KORELASI SUHU DAN INTENSITAS CAHAYA TERHADAP DAYA

advertisement
Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) 2014
Yogyakarta, 15 November2014
ISSN: 1979-911X
KORELASI SUHU DAN INTENSITAS CAHAYA
TERHADAP DAYA PADA SOLAR CELL
Subandi1, Slamet Hani2
Jurusan Teknik Elektro Institut Sains & Teknologi AKPRIND Yogyakarta
Email: [email protected]
1,2
ABSTRACT
Referringto with the rapid progress of the industry, the development of electricity as an energy
source in the implementation of the housing industry and also growing. In the development of
electronic goods themselves very rapidly, of course Several factors supporting the development of
electronic devices are increasingly diverse. To utilize the sun as a source of electrical energy is a very
appropriate choice because the total of solar energy is very large and unlimited. Besides its use does
not cause adverse effects on the environment, especially, when using the sun as it requires electrical
energy Solar Cell that is useful to convert solar energy into electrical energy. Solar Cell consis of
composed of a semiconductor material silicon and Germanium. Temperature also very influence the
performance of the solar cell charging. On the measured data, so much the higher the temperature, so
much the higher the voltage and current are obtained. For example, at 13.00 pm, the highest
temperature of 37.6 ° C measured at the highest light intensity of 18,760 lux, thus producing a solar
cell output voltage and current of 670mA of 7,46V.
Keywords: Solar cell, electrical energy, temperature
PENDAHULUAN
Sejalan dengan kemajuan industri yang sangat pesat, maka perkembangan akan listrik
sebagai sumber energi dalam pelaksanaan industri dan perumahan juga semakin berkembang.
Dalam perkembangan barang–barang elektronika sendiri sangat pesat, beberapa factor
pendukungnya tentu saja perkembangan alat–alat elektronika yang semakin beragam.
Pemanfaatan energi cahaya matahari pada setiap zaman semakin meningkat seiring dengan
pengetahuan yang kita dapatkan. Salah satu pemanfaatan energi cahaya matahari adalah Pembangkit
Listrik Tenaga Surya (PLTS) yang memanfaatkan energi foton cahaya matahari menjadi energi listrik.
Indonesia sendiri, sebuah negara yang dilewati oleh garis khatulistiwa dan menerima panas matahari
yang lebih banyak daripada negara lain, mempunyai potensi yang sangat besar untuk mengembangkan
pembangkit listrik tenaga surya sebagai alternatif batubara dan diesel sebagai pengganti bahan bakar
fosil, yang bersih, tidak berpolusi, aman dan persediaannya tidak terbatas (Rotib, 2007).
Sel surya (photovoltaic cell) bekerja dengan menangkap sinar matahari oleh sel-sel
semikonduktor untuk diubah menjadi energi listrik. Sel-sel ini termuat dalam panel-panel yang
ukurannya dapat disesuaikan dengan keperluannya, apakah untuk rumah tangga, perkantoran atau
pembangkit listrik skala besar (Sungkar, 2006).
Pada pagi hari pukul 6.00 WIB tingkat kelembaban besar yaitu 88% dan terjadi pengembunan
sambil menurunkan partikel-partikel padatan akibat polusi kendaraan bermotor dan industri ke
permukaan bumi, sehingga pada saat ini kondisi atmosfir mempunyai kebeningan yang tinggi dan
langit biru. Fenomena tersebut mengakibatkan pada pagi hari yang cerah pukul 9.00 WIB sel surya
memiliki efisiensi terbesar yaitu dengan efisiensi 10%. Pada siang hari partikel partikel padatan akibat
pulusi kembali ke angkasa, dengan meningkatnya temperatur udara gerakan partikel semangkin hebat,
sehingga meningkatkan hamburan radiasi surya yang masuk ke bumi. Hal ini mengakibatkan difusi
ratio membesar dimana jumlah radiasi difusi lebih besar radiasi langsung, dan efisiensi sel surya pada
pukul 12.00 WIB adalah sebesar 9%, lebih rendah dari pada pagi hari. Pada sore hari akibat terjadi
penguapan pada siang hari dan semakin meningkatnya partikel padatan polusi di udara, sehingga indek
kecerahan terendah dimana tampak banyak awan. Selain itu radiasi surya global sangat kecil, sehingga
pada sore hari sekitar pukul 17.00 WIB dengan efisiensi 3%, kemampuan sel surya menurun secara
drastic (Yushardi, 2002).
C-31
Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) 2014
Yogyakarta, 15 November2014
ISSN: 1979-911X
METODE
Dalam melakukan pengukuran dan analisis, tahapan-tahapan dan proses perancangan alat serta sistem
pengujian alat yang meliputi pengukuran intensitas cahaya, suhu, serta arus dan tegangan .Pada
gambar.1 adalah blok rangkaian kerja dari sistem Pembangkit Listrik Tenaga Surya beserta
pengukurannya .
Gambar 1 Rangkaian Kerja dan Sistem Pengukuran
Spesifikasi Alat, dalam perancangan sistem Pembangkit Listrik Tenaga Surya ini, digunakan
beberapa komponen, secara umum komponen yang digunakan dalam perancangan Pembangkit Listrik
Tenaga Surya ini dibagi menjadi beberapa bagian , yang meliputi :
Alat ukur, yang digunakan dalam pengujian untuk menganalisis Korelasi Suhu Dan Intensitas
Cahaya Terhadap Arus Dan Tegangan Pada Solar Cell digunakan 6 buah multimeter yang berfungsi untuk
mengukur arus dan tegangan, luxmeter untuk mengukur intensitas cahaya dan thermometer untuk
mengukur naik turunnya suhu dalam pengambilan data .
Penggunaan Solar Cell, dalam pengujian, baterai diisi oleh solar cell dimana solar cell
menghasilkan tegangan dengan cara mengkonversikan energi matahari menjadi energi listrik.
Tegangan yang dihasilkan solar cell berkisar 14,8 – 18 volt DC. Solar cell yang saya gunakan yaitu
panel jenis Monokristal (Mono-crystalline) dengan daya 10 wp.
Gambar 2 Panel Surya dengan daya10Wp dan Spesifikasi teknis panel surya
Spesifikasi dan daya panel surya yang digunakan dalam perancangan dapat dilihat pada bagian
belakang panel surya seperti pada Gambar 2.
Penggunaan baterai, setelah mendapatkan output dari solar cell yang berupa arus listrik dapat
langsung digunakan untuk beban yang dimanfaatkan, arus listrik dapat digunakan sebagai pengisian
C-32
Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) 2014
Yogyakarta, 15 November2014
ISSN: 1979-911X
dengan cara disimpan ke dalam baterai agar dapat digunakan pada saat yang diperlukan khususnya
pada malam hari karena tidak ada sinar matahari. Apabila solar cell digunakan untuk penyimpanan ke
baterai, maka besarnya tegangan yang dihasilkan diatas spesifikasi baterai-baterai yang digunakan
pada rancang bangun adalah baterai sekunder. Adapun tegangan baterai adalah 12 volt 9 Ah, sebagai
alasan pemilihan alat di karenakan solar cell yang digunakan sebagai sumber pengisi muatan baterai
mempunyai tegangan output 14,8 – 18 volt dengan arus 0,5 Ampere, selain itu baterai ini lebih
ekonomis dan mudah didapatkan dipasaran. Sebelum melaksanakan pengisian sebaiknya baterai dalam
keadaan kosong karena arus yang masuk akan dapat terisi dengan maksimal.
Gambar 3. Solar Charge Controller
Solar Charge Controller adalah alat yang berfungsi sebagai kontrol tegangan dan arus yang
berasal dari output sel surya untuk menuju ke batere dan ke beban. Pada saat sel surya menerima
energi foton sinar matahari tentu saja output dari sel surya tidak konstan sesuai dengan intensitas
cahaya matahari. Sehingga tegangan keluaran dan arus keluaran dari sel surya juga tidak konstan
dan bervariasi terus sepanjang waktu siang hari, sedangkan tegangan dan arus yang menuju batere
mempunyai batasan tertentu.
Gambar 4. rangkaian panel pengukuran
Pada alat yang disebut sebagai solar charge controller tersebut memiliki terminal
diantaranya: terminal untuk sel surya, terminal untuk batere, terminal untuk beban. Ketiga terminal
tersebut dilengkapi dengan polaritas yaitu tanda (-) dan tanda (+) yang jelas agar tidak terjadi
kesalahan. Box Panel Pengukuran, dalam melakukan analisis pengukuran pada solar cell
terutama untuk pengukuran arus dan tegangan,
C-33
maka perlu adanya box panel untuk
Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) 2014
Yogyakarta, 15 November2014
ISSN: 1979-911X
penempatan alat ukur arus dan tegangan.
Box panel ini dirancang agar dapat digunakan sebagai panel untuk penempatan multimeter dan
solar charge controller. Dalam perancangan box panel ini berisi 6 unit multimeter digital yang
dirangkai dengan 3 relay untuk pengukuran 2 jalur, yaitu :
1. Jika saklar pengukuran di on kan,maka relay akan dihidupkan oleh sumber baterai 9v,dan jalur
pertama akan aktif sebagai jalur pengukuran, amperemeter akan terhubung seri pada pengukuran
tersebut,dan pengisian akan melalui amperemeter dan voltmeter .
2. Jika saklar di off kan, maka relay akan mati dan jalur ke dua akan aktif sebagai pengisian secara
langsung tanpa adanya pengukuran arus,sehingga pengisian hanya melewati voltmeter yang
terhubung secara paralel .
Kedua prinsip kerja tersebut dirancang agar tejaganya daya tahan alat-alat ukur arus dan tegangan
yang digunakan dalam analisis.
PEMBAHASAN
Berdasarkan hasil pengamatan berupa pengukuran-pengukuran yang telah dilaksanakan
selama 5 hari dari pukul 05.00-18.00, maka diperoleh data-data dan grafik seperti yang ditunjukkan
pada masing-masing tabel1 dan Gambar 5.
Tabel 1. Pengambilan Data Pengukuran Intensitas Cahaya Dan Suhu Terhadap Arus Dan Tegangan
Pada Keluaran Panel Surya hari ke 1
FISIK
NO TIME
1
2
3
4
5
6
7
8
9
10
11
12
13
14
5.00
6.00
7.00
8.00
9.00
10.00
11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
TEMP
(C)
26.5
27.2
28.4
27.5
31.4
32.2
34.2
31.1
30.9
32.9
37.8
32.1
27
26
OUTPUT CHARGER
CONTROLLER
I
W
V
(mA)
W
0.00157336 5.8
1.3
0.00754
0.249228
8.27
26.6
0.219982
3.432
10.2
320
3.264
1.434
11.81 118
1.39358
8.9631
12.68 690
8.7492
10.8864
12.98 760
9.8648
2.3522
12.33 190
2.3427
4.3826
12.76 340
4.3384
3.9525
12.63 300
3.789
10.412
13.3
760
10.108
6.825
13.47 500
6.735
0.690552
12.4
48.5
0.6014
0.1857678 12.21 7.73
0.0943833
0.0004824 12.15 5.01
0.0608715
OUTPUT SOLAR
LIGHT
( lux )
0.27
6360
9290
13520
14320
16540
12150
12500
15230
16700
16200
6820
1720
22.3
V
5.68
8.28
10.4
11.95
12.99
13.44
12.38
12.89
12.75
13.7
13.65
12.42
12.27
3.6
I
(mA)
0.277
30.1
330
120
690
810
190
340
310
760
500
55.6
15.14
0.134
C-34
Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) 2014
Yogyakarta, 15 November2014
ISSN: 1979-911X
Gambar 5 Grafik Pengaruh Intensitas Cahaya Dan Suhu Terhadap Daya Output
Solar Cell Pada Hari ke 1
Tabel 2. Pengambilan Data Pengukuran Intensitas Cahaya Dan Suhu Terhadap Daya Pada Keluaran
Panel Surya hari ke 2
FISIK
NO
1
2
3
4
5
6
7
8
9
10
11
12
13
14
TIME
5.00
6.00
7.00
8.00
9.00
10.00
11.00
12.00
13.00
14.00
15.00
16.00
17.00
18.00
TEMP
(°C)
LIGHT
(lux)
26.2
26.8
28.3
28.6
30.2
35.4
35.8
37.3
37.6
33.8
32.5
31.2
28
26.2
72
188
10650
11620
14640
15750
16250
17850
17130
16110
16320
14280
593
10,3
OUTPUT SOLAR CHARGER
CONTROLLER
OUTPUT SOLAR CELL
V
5.35
10.62
10.94
11.23
12.99
13.28
13.45
17.42
14.24
13.57
13.65
13.38
12.65
5.46
I
(mA)
0.22
9.25
320
340
440
550
570
710
690
580
610
410
60.3
0.13
W
0.001177
0.098235
3.5008
3.8182
5.7156
7.304
7.6665
12.3682
9.8256
7.8706
8.3265
5.4858
0.762795
0.0007098
C-35
V
11.86
9.95
10.83
11.12
12.02
12.45
12.93
13.48
13.27
12.95
13.03
13.1
12.4
11.98
I (mA)
4.5
4.1
300
320
430
530
570
710
680
580
610
400
60.3
5.12
W
0.05337
0.040795
3.249
3.5584
5.1686
6.5985
7.3701
9.5708
9.0236
7.511
7.9483
5.24
0.74772
0.061338
Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) 2014
Yogyakarta, 15 November2014
ISSN: 1979-911X
Gambar 6 Grafik Pengaruh Intensitas Cahaya Dan Suhu Terhadap Daya Output
Solar Cell Pada Hari ke 2
Tabel 3. Pengambilan Data Pengukuran Intensitas Cahaya Dan Suhu Terhadap Daya Pada Keluaran
Panel Surya hari ke 3
FISIK
NO
TIME
1
OUTPUT SOLAR CELL
OUTPUT SOLAR
CHARGER CONTROLLER
5.00
TEMP
(°C)
25.4
LIGHT
(lux)
68
V
5.21
I (mA)
0.21
W
0.001094
V
11.92
I (mA)
4.3
W
0.051256
2
6.00
26
430
10.95
20.45
0.223928
10.45
20.41
0.2132845
3
7.00
26.7
12240
11.35
370
4.1995
11.02
360
3.9672
4
8.00
29.6
14350
12.45
400
4.98
12.4
400
4.96
5
9.00
30.4
11540
11.41
380
4.3358
11.25
379
4.26375
6
10.00
35.3
16100
12.8
500
6.4
11.92
498
5.93616
7
11.00
32.8
18120
17.89
720
12.8808
13.25
720
9.54
8
12.00
35.8
17940
14.23
602
8.56646
13.11
602
7.89222
9
13.00
33.5
16980
13.12
550
7.216
12.76
550
7.018
10
14.00
30.4
15430
14.23
500
7.115
12.98
499
6.47702
11
15.00
32.2
16540
14.31
490
7.0119
13.12
490
6.4288
12
16.00
30.1
15900
14.06
429
6.03174
12.87
429
5.52123
13
17.00
295
11690
12.9
234
3.0186
12.56
233
2.92648
14
18.00
28
12
2.35
0.24
0.000564
12.46
5.12
0.0637952
C-36
Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) 2014
Yogyakarta, 15 November2014
ISSN: 1979-911X
Gambar 7 Grafik Pengaruh Intensitas Cahaya Dan Suhu Terhadap Daya Output
Solar Cell Pada Hari ke 3
Tabel 4. Pengambilan Data Pengukuran Intensitas Cahaya Dan Suhu Terhadap Daya Pada Keluaran
Panel Surya hari ke 4
FISIK
NO
TIME
OUTPUT SOLAR CELL
OUTPUT SOLAR
CHARGER CONTROLLER
1
5.00
TEMP
(°C)
26.3
LIGHT
(lux)
52
V
4.23
I
(mA)
0.192
W
0.00081216
V
11.96
I (mA)
4.5
W
0.05382
2
6.00
27.4
525
11.02
30.2
0.332804
10.49
30.1
0.315749
3
7.00
28.5
11250
11.21
350
3.9235
11.15
120
1.338
4
8.00
28.3
13340
12.13
390
4.7307
11.95
390
4.6605
5
9.00
28.7
10250
12.61
420
5.2962
12.21
420
5.1282
6
10.00
36.7
17150
12.83
550
7.0565
11.8
540
6.372
7
11.00
35.4
17950
13.44
710
9.5424
12.98
700
9.086
8
12.00
36.3
18280
13.57
820
11.1274
12.72
750
9.54
9
13.00
33.8
16280
13.32
610
8.1252
12.54
610
7.6494
10
14.00
31.4
17850
15.48
680
10.5264
13.15
670
8.8105
11
15.00
32.5
15400
16.1
460
7.406
13.2
460
6.072
12
16.00
33.1
13200
16.36
380
6.2168
13.26
380
5.0388
13
17.00
28
11430
12.4
210
2.604
12.05
200
2.41
14
18.00
27
52
6.52
0.256
0.00166912
5.4
4.7
0.02538
C-37
Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) 2014
Yogyakarta, 15 November2014
ISSN: 1979-911X
Gambar 8. Grafik Pengaruh Intensitas Cahaya Dan Suhu Terhadap Daya Output Solar Cell
Pada Hari ke 4
Tabel 5. Pengambilan Data Pengukuran Intensitas Cahaya Dan Suhu Terhadap Daya Pada Keluaran
Panel Surya hari ke 5
FISIK
NO
TIME
1
OUTPUT SOLAR
OUTPUT CHARGER
CONTROLLER
5.00
TEMP
(C)
25
LIGHT
( lux )
17.1
V
2.81
I (mA)
0.3
W
0.0008
V
11.94
I (mA)
4.95
W
0.059103
2
6.00
24.5
2670
11.93
10.95
0.1306
11.9
4.94
0.058786
3
7.00
28.5
14270
13.38
450
6.021
13.18
450
5.931
4
8.00
28.1
11650
12.69
180
2.2842
12.66
180
2.2788
5
9.00
28.7
14590
16.91
320
5.4112
13.72
320
4.3904
6
10.00
33
16340
17.59
350
6.1565
12.78
350
4.473
7
11.00
34
17250
17.01
120
2.0412
13.8
120
1.656
8
12.00
37,8
19870
17.56
700
12.292
12.79
650
8.3135
9
13.00
37.6
18760
17.46
670
11.698
12.97
310
4.0207
10
14.00
37
16560
13.57
350
4.7495
13.23
320
4.2336
11
15.00
33.8
15640
16.08
300
4.824
13.4
300
4.02
12
16.00
30.9
11930
13.45
91.6
1.232
13.1
89.1
1.16721
13
17.00
30
11710
13.33
87.2
1.1624
13.17
80.1
1.054917
14
18.00
28.9
11.5
2.59
0.25
0.0006
12.46
5.12
0.0637952
C-38
Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) 2014
Yogyakarta, 15 November2014
ISSN: 1979-911X
Gambar 9. Grafik 5 Pengaruh Intensitas Cahaya Dan Suhu Terhadap Daya Output
Solar Cell Pada Hari ke 5
Percobaan pemakaian baterai
Tabel 6. Pemakaian Batere / Menit
Keteranga
n
Teganga
n (Volt)
Arus
(Amper)
10.pertama
11,96
0, 54
Full
10 kedua
11,90
0, 54
Dipakai
10 ketiga
11, 85
0, 54
Dipakai
10 keempat
11, 75
0, 53
Dipakai
10 kelima
11,73
0, 53
Dipakai
10 keenam
11,69
0, 53
Dipakai
10 ketujuh
11,65
0, 52
Dipakai
10 kedelapan
11,59
0, 52
Kosong
Menit
KESIMPULAN
Dari hasil pengukuran dan uji coba pengambilan data dapat ditarik beberapa kesimpulan yaitu :
1. Pada proses pengisian baterai, solar charge controller akan mulai bekerja melakukan pengisian
pada saat range tegangan yang dikeluarkan oleh solar cell lebih besar dari tegangan baterai saat
lowbatt yaitu dengan range tegangan rata-rata 11V.
2. Pada distribusi arus dan tegangan dari sumber solar cell, didapat analisis bahwa walaupun
setinggi-tingginya tegangan yang dihasilkan oleh sumber yaitu solar cell dengan tegangan
nominal 17V, tetapi penditribusiannya untuk mengisi baterai sangat stabil dengan maksimum ratarata 13V karena semua distribusi pengisan diatur oleh solar charger controller.
3. Pada kenyataanya, daya keluaran maksimum yang terukur bisa mencapai hingga 12Watt diatas
daya spesifikasi yang dihasilkan panel surya tersebut yaitu 10Watt.
C-39
Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) 2014
Yogyakarta, 15 November2014
ISSN: 1979-911X
4. Tegangan dan arus akan mulai meningkat pada pagi hari pukul 05.00WIB, kemudian akan
mencapai level yang maksimum pada siang hari pukul 10.00-12.00WIB, dan turun pada saat
matahari mulai terbenam pukul 18.00WIB.
DAFTAR PUSTAKA
Rhazio, 2007, Pembangkit Listrik Tenaga Surya, Institut Sains & Teknologi, Jakarta. http://
rhazio.word press.com., maret 2008
Rotib, Widy, 2001. Aplikasi Sel Surya Sebagai Sumber Energi Alternatif; Dimensi Vol 4 No. 1 Juni
2001, Institute for Science and Technology Studies (ISTECS), Jepang. Diakses 20 Februari
2012. http://istecs.org/Publication/Dimensi/dim_vol4no1_juni2001.pdf
Sungkar, R., 2007, Energi Surya. Diakses 20 Februari 2012.
http://griyaasri.com/index2.php?option=com_content&do_pdf=1&id=168
Yushardi, 2002, Pengaruh Faktor Metereologi Terhadap Pola Efisiensi Tiap Jam harian Pada Modul
Sel Surya. Diakses 20 Februari 2012. http://www.tumoutou.net/702_05123/yushardi.DOC
www.pdf-search-engine.com dan www.google.com, Media elektronik atau internet
C-40
Download