antara udara kering dan uap air. Campuran ini sering disebut udara lembab. Udara lembab erat kaitannya dengan pengkondisian udara. Suatu kajian tentang sifat-sifat termodinamika campuran antara udara kering dengan uap air disebut pisikometrik. Sifat-sifat termodinamika yang penting adalah : a. Temperatur Udara Didalam udara lembab biasanya dibedakan oleh dua temperatur yaitu temperatur bola basa dan temperatur bola kering. Temperatur bola kering adalah temperatur udara yang ditunjukkan pada saat pengukuran temperaturnya tekanan uap persial belum mencapai tekanan jenuh, untuk menentukan suhu bola kering biasanya digunakan termometer dengan sensor kering dan terbuka. Sedangkan temperatur bola basah adalah temperatur udara pada keadaan tekanan uap airnya sama dengan tekanan jenuh, suhu bola basa ditentukan dengan menggunakan termometer bola basa yang sensornya dibalut dengan kain basah. Pengaruh kain basah dapat dihilangkan dengan adanya kain basa tersebut. b. Tekanan Karena udara lembab merupakan campuran antara udara kering dan uap air maka tekanan totalnya merupakan jumlah tekanan persial udara kering dan uap air. Secara umum tekanan persial uap air jenuh lebih kecil dibandingkan tekanan persial udara kering. Apabila tekanan persial uap air mencapai harga sama dengan tekanan uap air pada temperatur yang sama, keadaan ini disebut dengan keadaan jenuh. Tekanan uap airnya juga disebut tekanan jenuh. 11 UNIVERSITAS MERCU BUANA Tugas Akhir c. Kelembaban Ada dua kelembaban yang sering dikenal yaitu kelembaban spesifik dan kelembaban relatif. Kelembaban spesifik adalah kandungan air dalam udara. Biasanya dinyatakan dalam bentuk massa uap air yang terkandung dalam setiap satuan massa udara kering, dan ditulis dengan persamaan sebagai berikut M w …………………………………………………(2.1) Ma dimana, = Kelembaban spesifik (%) Mw = Massa uap air (Nm2) Ma = Massa udara kering (Nm2) Kelembaban relatif didefinisikan sebagai perbandingan antara tekanan parsial uap air dengan tekanan jenuh uap air pada temperatur yang sama, dan ditulis dalam persamaan sebagai berikut: f ………………………………………………..(2.2) ' f Dimana: = Kelembaban relatif (%) f = Tekanan persial uap air pada udara t (Mpa) f ' = tekanan uap air jenuh pada udara t(Mpa) hubungan antara tekanan persial uap air dan temperatur suhu bola basa dapat dilihat dari persamaan berikut ini : 12 UNIVERSITAS MERCU BUANA Tugas Akhir f f ' 0,5(t t ' ) tekananatmosfir, mmHg ……………………(2.3) 755 dimana, t = temperatu bola kering ( C) t= Temperatu bola basa ( C) 2 f = Tekanan persial uap air pada udara t (Nm ) f ' = tekanan uap air jenuh pada udara t(Nm2) tekanan dinyatakan dalam Nm2, dimana 1 atmosfir = 9,81 Nm2 d. Entalpi Entalpi penting untuk dicantumkan dalam diagram psikometri mengingat banyak manfaatnya dalam perhitungan energi pada proses termodinamika uap air seperti pendinginan, pemanasan, kelembaban dan lain-lainnya. Entalpi adalah energi kalor yang dimiliki suatu zat pada suatu temperatur tertentu. Maka entalpi dari air mendidih dinyatakan dalam kJ/kg, yaitu banyaknya panas yang dibutuhkan oleh 1 kg air pada 0oC atau 273 K untuk dijadikan mendidih pada Temperatur mendidih (Td K) dan Tekanan (p Newton/m2 ). Hal tersebut diatas dapat ditulis dalam persamaan : Q1 = Panas jenis air X (T1 – To)……………….(2.4) = Panas jenis air X (T1 – 273o ) = Panas jenis air X t1 = W1 Kilojoule/kg air dan uap 13 UNIVERSITAS MERCU BUANA Tugas Akhir dimana, W1 = Entalpi (kJ/kg ' ) Q1 = Jumlah panas yang diberikan (kJ/kg) To = Temperatur awal (oC) T1 = Temperatur akhir (oC) t1 = Jumlah Temperatur awal dan Temperatur akhir (K) Gambar 2.3 Diagram Psycrometric 14 UNIVERSITAS MERCU BUANA Tugas Akhir 2.4 Sistem Pengukuran Temperatur Untuk pengukuran temperatur, alat ukur yang digunakan disarankan dapat memenuhi kriteria sebagai berikut : 1. Sangat mudah dalam pemakaiannya 2. Alat tersebut mudah didapat 3. Harganya relatif murah 4. Pembacaan skala yang relatif mudah dan teliti Berdasarkan kriteria diatas maka penulis memilih alat ukur termometer tekanan. Termometer tekanan yang digunakan sebanyak 1 buah, untuk mengukur temperatur tekanan uap di ruang pemasak. Pengukuran temperatur dilakukan dilingkungan sekitar, pada saat perebusan air sebelum terjadinya perubahan uap panas didalam panci dan pada saat uap keluar dari katup panci. 2.5 Perinsip Dasar Perpindahan Panas Pada Ketel Panas yang dihasilkan karena pembakaran bahan bakar dan udara, yang berupa api (yang menyala) dan gas asap (yang tidak menyala) dipindahkan kepada air, uap atau udara, melalui bidang yang dipanaskan atau Heating Surfaca, pada suatu instalasi ketel uap, dengan tiga cara : a. a. Dengan cara Pancaran atau Radiasi b. Dengan cara Aliran atau Konveksi c. Dengan cara Perambatan atau Konduksi. Perpindahan panas secara Pancaran atau Radiasi Perpindahan panas secara Pancaran atau Radiasi adalah perpindahan panas suatu benda ke benda yang lain dengan jalan melalui Gelombang-gelombang Elektro-Magnetis 15 UNIVERSITAS MERCU BUANA Tugas Akhir tanpa tergantung kepada ada atau tidaknya Media atau Zat diantara benda yang menerima pancaran panas tersebut. Perpindahan panas secara pancaran dapat dibayangkan berlangsung melalui media berupa Aether yaitu suatu jenis materi bayangan tanpa bobot, yang mengisi seluruh sela-sela ruangan diantara molekul-molekul dari suatu zat tertentu, ataupun didalam ruang hampa sekalipun. Molekul-molekul api yang merupakan hasil pembakaran bahan baker dan udara akan menyebabkan terjadinya gangguan keseimbangan elektro-magnetis terhadap Aether tersebut. Sebagian dari panas atau energi yang timbul dari hasil pembakaran tersebut, melalui gelombang-gelombang elektro-magnetis kepada benda atau bidang yang akan dipanasi (dinding ketel, dinding tungku, lorong api, pipa-pipa ketel dan sebagainya). Penyerahan dari api atau gas asap melalui aether kapada bidang yang ingin dipanasi tersebut melalui gelombang-gelombang elektro-magnetis yang lintasannya lurus seperti halnya lintasasn sinar. Apabila lintasan penyerahan panas melalui gelombang-gelombang elektro magnetis dari aether tersebut tertutup terhalang oleh benda lain, maka bidang yang akan dipanasi tadi tidak akan menerima panas secar pancaran, atau terhalang penyerahan panas secara pancarannya. Dengan demikian : bidang yang akan dipanasi hanya akan menerima perpindahan panas secar pancaran bila bidang/benda tersebut dapat melihat api tersebut. Dan bila suatu benda atau bidang terhalang penglihatannya kepada api, maka bidang/benda tersebut tidak akan menerima perilehan panas secara pancaran. Semua zat-zat yang memancarkan panasnya (molekul-molekul api atau gas asap), intensitas rdiasi termisnya atau Kuat Pancaran Panasnya tergantung dari zat yang memancarkan panas tersebut. Bila pancaran panas menimpa suatu benda/bidang, 16 UNIVERSITAS MERCU BUANA Tugas Akhir sebagian dari pancaran yang diteima benda tersebut , akan dipancarkan kembali (reradiated) atau dipantulkan (reflected), dan sebagian yang lain dari panas pancaran tersebut akan diserapnya. Adapun banyaknya panas yang diterima secara pancaran dari Stephan-Bolt adalah sebesar : Qp = Cz..F [ (Tapi : 100)4 – (T benda : 100)4] kJ/jam……………………………(2.5) konstanta pancaran dari Stephan-boltzmann yang dinyatakan dalam kJ/m2.jam Cz K4 maka Qp dinyatakan dalam kJ/jam. Adapun besarnya Cz antara lain ditentukan oleh : - keadaan permukaan bidang yang dipanasi,kasar,halus ; - bahan benda yang dipanasi : besi, tembaga, alumunium, dll ; - warna benda bidang yang dipanasi : hitam, abu-abu, putih ; - dan lain-lain. kJ/M2 . jam. K4 Harga-harga Cz Watt/m2 . K4 - benda hitam pekat absolute 20,726 5.757 - jelaga yang licin 18,004 5.000 - baja yang dipoles……. 5,569 5.477 - Baja berkarat……. 18,423 5,117 - Besi tuang berkarat….. 16,748 4,652 - Pasangan batu tahan api 19,260 5,350 F = Luas bidang yang dipanasi, dalam m2 T = Temperaatur dalam Kelvin 17 UNIVERSITAS MERCU BUANA Tugas Akhir b. Perpindahan panas secara Aliran atau Konveksi Perpindahan panas secara aliran atau konveksi adalah perpindahan panas yang dilakukan oleh molekul-molekul suatu fluida (cairan ataupun gas). Molekul-molekul fluida tersebut dalam gerakannya melayang laying kesana kemari membawa sejumlah panas masing-masing q Joule. Pada saat molekul fluida tersebut menyentuh dinding ketel maka panasnya dibagikan sebagian, yaitu q1 Joule kepada dinding ketel, selebihnya yaitu q – q1 Joule dibawanya pergi. Gambar 2.4.Perpindahan Panas Secara Aliran atau Konveksi Bila gerakan dari molekul-molekul yang melayang-layang ke sana kemat tersebut disebabkan karena Perbedaan Temperatur didalam fluida itu sendiri, maka perpindahan panasnya disebut konveksi bebas (free convection) atau Konveksi Alamiah (natural convection). Bila gerakan-gerakan tersebut sebagai akibat dari kekuatan mekanis (karena dipompa atau karena dihembuskan dengan fan) maka perpindahan panasnya disebut Konveksi Paksa (porced convection). Dalam gerekan-grakannya molekul-molekul api disebut tidak perlu melalui lintasan yang lurus untuk mencapai dinding ketel atau bidang yang dipanasi. Jumlah panas yang diserahkan secara Konveksi = Qk 18 UNIVERSITAS MERCU BUANA Tugas Akhir Qk = . F. (Tapi – T dinding) kJ/jam………………………………………(2.6) Dimana : = Angka peralihan panas dari api ke dinding ketel dinyatakan dalam kJ/m2.jam .K atau Watt/m2 . K Bila dinyatakan dalam kJ/m2 .jam.K maka Qk dinyatakan dalam kJ/jam. F = Luas bidang yang dipanaskan dinyatakan dalam m2 T = Temperatur didalam Kelvin. c. Perpindahan Panas secara Perambatan atau Konduksi. Perpindahan panas ecara perambatan atau konduksi adalah perpindahan panas dari suatu bagian benda padat ke bagian lain dari benda padat yang sama, atau dari benda padat yang satu ke benda padan lainnya karena terjadi persinggungan phisik (kontak phisik atau menempel), tanpa terjadinya perpinadhan molekul-molekul dari benda padat itu sendiri. Didalam dinding ketel tersebut, panas akan dirambatkan oleh molekul-molekul dinding ketel sebelah luar yang berbatasan dengan api, menuju ke dinding ketel sebelah dalam yang berbaatasan dengan air, uap atau udara. Perambatan panas melalui benda padat menempuh jarak yang terpendek. Jumlah panas yang dirambatkan = QR melalui dinding ketel adalah sebesar : QR = . F. (Td1-Td2) KJ/jam…………………………………………..(2.7) s Dimana : = Angka perambatan panas didalam dinding ketel dinyatakan dalam kJ/m.jam. K atau Watt/m. K 19 UNIVERSITAS MERCU BUANA Tugas Akhir Bila dinyatakan dalam kJ/m.jam. K maka QR dinyatakan dalam kJ/jam ; tatapi bila dinyatakan dalam Watt/m2 K maka QR dinyatakan dalam Watt. s = Tebal dinding ketel dinyatakan dalam meter. F = Luas dinding ketel yang merambatkan panas, dalam m2 Td1 = Temp. dinding dinding ketel yang berbatasan dengan api. Td2 = Temp. dinding ketel yang berbatasan dengan air, uap atau udara. Temperatur yang dinyatakan dalam Kelvin. Untuk selanjutnya, panas yang dibawa merambat oleh dinding ketel tersebut akan diterima oleh molekul-molekul air, uap atau udara dengan cara konveksi pula, yaitu penyarahan sebagian panas dari molekul-molekul dinding ketel kapada molekulmolekul air, uap atau pun udara tersebut dalam keadaan mengalir / bergerak, bukan dalam kondisi diam. Dengan demikian penyerahan panas secara konveksi dan konduksi bersama sama melalui proses-proses sebagai berikut : Panas dialihkan dari fluida (api atau gas asap) kepada benda padat (dinding ketel). Panas dirambatkaan didalam benda padat (dinding ketel) atau didalam benda padat berlapis-lapis (jelaga - dinding ketel – kerak ketel) Panas dialihkan dari benda padat (dinding ketel atau kerak ketel) kepada fluida (air,uap ataupun udara). 20 UNIVERSITAS MERCU BUANA Tugas Akhir 2.6 Analisa Energi a. Pengaruh Tekanan Uap Pada Proses Pemasakan Proses panas penguapan sangat ditentukan dari jumlah panas yang dibutuhkan, bila tekanan uap dinaikan maka panas yang dibutuhkan untuk pelunakkan bahan akan semangkin cepat. Pada proses pelunakan diperlukan tekanan uap secara tetap atau seimbang dengan kata lain setiap pemberian panas hanya akan berakibat menguapkan airnya tanpa menaikkan temperature mendidihnya atau disebut juga dengan uap kenyang. Pada proses pelunakkan ini tekanan uap berfungsi untuk : a. Memberikan takanan uap pada ruang pemasakan b. Sebagai penghantar panas kedalam bahan yang dilunakkan c. Sebagai zat pembakar matahari selama dua hari. Banyaknya kadar massa ikan yang berkurang setelah pemasakan dapat dihitung dengan menggunakan rumus berikut : m = ma mb ……………………………………………….(2.8) Dimana, m = banyaknya kadar air yang harus dikeluarkan (kg) ma = Kadar air sebelum pengeringan (kg) mb = Kadar air sesudah pengeringan (kg) Dengan diketahui kadar air yang dikeluarkan dari bahan maka laju perpindahan air dapat dihitung dengan menggunakan rumus sebagai berikut : 21 UNIVERSITAS MERCU BUANA Tugas Akhir m W ………………………………………………..…..(2.9) t dimana, W = Laju perpindahan air (kg/s) m = Kadar air yang keluar dari bahan (kg) t = Waktu pengeringan (s) Tekenan uap yang dibutuhkan adalah tekanan uap yang berada dalam ruang pemasakan dengan kondisi P1 = Pout (Nm2 ) Panas yang dibutuhkan oleh ketel untuk memanaskan air sampai menjadi uap dengan kapasitas tertentu, secara matematis proses tersebut dapat ditulus seperti dibawah ini. Secara teoritis kesetimbangan energinya ditulis sebagai berikut : Q + hin = hout + W………………………………(2.10) Jika tidak ada kerja yang terjadi di dalam ketel uap maka W = 0 sehingga persamaan tersebut menjadi. Q = hout + hin Kondisi tersebut adalah kondisi actual, dimana hin = h1 dan hout = h2 Jadi banyaknya panas yang dibutuhkan untuk memanaskan air sampai menjadi uap untuk memanaskan ikan dangan kapasitas tertentu menjadi : Qin = S (h2 – h1)………………………………………(2.11) Dimana : Qin = Panas yang dibutuhkan untuk memanaskan ketel, ( kJ/jam) H1 = entalpi air, ( kJ/kg) 22 UNIVERSITAS MERCU BUANA Tugas Akhir h2 = entalpi uap, (kJ/kg) S = Produksi uap untuk memanaskan ikan, (kg uap/jam) Sehingga untuk mendapatkan panas yang dihasilkan oleh ketel uap secara matematis ditulis sebagai berikut : m = pair 90 o C X Qair………………………………………………. (2.12) Dimana : m = Massa alir, (kg/detik) Q = Debit alir air, (m3/jam) pair = Berat jenis air, (kg/ m3) Qketel = Panas yang dihasilkan ketel uap ( kW) b. Panas Pemasakan Panas pemasakan adalah panas yang dibutuhkan atau panas yang digunakan untuk melunakkan suatu produk. Pada setiap pemasakan ikan, pasokan energi yang dibutuhkan ialah untuk : 1. Menaikan temperatur tekanan air 2. Memanaskan ikan Jumlah dari yang disebutkan pertama dan kedua dapat dihitung dengan persamaan berikut : Qt M Ch (Tb Ta ) …………………………………….. (2.13) 23 UNIVERSITAS MERCU BUANA Tugas Akhir dimana : Qt panas untuk menaikan temferatur (kJ) M = Massa ikan (kg) C h = Panas jenis ikan (kJ/kg C) T2 = Temperatur udara pemasakan ( C) T1 = Temperatur udara lingkungan ( C) K Q w M a (Tb Ta ) ………………………………….. ( 2.14) 100 dimana : Qw Panas untuk memanaskan ikan (kJ) M = Massa ikan (kg) K a Kadar air awal (%) T2 = Temperatur udara pemasakan ( C) T1 = Temperatur udara lingkungan ( C) Dari persamaan (2.6),(2.7),maka didapat jumlah panas pemasakkan dan dirumuskan sebagai berikut : QTotal = Qt Qw …………………………………………….(2.15) dimana, Qw = Panas untuk memanaskan ikan (kJ) Qt = Panas untuk memanaskan air (kJ) 24 UNIVERSITAS MERCU BUANA Tugas Akhir c. Laju Perpindahan Panas Dari Tungku ke Ruang Pemasak Dalam alat pemasakan yang dirancang, panas yang dihasilkan oleh tungku dialirkan keruang pemasak dengan menggunakan penghantar lempengan almunium. Dalam rancang-bangun serta analisa penukar panas perlu mengerahui koefisien perpindahan panas, koefisien perpindahan panas konveksi bebas ha dapat dihitung menggunakan persamaan sebagai berikut : K N u ha ………………………………………..(2.16) d Dimana, ha = Koefisien perpindahan panas (W/m 2 C) Nu = Bilangan Nusselt d = Diameter silinder (m) k = Konduktivitas termal (W/m C) bilangan Nusselt dihitung dari bilangan Reynold, Re sebagai berikut : N u 0,027 R e 0.8 Pr 0.33 ……………………….(2.17) dan bilangan Reynold dirumuskan sebagai berikut : v L Re ……………………………………(2.18) dimana, = Viskositas udara (kg/m.det) v = Kecepatan udara (m/det) 25 UNIVERSITAS MERCU BUANA Tugas Akhir = Kerapatan udara (kg/m 3 ) L = Panjang silinder (m) Maka laju perpindahan kalor dari ruang tungku ke ruang pemasakan adalah q ha A (T T1 ) ………………………….(2.19) dimana, q = Laju perpindahan panas (W) ha = Koefisien perpindahan panas (W/m 2 C) A = Luas pipa tembaga (m 2 ) T = Temperatur tungku ( C) T1 = Temperatur ruang pemasak ( C) 2.6.1 Perhitungan Kadar Air Perhitungan kadar air dapat dilakukan dengan dua cara, yaitu berdasarkan berat kering dan berdasarkan berat basah. Pada umumnya yang dimaksud dengan kadar air benih adalah kadar air yang dihitung berdasarkan berat basah. a. Perhitungan kadar air berdasarkan berat kering Untuk menghitung kadar air berdasarkan berat kering, digunakan rumus sebagai berikut: w K A x100% …………………………………………..(2.20) W 26 UNIVERSITAS MERCU BUANA Tugas Akhir dimana: K A = kadar air berdasarkan berat kering (%) W = Berat kering benih (kg) w = jumlah air yang diuapkan dalam proses pelunakkan (kg) dan dapat diperoleh dengan cara mengurangi berat basah produk dengan berat kering produk setelah dimasak. b. Perhitungan kadar air berdasarkan berat basah Untuk menghitung kadar air berdasarkan berat basah, digunakan rumus sebagai berikut: KA m x100% …………………………………………(2.21) M dimana: KA = kadar air berdasarkan berat basah (%) m = jumlah air yang diuapkan (kg) M = berat produk (kg) Nilai m dapat diperoleh dengan cara mengurangi berat produk dengan berat produk setelah pelunakkan. 2.8 Briket Batubara Briket batu bara adalah bahan bakar padat yang terbuat dari batubara dengan campuran tanah liat dan tapioka (molas).dan merupakan bahan bakar alternatif. Briket batubara bermacam-macam bentuknya tergantung dari bentuk cetakannya. 27 UNIVERSITAS MERCU BUANA Tugas Akhir Ada yang berbentuk silinder, kubus, telur, jengkol, bantal, atau tiram yang ukurannya agak kecil. Keuntungan penggunaan briket batubara dalam proses pemasakan adalah daya tahan briket batubara lebih lama, nyala bara lebih bersih dan tidak berjelaga, tidak berbau dan berasap. Untuk menghitung konsumsi briket batubara yang digunakan untuk melunakkan bahan dapat dihitung dengan rumus berikut dimana diketahui nilai kalori briket batubara adalah 5722 kkal/kg. Q Konsumsi briket batubara ………………….(2.22) kalori .briket Dimana, Q = Kalor yang dibutuhkan selama proses pemasakkan berlangsung (kJ) 2.9 Effisiensi Termal Effisiensi termal adalah perbandingan antara panas penguapan dengan panas yang dihasilkan dari sumber panas , dan ditulis dalam persamaan sebagai berikut: Q p 100 …………………………………………………….(2.23) q dimana: p = effisiensi pemasakan (%) Q = Jumlah panas yang digunakan untuk memanaskan dan penguapan air (kJ) . q = panas sumber panas (kJ) 28 UNIVERSITAS MERCU BUANA Tugas Akhir BAB III PERHITUNGAN DAN PERANCANGAN PADA ALAT PEMASAK (Ala Presto) 3.1 Data Perancangan Produk yang dimasak : Ikan Kapasitas ruang pemasak : 2 kg Temperatur diruang pemasak : 100 C Lama waktu pemasakan : 1.30 Jam Dimensi alat pemasak : 63cm x 36cm x 36cm Dimensi ruang pemasak : 0,7238 cm2 3.1.1 Dimensi rancangan alat pemasak Alat pemasak yang akan dibuat adalah alat pemasak (Ala Presto) yang artinya melunakkan seluruh bagian ikan yang menggunakan media uap panas untuk proses 29 UNIVERSITAS MERCU BUANA Tugas Akhir pemasakannya, pemasakan ini menggunakan rak sebanyak satu buah dengan ukuran rak berdiameter 24 cm dan tebal 0,2 cm Gambar 3.1 Alat pemasak yang akan dibuat Keterangan : 1. Saluran Pembuangan air & udara masuk 2. Fan/kipas udara keluar 3. Manometer 4. Katup otomatis 5. Ruang tungku briket batu bara 6. Ruang pemasak dan ruang pengering 30 UNIVERSITAS MERCU BUANA Tugas Akhir 3.1.2 Temperatur Proses Pelunakkan Panas jenis air = 4,187 kJ/kg. k Panas pada 0 oC = 273 K Temperatur lingkungan = 30o C Kondisi sifat-sifat air pada temperature 30o C (H2O jenuh) dilihat dari tabel didapat data sebagai berikut : 1. Massa jenis air ( pair 30o C) = 994,88 kg/m3 2. Kapasitas panas pada tekanan konstan ( Cp) = 4,1767 J/kg.K 3. Volume spesfik air, (Va = Vf ) = 1,004 X 10-3 m 3/kg 4. Entalpi spesifikasi air, (ha = hf ) = 125,9 kJ/kg 5. Tekanan air, = 0,424 x 10-2 MPa 6. Entalpi air mendidih, (Wd) = 132 kJ/kg Temperatur awal air keluar dari ruang pemasak = 90o C Kondisi sifat-sifat air pada temperature 90 o C (H2O jenuh) dilihat dari tabel didapat data sebagai berikut : 1. Massa jenis air ( pair 90o C) = 967,36 kg/m3 2. Kapasitas panas pada tekanan konstan ( Cp) = 4,2063 J/kg.K 3. Volume spesfik air, (Va = Vf ) = 1,036 X 10-3 m 3/kg 4. Entalpi spesifikasi air, (ha = hf ) = 376,9 kJ/kg 5. Tekanan air, = 7,013 x 10-2 MPa 6. Entalpi air mendidih, (Wd) = 377 kJ/kg 31 UNIVERSITAS MERCU BUANA Tugas Akhir 3.2 Analisa Energi 3.2.1 Jumlah Panas yang dibutuhkan Untuk melunakankan ikan sampai dengan ketulang/duri perlu ditentukan jumlah tekanan uap dan lama waktu pemasakan yang dibutuhkan untuk produk agar mencapai hasil yang diinginkan. Penyusutan massa produk karena tekanan uap dapat menentukan kadar kelunakan produk tersebut. Peroses penyusutan terjadi karena ikut menguapnya kadar air dalam ikan. Untuk melunakkan produk, dengan tekanan 9,81 Nm2 dan lama waktu pemasakan 2 jam atau 7200 detik massa ikan yang berkurang hingga 32 – 35 %. Kapasitas alat pemasak yang direncanakan dapat menampung 2 kg ikan dan 2 kg air, jika berat ikan yang berkurang sampai 35 % berarti massa produk setelah proses pemasakan berkurang menjadi 0.7 kg , maka berat ikan setelah pemasakan selama waktu tertentu : Massa ikan awal = 2 kg Massa ikan akhir = 1.3 kg Untuk menghitung jumlah massa ikan dengan pengurangan kadar air yang turut menguap dalam ikan dapat dihitung dengan persamaan (2.8) sebagai berikut : M ma mb = 2 kg – 0.7 kg = 1.3 kg 32 UNIVERSITAS MERCU BUANA Tugas Akhir 3.2.2 Laju Perpindahan Uap Air Dengan mengetahui jumlah kadar air dalam ikan yang ikut menguap maka dengan menggunakan persamaan (2.9) laju perpindahan uap air dapat dihitung sebagai berikut : M W t dalam perhitungan ini diketahui M = 1,3 kg t = 2 jam = 7200 s maka : 1,3 W 0.1 103 kg / s 7200 3.2.3 Panas Pembentukan Uap Dengan mengetahui pentingnya tekanan uap yang dibutuhkan dalam proses pelunakkan maka, untuk menghitung jumlah panas yang diperlukan untuk membuat air hingga menjadi menjadi uap dari temperature 30o hingga 90o: Q1 = Panas jenis air X (T1 – To) = 4,187 kJ/kg X (377o – 132o ) = 4,187 kJ/kg X ( 245 o ) = 1,021 Kilojoule/kg air dan uap 33 UNIVERSITAS MERCU BUANA Tugas Akhir 3.2.4 Panas Pemasakan Air Kalor untuk memanaskan air dapat dihitung dengan persamaan (2.14) sebagai berikut : K Qw M a (T2 T1 ) 100 dimana : M = 2 (kg) K a 35 % T2 = 90 ( C) T1 = 30 ( C) sehingga dapat dihitung kalor untuk memanaskan air yaitu sebesar : 35 Qw 2kg (90 30) C 100 = 42 kJ 3.2.5 Kebutuhan Panas Pemasakan Pada proses pelunakkan ikan pasokan energi yang dibutuhkan untuk menaikan temperatur ikan dapat dihitung dengan persamaan sebagai berikut : Qt M Ch (T2 T1 ) dimana : M = 2 kg C p .ikan = 3.1844 (kJ/kg C) 34 UNIVERSITAS MERCU BUANA Tugas Akhir T2 = 90 ( C) T1 = 30 ( C) sehingga dapat dihitung kalor untuk memanaskan ikan yaitu sebesar : Qt 2 kg x 3.1844 kJ/kg C (90-30) C = 382.1 kJ Sehingga panas pemasakan yang dibutuhkan untuk melunakkan ikan dapat dihitung menggunakan persamaan (2.15) sebagai berikut : Qd = Qt Qw = 382,1 + 42 = 424,1 kJ 3.3. Tekanan Uap Pada Ketel Tekanan uap air yang berada pada ruang pemasak dengan kondisi uap jenuh terbaca di alat ukur manometer pada tekanan, P1 = 9,81 Nm2 Pketel = 9,81 Nm2 = 0,981 Mpa Jadi kapasitas kg Uap/jam pada tekanan Pketel = 9,81 Nm2 0,981 Mpa Temperatur air pada ketel, 90o C = 273 + 90 = 363 K 35 UNIVERSITAS MERCU BUANA Tugas Akhir 3.3.1 Kebutuhan Panas pada Ketel Untuk menghitung jumlah panas yang dibutuhkan untuk memanaskan ketel Air masuk ke ketel dalam kondisi : P1 = 0,1019 MPa, T1 = 363 K h1 = hf + Vf + (P1 - P2 ) = 376,9 kJ/kg + 1,036 X 10-3 m3/kg + (0,981 -0,07013) = 377,9 kJ/kg Air keluar ke ketel dengan kondisi uap jenuh pada tekanan, P2 = 0,981 MPa Kondisi air pada tekanan P 2 maka berdasarkan sifat H2O table tekanan didapat data sebagai berikut : h2 = 2706,6 kJ/kg T2 = 120,2 oC+ 273 = 393,2 K Jadi banyaknya panas yang dibutuhkan ketel untuk proses pelunakkan : Qin = S (h2 – h1)………………………………………(2.11) Dimana : S = Produksi uap (kg uap/jam) h2 = Entalpi uap keluar dari ketel, (kJ/kg) h1 = Entalpi air masuk ke ketel (kJ/kg) Qin = 2 kg/jam. (2706,6-377,9) kJ/kg = 2 kg/jam .(2329,58) kJ/kg = 4657,4 kJ/jam 36 UNIVERSITAS MERCU BUANA Tugas Akhir 3.3.2 Konsumsi briket batu bara Nilai kalori briket batu bara per kilogramnya adalah sebesar : 5722 kcal/kg x 4.1869 = 23957.4 kJ/kg maka konsumsi briket = = Q Kaloria.Briket 4657,4 kJ / jam 2 jam 23957.4kJ / kg = 0,39 kg briket batu bara 3.4 Laju Perpindahan Panas Dari Tungku ke Ketel Panas yang dilepaskan dari ruang tungku ke ketel melalui plat Almunium dapat dihitung, dan bila kita mengetahui : Harga ko Untuk dinding bersih. (kJ/m2 ) Jumlah panas yang diserahkan (Qk) = 4657,4 kJ/jam Luas dunding ketel yang dilewati panas (F) = 0.7238 m2 Tebal plat almunium (s1) = 16 mm Temperatur dari dinding ke air (1) = 20000 kJ/m2 Temperatur tungku (Tapi) = 573 K Perambatan panas didalam dinding ( 1 ) = 225 K Temperatur dari api ke dinding (1) = 90 kJ/m2 37 UNIVERSITAS MERCU BUANA Tugas Akhir Dari data yang didapat tersebut maka, untuk menghitung perpindahan panas dari tungku ke dinding ketel bersih adalah : F F s F k o 1 2 0,07238 0,07238 0,016 0,07238 0.01120 ko 90 225 20.000 ko = 44,65 kJ/ m 2 . jam. K q = ko . F. ( Tapi – Tair ) 4657,4 = 44,65 x 0,07238 x ( 573 - T air ) Tair = 573 - 3.5 4657,4 = 468,6 kJ 44,65 Efesiensi Pemasakan Besarnya efesiensi pemasakan dapat dihitung dengan menggunakan persamaan (2.14) sebagai berikut : Q p 100 q = 424,1kJ 100% 468,6 kJ = 90 % 38 UNIVERSITAS MERCU BUANA Tugas Akhir 3.6 Perencanaan Biaya Dalam hal pembuatan alat biaya adalah faktor utama yang harus dipertimbangkan selain bahan yang akan digunakan, untuk itu penulis membuat rincian biaya setelah melakukan survey dilapangan, berikut tabel rincian biaya, Tabel 3.1 Rincian biaya perencanaan pembuatan alat NO NAMA BAHAN 1 Baja Profil Siku 2 UKURAN JMLH HARGA(Rp) 20x20 mm 8m 60.000 Plat Seng 1 mm 4 x 1.5m 150.000 3 Saringan Stenlees 1 mm 24x100cm 74.000 4 Valv Stenlees 254 mm 2 bh 100.000 5 Glasswool - 20 pcs 30.000 6 Engsel 30X60 mm 2 rol 6.000 7 Ampelas - 1 1.500 8 Plat Seng 2 mm 50X50cm 45.000 9 Paku Rivet 3 mm 5 bnks 20.000 10 Manometer 980,1 Nm2 1 45.000 11 Tungku 35 cm 1 135.000 12 Las Listrik - - 30.000 13 Las Argon - - 100.000 14 Penjepit Briket - 1 bh 9.000 15 BatuBara - 5 kg 17.000 16 Panci Stenlees Ø240 mm 1 500.000 17 Karet Panci Ø240 mm 1bh 70.000 18 Kipas 12 V 1 15.000 19 Potensio + Ngerakit - - 45.000 Total Biaya Rp 1.452.500,- Ongkos Pembuatan - Total Biaya Keseluruhan Rp 1.452.500,- 39 UNIVERSITAS MERCU BUANA Tugas Akhir BAB IV PROSES PEMBUATAN ALAT PEMASAKAN 4.1 Diagram Alir Pembuatan Alat Pemasakan Mulai Data Rancangan Kapasitas = 2 kg Penghantar panas = Plat Almunium 12 Dimensi Pengering = 63 cm x 36 cm x 36 cm Dimensi ruang pengering = 24 = Tinggi 16 cm Pemilihan Bahan Dan Alat Tidak Pembelian Bahan dan Alat a 40 UNIVERSITAS MERCU BUANA Tugas Akhir a Proses Pembuatan, meliputi : 1. Pemotongan bahan 2. Penyambungan bahan 3. Pemasangan bahan dan alat Pengujian Ikan Kakap;Ikan Bandeng Lunak Ya Selesai 4.2 Tahapan Pemotongan Rangka Tahap awal proses pembuatan alat pemasak ikan dengan menggunakan bahan bakar batu bara adalah proses pemotongan bahan rangka dengan menggunakan gergaji besi dan membuat lubang untuk rivet dengan mata bor 3mm menggunakan bor tangan. bahan yang dipotong dapat dilihat pada penjelasan gambar dibawah ini. 4.2.1 Pemotongan rangka pemasak Bahan yang digunakan untuk membuat rangka utama ruang pemasak adalah baja profil siku 20 mm x 20 mm. 4 batang baja profil kotak untuk tinggi ruang pemasak dengan ukuran sebagai berikut : 41 UNIVERSITAS MERCU BUANA Tugas Akhir Gambar 4.1 Potongan tinggi rangka 4 batang baja profil siku untuk panjang ruang pemasak dengan ukuran sebagai berikut : Gambar 4.2 Potongan panjang rangka 4 batang baja profil siku untuk lebar tempat ruang pemasak dengan ukuran sebagai berikut : Gambar 4.3 Potongnan lebar rangka 4 batang baja profil siku untuk pembatas ruang pemasak dengan ruang tungku dengan ukuran sebagai berikut : Gambar 4.4 Potongan pembatas R. pemasakan dan R. tungku 42 UNIVERSITAS MERCU BUANA Tugas Akhir Proses penyambungan bahan untuk rangka dilakukan dengan menggunakan las. Adapun jenis las yang digunakan adalah las listrik. Susunan bahan yang disambung bisa dilihat dalam penjelasan gambar dibawah ini : 1 Gambar 4.5 Penyambungan rangka 4.2.2 Pemotongan rangka pintu Bahan yang digunakan adalah baja profil panjang 20 mm x 20 mm dengan ketebalan 2 mm. 2 batang baja profil panjang untuk lebar pintu ruang pengering dengan ukuran sebagai berikut : 43 UNIVERSITAS MERCU BUANA Tugas Akhir Gambar 4.6 Potongan rangka panjang pintu 2 batang baja profil kotak untuk tinggi pintu ruang pengering dengan ukuran sebagai berikut : Gambar 4.7 potongan rangka tinggi pintu Proses penyambungan bahan untuk rangka pintu dilakukan dengan menggunakan las listrik. Adapun Susunan bahan yang disambung bisa dilihat dalam penjelasan gambar dibawah ini : Gambar 4.8 Penyambungan tinggi pintu 44 UNIVERSITAS MERCU BUANA Tugas Akhir 4.2.3 Skema gambar potongan untuk tungku Bahan yang digunakan untuk tungku adalah plat seng 2mm, pasir semen tahan api, dan baja profil dengan tebal 10mm untuk saringan lubang udara. Gambar dan ukurannya adalah sebagai berikut : Gambar 4.9 Potongan Tungku Bahan Bakar Batu bara 4.2.4 Skema gambar potongan untuk ruang pemasak Bahan yang digunakan untuk ruang pemasak adalah bahan Stanlies steel 1mm berbentuk silinder berlubang, dan plat Alumunium berdiameter 230mm dengan tebal 10mm untuk penghantar panas sekaligus sebagai penyimpan panas. Gambar dan ukurannya adalah sebagai berikut : 45 UNIVERSITAS MERCU BUANA Tugas Akhir Gambar 4.10 Potongan Ruang Pemasak Dan untuk tutup ruang pemasak bahan yang digunakan plat Stenlees Steel 1mm dengan diameter 265 mm dan tinggi 20mm. Gambar 4.11 Tutup ruang pemasak 46 UNIVERSITAS MERCU BUANA Tugas Akhir 4.2.5 Skema gambar valv untuk ruang pemasak Bahan yang digunakan untuk valv adalah bahan baja profil 2.5inch berbentuk silinder berlubang, dengan 2 buah tuas yang berukuran. Tuas I berdiameter 8mm dengan panjang 150 x 60mm dan Tuas II plat dengan tebal 2mm dan panjang 90mm. Gambar dan ukurannya adalah sebagai berikut : Gambar 4.12 Tuas I untuk valv Gambar 4.13 Tuas II untuk valv 47 UNIVERSITAS MERCU BUANA Tugas Akhir Gambar 4.14 Valv 254 mm (2.5 inch) 4.3 Tahapan Pemotongan Plat 4.3.1 Pemotongan plat untuk pintu Bahan yang digunakan adalah plat seng 1mm. Pada pintu ruang bahan bakar, dengan ukuran sebagai berikut : Gambar 4.12 potongan pintu 48 UNIVERSITAS MERCU BUANA Tugas Akhir dan untuk hendel tungku ukurannya adalah sebagai berikut : Gambar 4.13 Handel pintu tungku Gambar . 4.14 Pengunci Handel 4.3.2 Pemotongan plat untuk batas ruang pemasak dan tungku Bahan yang digunakan untuk pembatas bagian dalam alat pemasak adalah plat seng 2mm dengan ukuran sebagai berikut : Gambar 4.15 Plat batas ruang pemasak dan tungku 49 UNIVERSITAS MERCU BUANA Tugas Akhir 4.3.3 Pemotongan plat untuk alas tungku Bahan yang digunakan untuk alas tungku adalah plat seng 3mm dengan ukuran sebagai berikut : Gambar 4.16. Plat Untuk Alas Tungku 4.3.4 Pemotongan plat untuk tempat baterai Bahan yang digunakan untuk tempat baterai adalah plat seng 1mm dengan ukuran sebagai berikut : Gambar 4.17 Potongan Plat untuk tempat baterai 50 UNIVERSITAS MERCU BUANA Tugas Akhir Dan penyatuan plat dapat dilihat sebagai berikut : Gambar 4.18 Plat untuk tempat baterai 4.3.5 Pemotongan plat bagian dinding luar Gambar 4.19 Dinding luar bagian atas 51 UNIVERSITAS MERCU BUANA Tugas Akhir Pada dinding luar bagian atas, kanan, kiri, depan dan belakang menggunakan plat seng 1mm dengan ukuran sebagai berikut : Gambar 4.20 Dinding luar bagian depan Gambar 4.21 Dinding luar bagian balakang 52 UNIVERSITAS MERCU BUANA Tugas Akhir Gambar 4.22 Dinding luar bagian kanan Gambar 4.23 Dinding luar bagian kiri 53 UNIVERSITAS MERCU BUANA Tugas Akhir 4.4 Tahap Perakitan Dalam tahap perakitan, bagian-bagian pemasakan di bentuk dan di rakit dengan langkah-langkah sebagai berikut : - Merakit kerangka alat. - Merakit bagian dalam dan luar dari ruang pemasak yang dilas. - Memaku rivet bagian dalam ruang pemasak dengan rangka alat. - Memasang Gasspool pada bagian luar ruang pemasakan - Memasang dinding luar. - Finising dengan penggrindaan, pengamplasan dan pengecatan pada bagian luar dan dalam alat. Gambar 4.34 Foto alat pemasak ikan duri lunak (ala presto) yang telah dirakit. 54 UNIVERSITAS MERCU BUANA Tugas Akhir BAB V ANALISA HASIL PERHITUNGAN DAN PENGUJIAN 5.1 Beban Pemasakan Dari hasil perhitungan rancangan alat pemasak (ala presto) ikan duri lunak dengan menaikan temperature tekanan dan lama waktu pemaskkan untuk 2 kg bahan berupa ikan dengan asumsi temperatur tekanan ruang pemasak 9,81 Nm2 waktu pemasakan 2 jam atau 7200 detik dan debit air dalam ruang pemasak 2 kg air maka diperoleh hasil bahwa: - Jumlah kadar air dalam ikan yang ikut menguap hingga 35%. - Laju perpindahan uap air adalah sebesar 0.1 x 10 3 kg uap air/s Dari hasil perhitungan dan literatur yang ada diperoleh kecendrungan bahwa semakin besar beban pemasakan semakin besar pula nilai yang diperoleh untuk besaran yang lain yaitu jumlah temperature tekanan,waktu pemasakan, konsumsi bahan bakar yang digunakan, ukuran alat pemasak. 55 UNIVERSITAS MERCU BUANA Tugas Akhir 5.2 Panas Pembentukan Uap Dengan mengetahui beban pemasakan, maka dapat dihitung kebutuhan uap air yang jumlahnya merupakan hasil dari besar laju perpindahan uap air, dikali selisi perbandingan kelembaban temperatur ruang pemasak Hasil yang diperoleh adalah besar uap air yang dibutukan sebesar 1,021 Kilojoule/kg air dan uap. 5.3 Kebutuhan Panas Pemasakkan Dari hasil perhitungan diperoleh panas yang terlibat dalam proses pemasakkan adalah sebesar 4657,4 kJ/jam. Panas pemasakkan ini sangat berguna untuk mengetahui jumlah konsumsi bahan bakar yang akan digunakan dalam proses pemasakkan, dan waktu yang kita tentukan. 5.4 Jumlah Bahan Bakar Yang Digunakan Dari hasil perhitungan diperoleh kalor yang diberikan oleh sumber panas (Briket) sebanyak 23957.4 kJ/kg . dari hasil perhitungan untuk mengeringkan ikan 2 kg selama waktu 2 jam membutuhkan briket batubara sebanyak 0.39 kg, dan bila pengeringan dilakukan selama 4 jam jumlah briket yang digunakan di lipatkan menjadi 0.78 kg. 5.5 Efisiensi Pemasakan Dari hasil perhitungan panas yang digunakan, panas untuk menaikan temperatur air, dan panas untuk pemasakkan ikan, dalam proses pemasakan untuk 2 kg ikan adalah sebesar 424,1 kJ. Panas yang diberikan dari tungku keruang pemasak melalu plat alumunium penghantar panas 468,6 kJ. 56 UNIVERSITAS MERCU BUANA Tugas Akhir Sehingga efisiensi alat pemasak ini sangat besar untuk sebuah alat pemasak, yaitu 90 %. Hal ini mungkin terjadi karena asumsi yang digunakan untuk perancangan awal pemasakkan merupakan kondisi ideal tanpa adanya perubahan kondisi tekanan uap kerugian-kerugian yang mungkin terjadi akibat konveksi konduksi pada pengoprasian alat pemasak yang berpengaruh terhadap jalannya proses pemasakkan dan nantinya akan mempengaruhi terhadap besarnya efesiensi alat tersebut. 5.6 Hasil Pengujian Alat Dari hasil pengujian alat pengering dengan bahan uji berupa : - Ikan kakap 370 gram yang dimasak sampai lunak dan berkurang beratnya 19%, sehingga mencapai berat yaitu sebesar 290 gram - Ikan bandeng 270 gram yang dimasak sampai lunak dan berkurang beratnya 18%, sehingga mencapai berat yaitu sebesar 220 gram Penurunan kadar air pada produk dapat dilihat dalam tabel dan garafik dibawah ini : 57 UNIVERSITAS MERCU BUANA Tugas Akhir Tabel 5.1 Hasil pengujian pelunakkan ikan kakap pada temperatur tekanan 9,81 Nm2 BERAT WAKTU KADAR AIR YANG (gram) (jam) TERUAPKAN (%) 370 0 0 332 1 10,5 309 1.5 6 290 2 5 Grafik Penggujian Pelunakkan ikan Kakap pada 2 Temperatur Tekanan 9.81 Nm 400 370 Berat (gram) 350 Keras Sedang 332 Lunak 309 300 290 250 0 1 1.5 2 2.5 Waktu (jam) 58 UNIVERSITAS MERCU BUANA Tugas Akhir Tabel 5.1 Hasil pengujian pelunakkan ikan bandeng pada temperatur tekanan 9,81 Nm 2 BERAT WAKTU KADAR AIR YANG (gram) (jam) TERUAPKAN (%) 270 0 0 246 1 9 232 1.5 5 220 2 5 Grafik Penggujian Pelunakkan ikan Bandeng pada 2 Temperatur Tekanan 9.81 Nm 300 Berat (gram) 270 Keras Sedang Lunak 250 246 232 220 200 0 1 1.5 2 2.5 Waktu (jam) 59 UNIVERSITAS MERCU BUANA Tugas Akhir BAB VI PENUTUP 6.1 Kesimpulan Berdasarkan hasil pembuatan alat, perhitungan dan pengujian maka penulis mengambil kesimpulan adalah sebagai berikut : 1. Kalor yang dibutuhkan untuk menguapkan air, menaikan temperatur ikan dan untuk memeanaskan ikan selama 2 jam adalah 4657,4 kJ 2. Proses-proses pembuatan alat yang harus dilakukan adalah proses pemotongan, penyambungan, proses penekukan, dan proses perakitan. 3. Biaya yang digunakan pada pembuatan alat ini sebesar Rp.1.452.500,- harga pembuatan alat ini untuk kalangan menengah kebawah relatif mahal sehingga masih perlu penurunan biaya dengan cara menghitung kebutuhan bahan dan alat secara tepat hingga diperoleh hasil yang lebih ekonomis. 4. Dalam proses pemasakan ikan perlu adanya pembungkusan ikan seperti daun, dikarenakan agar ikan tersebut tidak rusak pada saat proses pemasakan. 60 UNIVERSITAS MERCU BUANA Tugas Akhir 5. Dari hasil pengujian alat pemasak pada temperatur tekanan 9,81 Nm2 (konstan) didapat hasil-hasil sebagai berikut : Ikan Kakap 370 gram dimasak selama 2 jam, sampai lunak hinga beratnya berkurang 19 %, sehingga berat ikan yang tersisa adalah 290 gram. Ikan Bandeng 270 gram dimasak selama 2 jam, sampai lunak hinga beratnya berkurang 18 %, sehingga berat ikan yang tersisa adalah 220 gram. 6.2 Saran Pada perancangan alat pemasak ini masih memerlukan banyak modifikasi alat yang harus dilakukan, mengingat tugas akhir ini masih jauh dari sempurna karana keterbatasan waktu, data-data dan pengetahuan yang penulis miliki. Disini penulis memberikan beberapa saran yang jika ditindak lanjuti insya Allah dapat menambah baik hasil yang telah didapat sekarang ini. 1. Untuk mengoptimalkan hasil perancangan sistem ini diperlukan analisa perhitungan ulang disertai dengan penalitian-penelitian yang lebih mendalam untuk memperkecil kesalahan dalam proses perancangan. 2. Perlu dihitung dan dipikirkan kembali, berkurangnya berat ikan setelah proses pemasakan yang kurang stabil dalam temperatur tekanan dan waktu yang sama. 3. Dalam pembuatan alat pemasak dalam jumlah besar, dapat menekan biaya bembuatan. 61 UNIVERSITAS MERCU BUANA DAFTAR PUSTAKA 1. Ir.M.J. Djokosetyardjo. “ Ketel Uap “ .PT. Pradnya Paramita 1987.Jakarta 2. Ir.Samsir A. Muin. “Pesawat-Pesawat Konversi Energi”.Jakarta. Rajawali Pres,1988. 3. J.P. Holman, Ir.E. Jasjfi M. Sc. “Perpindahan Kalor”. Jakarta. Erlangga 1988. 4. William C. Reynlds, Henry C. Perkins, Filino Harahap. “Termodinamika Teknik”. Jakarta. Erlangga 1996. 5. Archi W. Culp.Jr, Ir.Darwin Sitompul M.Eng. “Prinsip-Prinsip Konversi Energi”.Jakarta. Erlangga, 1985. 6. Khurmi S R dan Gupta K J 1980 “ A Texs Book Machine Design” Eurasia Publishing House. New Delhi