UIN SYARIF HIDAYATULLAH JAKARTA Amplifikasi DNA Leptospira dengan Menggunakan Metode Insulated Isothermal Polymerase Chain Reaction (ii-PCR) SKRIPSI SONIA ZULFA DESHI DANUZ NIM. 109102000023 PROGRAM STUDI FARMASI FAKULTAS KEDOKTERAN DAN ILMU KESEHATAN UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH JAKARTA JANUARI 2014 UIN SYARIF HIDAYATULLAH JAKARTA Amplifikasi DNA Leptospira dengan Menggunakan Metode Insulated Isothermal Polymerase Chain Reaction (ii-PCR) SKRIPSI Diajukan sebagai salah satu syarat memperoleh gelar Sarjana Farmasi SONIA ZULFA DESHI DANUZ NIM. 109102000023 PROGRAM STUDI FARMASI FAKULTAS KEDOKTERAN DAN ILMU KESEHATAN UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH JAKARTA JANUARI 2014 ii HALAMAN PERNYATAAN ORISINALITAS Skripsi ini adalah hasil karya saya sendiri, dan semua sumber baik yang dikutip, maupun dirujuk telah saya nyatakan benar Nama : Sonia Zulfa Deshi Danuz NIM : 109102000023 Tanda Tangan : Tanggal : Januari 2014 iii iv v ABSTRAK Nama Program Studi Judul : Sonia Zulfa D : Farmasi : Amplifikasi DNA Leptospira dengan Menggunakan Metode Insulated Isothermal Polymerase Chain Reaction (ii-PCR) Leptospira merupakan bakteri patogen penyebab penyakit leptospirosis yang banyak menimbulkan masalah infeksi serius dan dapat mengakibatkan kematian pada manusia. Penelitian ini dilakukan untuk mengetahui metode Insulated Isothermal Polymerase Chain Reaction (ii-PCR) dapat digunakan untuk mengamplifikasi DNA Leptospira. Keunggulan penggunaan metode iiPCR dalam deteksi Leptospira adalah waktu pendeteksian lebih singkat dan lebih mudah dalam pembacaan hasil. DNA Leptospira diamplifikasi dengan menggunakan sepasang primer spesifik DNA Leptospira pada daerah 16S Ribosomal RNA. Primer spesifik Leptospira mampu mengamplifikasi DNA Leptospira sampai konsentrasi 0,002 ng/ 25µL dan amplifikasi DNA Leptospira dengan metode ii-PCR yang menggunakan DNA Leptospira, primer, dan probe spesifik menunjukkan rasio S/N 1,8062 dan memberikan hasil positif dalam waktu 58 menit bila dibandingkan dengan metode PCR konvensional yang membutuhkan waktu 150 menit dan diperlukan analisa dengan gel elektroforesis. Kata kunci : Leptospirosis, Leptospira, ii-PCR. vi ABSTRACT Nama Program Studi Judul : Sonia Zulfa D : Farmasi : Amplification of Leptospira DNA using Insulated Isothermal Polymerase Chain Reaction (ii-PCR) Leptospira is a pathogen bacteria causing leptospirosis disease which could inflict a serious infection problem and lead to human death. This study was conducted to find out whether Insulated Isothermal Polymerase Chain Reaction could be used to amplify Leptospira DNA. The excellences of iiPCR method in detecting Leptospira are that it has short detection time and it is user friendly. Leptospira DNA was amplified using a specific Leptospira DNA primer on 16S Ribosomal RNA region. The specific Leptospira primer could amplify Leptospira until the concentration of 0,002 ng/ 25µL and Leptospira DNA amplification with iiPCR method using Leptospira DNA, spesific primer and probe showed a S/N ratio of 1,8062 and a positive result in 58 minutes, compared to PCR conventional method that required 150 minutes and a further analysis using electrophoresis gel. Key Words : Leptospirosis, Leptospira, ii-PCR vii KATA PENGANTAR Puji dan syukur kepada Allah SWT, karena atas berkat rahmat dan hidayahNya penulis dapat menyelesaikan tugas pembuatan skripsi yang berjudul Amplifikasi DNA Leptospira dengan Menggunakan Metode Insulated Isothermal Polymerase Chain Reaction (ii-PCR). Shalawat serta salam tercurahkan kepada Nabi besar Muhammad SAW, yang telah menghantarkan kita dari zaman kebodohan hingga menuju zaman yang syarat ilmu dan pengetahuan. Penulis menyadari bahwa dalam menyelesaikan penulisan skripsi ini, penulis mengalami berbagai kendala dan halangan yang tidak bisa dihindarkan, karena itu penulis menyadari bahwa penulisan skripsi ini masih sangat jauh dari kesempurnaan, untuk itu penulis mengharapkan saran, masukan, dan kritik positif yang dapat membangun diri penulis. Penulis menyadari sepenuhnya bahwa penulisan skripsi ini tersusun berkat bantuan, bimbingan, dan dorongan dari berbagai pihak yang terkait. Untuk itu pada kesempatan ini penulis menyampaikan ucapan terimakasih kepada: 1. Ibu Zilhadia M. Si., Apt, selaku pembimbing I dan Bapak DR. Wahyu Pubowasito selaku pembimbing II yang telah memberikan waktu, semangat, ilmu, dan bimbingan selama penulisan skripsi ini. 2. Balai Besar Penelitian Vektor dan Reservoir Penyakit Salatiga yang telah bersedia memberikan DNA Leptospira yang sudah terisolasi kepada penulis. 3. Bapak Prof. DR. (hc) dr. M. K Tadjudin Sp. And, selaku Dekan Fakultas Kedokteran dan Ilmu Kesehatan UIN Syarif Hidayatullah Jakarta. 4. Bapak Drs. Umar Mansur M.Sc., Apt, selaku Ketua Program Studi Farmasi FKIK UIN Syarif Hidayatullah Jakarta. 5. Kepada ibu Yuni Anggraeni, S.Si., Apt selaku penasehat akademik Program Studi Farmasi FKIK UIN Syarif Hidayatullah Jakarta. 6. Bapak dan Ibu staf pengajar dan karyawan yang telah memberikan bimbingan dan bantuan selama saya menempuh pendidikan di Program Studi Farmasi FKIK UIN Syarif Hidayatullah Jakarta. viii 7. Kedua orang tuaku, Papa tercinta A. Nuzirwan H. M dan Mama tersayang Sri Hidayati yang selalu memberikan kasih sayang, doa yang tidak pernah putus, dan dukungan baik moril maupun meteril. Tiada apapun di dunia ini yang dapat membalas semua kebaikan, cinta, dan kasih sayang yang telah kalian berikan. 8. Untuk kedua adikku tersayang Tiffany Dwi Putri dan Nabila Ramadania meskipun tidak terjun langsung dalam penulisan skripsi ini, tetapi tawa dan candamu adalah semangatku. 9. Kak Yopi, Teh Leha, dan Bu Rahma yang sangat membantu penulis memahami hal-hal sulit dalam bioteknologi. 10. Para staf dan karyawan BPPT yang telah banyak membantu penulis. 11. Kepada teman seperjuangan Evira Vivikananda, Sofiana Fajriah Rahmah, dan Rahmat Azhari Kemal terima kasih untuk tawa, semangat, kesabaran, saran, dan kritiknya. 12. Kepada teman-teman Farmasi angkatan 2009, terima kasih untuk kebersamaan, dukungan, saran, dan kritiknya. 13. Teman-teman yang dengan senang hati menemani cerita suka dan duka selama penelitian, Mbak Ily, Kak Dede, Mas Herman, Angel, Isna, Hami, Hani, Ziah, Mimil, Mumut, dan Bella. Terima kasih untuk selalu menemani mendukung, mendengarkan ceritaku, dan mendoakanku. 14. Serta semua pihak yang tidak dapat disebutkan satu persatu yang turut membantu menyelesaikan skripsi ini. Semoga apa yang kalian berikan dapat bermanfaat dan dibalas oleh Allah SWT, amin. Penulis berharap bahwa tugas ini dapat bermanfaat khususnya bagi penulis dan umumnya bagi para pembaca. Jakarta, Januari 2014 Penulis ix HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR UNTUK KEPENTINGAN AKADEMIS Sebagai sivitas akademik Universitas Islam Negeri (UIN) Syarif Hidayatullah Jakarta, saya yang bertanda tangan di bawah ini : Nama : Sonia Zulfa Deshi Danuz NIM : 109102000023 Program Studi : Farmasi Fakultas : Kedokteran dan Ilmu Kesehatan Jenis Karya : Skripsi Demi perkembangan ilmu pengetahuan, saya menyetujui skripsi/ karya ilmiah saya dengan judul : Amplifikasi DNA Leptospira dengan Menggunakan Metode Insulated Isothermal Polymerase Chain Reaction (ii-PCR) Untuk dipublikasikan atau ditampilkan di internet atau suatu media lain yaitu Digital Library Perpustakaan Universitas Islam Negeri (UIN) Syarif Hidayatullah Jakarta untuk kepentingan akademik sebatas sesuai dengan Undang-Undang Hak Cipta. Demikian pernyataan persetujuan publikasi karya ilmiah ini saya buat dengan sebenarnya. Dibuat di : Jakarta Pada Tanggal : 15 Januari 2014 Yang Menyatakan, ( Sonia Zulfa Deshi Danuz ) x DAFTAR ISI Halaman HALAMAN JUDUL ............................................................................... HALAMAN PERNYATAAN ORISINALITAS ................................... HALAMAN PERSETUJUAN PEMBIMBING .................................... LEMBAR PENGESAHAN SKRIPSI .................................................... ABSTRAK ................................................................................................ ABSTRACT .............................................................................................. KATA PENGANTAR .............................................................................. HALAMAN PERSETUJUAN PUBLIKASI TUGAS AKHIR ............ DAFTAR ISI ............................................................................................. DAFTAR TABEL .................................................................................... DAFTAR GAMBAR ................................................................................ DAFTAR LAMPIRAN ............................................................................ DAFTAR ISTILAH ................................................................................. ii iii iv v vi vii viii x xi xiii xiv xv xvi BAB 1 PENDAHULUAN ...................................................................... 1.1 Latar Belakang ...................................................................... 1.2 Rumusan Masalah ................................................................. 1.3 Tujuan Penelitian .................................................................. 1.4 Manfaat Penelitian ................................................................ 1 1 3 3 3 BAB 2 TINJAUAN PUSTAKA ............................................................. 2.1 Leptospirosis ......................................................................... 2.1.1 Pengertian Leptospirosis ........................................... 2.1.2 Epidemiologi ............................................................. 2.1.3 Cara Penularan Leptospirosis .................................... 2.1.4 Leptospira ................................................................. 2.1.4.1 Morfologi ...................................................... 2.1.4.2 Klasifikasi ..................................................... 2.1.5 Patofisiologi .............................................................. 2.1.6 Pemeriksaan Laboratorium ....................................... 2.2 DNA ...................................................................................... 2.2.1 Struktur DNA dan Sifat Kimia DNA ........................ 2.2.2 Isolasi DNA ............................................................... 2.3 Polymerasse Chain Reaction (PCR) .................................... 2.3.1 Komponen PCR ......................................................... 2.3.2 Tahapan PCR ............................................................ 2.4 Elektroforesis Gel Agarosa .................................................... 2.5 Insulated Isothermal Polymerase Chain Reaction (ii-PCR) .. 4 4 4 4 4 5 5 5 6 7 10 10 12 12 12 15 16 18 BAB 3 METODOLOGI PENELITIAN ................................................ 3.1 Waktu dan Tempat Penelitian ............................................... 3.2 Alat dan Bahan ...................................................................... 3.2.1 Alat ............................................................................ 21 21 21 21 xi 3.2.2 Bahan ........................................................................ Tahapan Penelitian ................................................................ Prosedur Kerja ...................................................................... 3.4.1 Persiapan Media Tumbuh E.coli ............................... 3.4.2 Peremajaan E.coli ...................................................... 3.4.3 Isolasi DNA E.coli .................................................... 3.4.4 Pembuatan Gel Agarosa dan Elektroforesis ............. 3.4.4.1 Pembuatan Gel Agarosa 1% ......................... 3.4.4.2 Elektroforesis ................................................ 3.4.5 Gel Documentation ................................................... 3.4.6 Amplifikasi PCR ....................................................... 3.4.7 Uji Spesifitas Primer ................................................. 3.4.8 Uji Sensitivitas Primer .............................................. Insulated Isothermal PCR (ii-PCR) ...................................... 3.4.5 Amplifikasi Insulated Isothermal PCR (ii-PCR) ....... Alur Penelitian ...................................................................... 22 22 22 22 23 23 23 23 24 24 24 24 25 25 25 26 BAB 4 HASIL DAN PEMBAHASAN .................................................. 4.1 Isolasi DNA ........................................................................... 4.2 Polymerase Chain Reaction (PCR) ...................................... 4.2 Insulated Isothermal Polymerase Chain Reaction (ii-PCR) .. 27 27 30 32 BAB 5 KESIMPULAN DAN SARAN ................................................... 5.1 Kesimpulan ........................................................................... 5.2 Saran ..................................................................................... 37 37 37 DAFTAR PUSTAKA ............................................................................... 38 LAMPIRAN .............................................................................................. 42 3.3 3.4 3.5 3.6 xii DAFTAR TABEL Halaman Tabel 1 Tabel 2 Tabel 3 Tabel 4 Tabel 5 Tabel 6 Tabel 7 Tabel 8 Ukuran Pemisahan Molekul DNA ............................................. Hasil Konsentrasi dan Kemurnian DNA Leptospira dan E.coli ........................................................................................... Campuran Reaksi Master Mix PCR Konvensional ................... Campuran Reaksi Master Mix dengan KAPA2G™ Robust PCR Kit dengan ii-buffer .......................................................... Campuran Reaksi Master Mix dengan KAPA2G™ Robust PCR Kit dengan buffer kit ......................................................... Campuran Reaksi Master Mix Thermo Scientific™ Long PCR Master Mix dengan ii-buffer....................................................... Campuran Reaksi Master Mix Thermo Scientific™ Long PCR Master Mix dengan buffer kit ..................................................... Nilai rasio S/N pada sampel hasil reaksi ii-PCR ....................... xiii 17 43 45 46 46 47 47 48 DAFTAR GAMBAR Halaman 1. 2. 3. 4. 5. 6. 7. 8. Sel Leptospira dengan mikroskop elektron .......................................... Klasifikasi Leptospirosis ...................................................................... Arah khas Perkembangan Penyakit Leptospirosis ............................... Struktur double helix DNA ................................................................... Siklus PCR .......................................................................................... Reaksi ii-PCR ....................................................................................... Hasil Elektroforesis Isolasi Genom Leptospira dan E.coli .................. Hasil Elektroforesis Produk PCR Menggunakan Primer Leptospira Pada Uji Spesifitas Primer ................................................................... 9. Hasil Elektroforesis Produk PCR dengan Menggunakan Primer Spesifik DNA Leptospira pada Uji Sensitivitas Primer ...................... 10. Hasil Reaksi ii-PCR dengan Taq DNA Polimerase Thermo Scientific™ Long PCR Enzyme Mix ................................................... 11. Hasil Reaksi ii-PCR dengan Taq DNA Polimerase KAPA2G™ Robust PCR Kit .................................................................................... 12. Hasil Elektroforesis Produk ii-PCR ...................................................... 13. Hasil Peremajaan E.coli ....................................................................... 14. DNA Leptospira yang Sudah Terisolasi .............................................. xiv 5 6 7 11 16 19 30 31 32 34 34 35 42 42 DAFTAR LAMPIRAN Halaman 1. Hasil Peremajaan E.coli dan DNA Leptospira yang Sudah Terisolasi ............................................................................................... 2. Hasil Konsentrasi dan Kemurnian DNA Leptospira dan DNA E.coli .................................................................................................... 3. Membuat Larutan Induk Primer dan Probe .......................................... 4. Campuran Reaksi Master Mix Untuk Amplifikasi DNA Untuk PCR Konvensional ....................................................................................... 5. Campuran Reaksi Master Mix Untuk Amplifikasi DNA Untuk ii-PCR ................................................................................................... 6. Rasio S/N pada Sampel Hasil Reaksi ii-PCR ...................................... xv 42 43 44 45 46 48 DAFTAR ISTILAH CDV : Canine Distemper Virus CFR : Case Fatality Rate CFS : Cerebrospinal Fluid CTAB : Cetyltrimetyl Ammonium Bromide DNA : Deoxyribose-Nucleic Acid dNTP : Deoxynucleotide Triphosphate EDTA : Ethylene Diamine Tetra Acetic Acid ELISA : Enzyme-Linked Immunosorbent Assay IHHNV : Infectious Hypodermal and Hematopoetic Necroses Virus ii-PCR : Insulated Isothermal Polymerase Chain Reaction LB : Luria Bertani MAT : Microscopic Agglutination Test PCI : Fenol-Kloroform-Isoamilalkohol PCR : Polymerase Chain Reaction RNA : Ribose-Nucleic Acid SDS : Sodium Dodecyl Sulfate TAE : Tris Acetate EDTA TE : Tris-EDTA WSSV : White Spot Syndrome Virus xvi BAB 1 PENDAHULUAN 1.1 Latar Belakang Perubahan lingkungan yang terjadi pasca banjir menyebabkan banyak terdapat genangan air kotor dan sampah. Lingkungan yang kotor tersebut menyebabkan sarang penyakit yang kerap muncul setelah musibah banjir dan salah satu penyakit yang dapat terjadi pasca banjir adalah Leptospirosis (Ernawati, 2008). Leptospirosis adalah penyakit infeksi yang disebabkan oleh bakteri patogenik yang disebut Leptospira yang ditularkan secara langsung atau tidak langsung dari hewan ke manusia. Penularan yang terjadi dari hewan ke manusia ini di sebut zoonosis (WHO, 2003). Penyebaran Leptospirosis terjadi di seluruh dunia tetapi umumnya di area tropis atau subtropis dengan curah hujan tinggi seperti di Nikaragua, Brazil, India, Asia Tenggara, Malaysia, dan Amerika Serikat (WHO, 2003; Zavitsanou dan Babatsikou, 2008; Tilahun, Reta dan Simenew, 2013). International Leptospirosis Society (2001) menyatakan bahwa Indonesia merupakan negara dengan kejadian Leptospirosis tinggi dan menempati peringkat ke-3 di dunia untuk mortalitas (16,7%) setelah Uruguay dan India (Ernawati, 2008). Pada tahun 2010 kasus Leptospirosis meningkat dibandingkan tahun 2009, yaitu dari 335 kasus menjadi 409 kasus. Tahun 2010 kasus dilaporkan dari 6 provinsi sedangkan pada tahun sebelumnya hanya dilaporkan dari 3 provinsi. Kasus terbanyak pada tahun 2009 dan 2010 dilaporkan dari Jawa Tengah dan DI Yogyakarta. Pada tahun 2007 terdapat 664 kasus dengan 55 orang meninggal (CFR: 8,28%), tahun 2008 terdapat 426 kasus dengan 22 orang meninggal (CFR: 5,16%), tahun 2009 terdapat 335 kasus dengan 23 orang meninggal (CFR: 6,87%), dan tahun 2010 ditemukan 409 kasus dengan 43 orang meninggal (CFR: 10,51%) (Anonim, 2011). Diagnosis klinis sulit karena gejala klinik bervariasi dan tidak spesifik. Leptospirosis sering salah didiagnosis sebagai meningitis aseptik, influenza, penyakit hati atau demam yang tidak diketahui sebabnya (WHO, 2003; Faine. S, 1982). Oleh karena itu diagnosis tidak hanya didasarkan pada gejala klinik saja. 1 UIN Syarif Hidayatullah Jakarta 2 Diperlukan metode pemeriksaan lain yang dapat memberikan hasil pasti dan tepat dari penderita yang menderita Leptospirosis. Metode pemeriksaan yang biasanya digunakan didasarkan pada serum antibodi dengan uji serologis seperti uji enzyme-linked immunosorbent assay (ELISA) atau microscopic agglutination test (MAT) (Faine. S, 1982). Sedangkan pada manusia, uji ELISA dan MAT menunggu sampai titer antibodi penderita dapat terdeteksi. Titer antibodi dapat terdeteksi sekitar hari ketujuh sejak gejala timbul dan akibat dari timbulnya reaksi antibodi ini, Leptospira akan hilang dari darah setelah sekitar 10 hari sakit. Di tahap ini, beberapa bakteri mungkin telah berada dalam tubulus ginjal. (Bal, dkk., 1994). Pemeriksaan laboratorium sangat perlu untuk menegakkan diagnosis penyakit Leptospirosis secara dini. Oleh karena itu diperlukan pemeriksaan terhadap penyakit Leptospirosis yang cepat dan tepat dengan spesifitas dan sensitivitas yang tinggi (WHO, 2003). PCR (Polymerase Chain Reaction) merupakan alat yang sering digunakan dalam aplikasi medis dan biologi termasuk tes genetik, deteksi, dan diagnosis penyakit menular (Anonim, 2012). PCR adalah metode yang sensitif, spesifik, dan teknik cepat yang telah berhasil diterapkan untuk mendeteksi beberapa mikroorganisme dan virus dalam berbagai spesimen, termasuk sputum, serum, cairan serebrospinal, urin, feses, dan berbagai jaringan tubuh (Bal, dkk., 1994) dan metode ini dapat memberikan hasil positif pada fase dini penyakit sebelum titer antibodi dapat dideteksi (Setiawan, 2008). Meskipun metode PCR dapat memberikan hasil yang sensitif dan spesifik, metode ini memerlukan analisa hasil reaksi lebih lanjut dengan menggunakan gel elektroforesis yang membutuhkan waktu dan tenaga ahli khusus dalam pembacaan hasil analisa (Kumari 2007; Setiawan 2008). Oleh karena itu diperlukan metode pemeriksaan lain dengan waktu yang lebih singkat dan mudah dalam pembacaan hasil analisa. Metode pemeriksaan laboratorium yang akan dikembangkan adalah dengan menggunakan ii-PCR (Insulated Isothermal Polymerase Chain Reaction). Sejauh ini penelitian yang berkaitan dengan ii-PCR baru sebatas untuk deteksi beberapa virus dan bakteri saja, di antaranya WSSV, IHHNV, CDV, Influenza A, UIN Syarif Hidayatullah Jakarta 3 Avian Influenza H5, dan Salmonella spp (Anonim, 2012; Tsai, dkk., 2012) dan pada penelitian ini, metode ii-PCR akan digunakan untuk mendeteksi DNA Leptospira. Insulated isithernal Polymerase Chain Reaction (ii-PCR) menggunakan fenomena konveksi termal untuk menjalankan reaksi PCR di sebuah tube yang telah didesain secara khusus di dalam chamber ii-PCR, yang merupakan alat PCR konvektif dengan satu sumber panas. Ketika pemanasan pada suhu 95oC diaplikasikan pada bagian bawah R-tube, gradien temperatur akan terbentuk, dimana reaksi PCR berjalan mengikuti arus konveksi cairan. Karena hanya menggunakan satu sumber panas dalam menjalankan reaksi ii-PCR tanpa perlu mengatur perubahan suhu seperti pada PCR konvensional, alat ii-PCR hanya memerlukan waktu yang singkat dalam proses reaksi PCR dibandingkan dengan PCR konvensional. Alat ini juga tidak memerlukan analisa lebih lanjut dengan gel elektroforesis karena hasil sudah terlihat pada layar touch panel dengan tanda “+” dan “-“ (Setiawan, 2008; Anonim, 2012). 1.2 Rumusan Masalah Apakah metode Insulated Isothermal Polymerase Chain Reaction (ii-PCR) dapat digunakan untuk mengamplifikasi DNA Leptospira ? 1.3 Tujuan Penelitian Mengetahui metode Insulated Isothermal Polymerase Chain Reaction (ii- PCR) dapat digunakan untuk mengamplifikasi DNA Leptospira. 1.4 Manfaat Penelitian Manfaat dari penelitian ini adalah memberikan informasi mengenai metode alternatif dalam penggunaan teknologi PCR untuk mendeteksi Leptospirosis. UIN Syarif Hidayatullah Jakarta BAB 2 TINJAUAN PUSTAKA 2.1 Leptospirosis 2.1.1 Pengertian Leptospirosis Leptospirosis adalah penyakit infeksi yang disebabkan bakteri patogen yang disebut Leptospira yang ditularkan secara langsung atau tidak langsung dari hewan ke manusia. Penularan yang terjadi dari hewan ke manusia ini disebut zoonosis (WHO, 2003). 2.1.2 Epidemiologi Leptospirosis dapat ditemukan diseluruh dunia, daerah rasio tinggi adalah kepulauan Karibia, Amerika Tengah dan Selatan, Asia Tenggara dan Kepulauan Pasifik (Setadi dkk, 2001) Di negara beriklim tropik kejadian Leptospirosis lebih banyak 1000 kali dibandingkan dengan negara subtropik dengan resiko penyakit lebih berat (Bovet dkk., 1999). Leptospirosis tersebar baik di Indonesia maupun di luar Indonesia (Thornley dkk., 2001). 2.1.3 Cara Penularan Leptospirosis Penularan Leptospirosis pada manusia ditularkan oleh hewan yang terinfeksi kuman Leptospira. Hewan penjamu kuman Leptospira adalah hewan peliharaan, seperti babi, lembu, kambing, kucing, anjing, serta beberapa hewan liar, seperti tikus, bajing, ular, dan lain-lain (Ernawati, 2008). Manusia terinfeksi Leptospira melalui kontak dengan air, tanah (lumpur), tanaman yang telah dikotori oleh air seni dari hewan-hewan penderita Leptospirosis. Bakteri Leptospira masuk ke dalam tubuh melalui selaput lendir (mukosa) mata, hidung atau kulit yang lecet dan kadang-kadang melalui saluran pencernaan dari makanan yang terkontaminasi oleh urin tikus yang terinfeksi Leptospira. Penularan langsung dari manusia ke manusia jarang terjadi. Penularan Leptospira dapat secara langsung dan tidak langsung. Penularan secara langsung melalui darah, urin , cairan tubuh, hewan maupun manusia yang telah terinfeksi 4 UIN Syarif Hidayatullah Jakarta 5 Leptospira. Sedangkan penularan secara tidak langsung melalui genangan air, sungai, danau, selokan saluran air dan lumpur yang tercemar urin hewan (Ernawati, 2008; Riyaningsih dkk., 2012). 2.1.4 Leptospira 2.1.4.1 Morfologi “Leptospira” berasal dari bahasa Yunani leptos (tipis) dan Latin Leptospira (melingkar). Leptospira berdiameter hanya 0,1 m dengan panjang 6-20 m. Selselnya meruncing di kedua sisinya, satu atau keduanya yang biasanya bengkok dengan karakteristik pengait (Gambar 1) (Levett, 2001). Gambar 1. Sel Leptospira dengan mikroskop elektron (perbesaran 60.000 x) (Levett, 2001). 2.1.4.2 Klasifikasi Famili Leptospiraceae hanya terdiri dari tiga genera yaitu : Leptonema, Turmeria, dan Leptospira. Genus Leptospira terdiri dari 10 genomospecies dan yang paling penting adalah L.interrogens merupakan kelompok patogenik dan L.biflexa merupakan kelompok non patogen. Masing-masing genomospecies dibagi lagi menjadi 23 serogrup yang di dalamnya terdapat serovar yang memiliki hubungan antigenik (Collins, 2006). UIN Syarif Hidayatullah Jakarta 6 Gambar 2. Klasifikasi Leptospirosis (Collins, 2006) 2.1.5 Patofisiologi Infeksi Leptospira menghasilkan manifestasi klinis dengan spektrum yang lebar (Collins, 2006). Masa inkubasi biasanya 5-14 hari, dengan kisaran 2-30 hari (WHO, 2003). Secara umum Leptospirosis bersifat bifasik, dengan fase septikemia akut diikuti oleh fase imun (Gambar 3) (Collins, 2006). Fase Septikemia Fase septikemia, yang berlangsung sekitar empat sampai tujuh hari, ditandai dengan tiba-tiba demam, sakit kepala hebat, nyeri otot, dan mual. Bakteri dapat diisolasi dari kultur darah, cairan serebrospinal (CFS) dan sebagian besar jaringan. Sekitar 90% pasien menderita anikterik ringan (yaitu tanpa jaundice) bentuk dari penyakit, sementara 5-10% menderita lebih parah dari jaundice, gagal ginjal dan manifestasi perdarahan, biasa dikenal dengan penyakit Weil. Interfase Selama periode satu sampai tiga hari peningkatan mengikuti tahap pertama, suhu tubuh turun drastis dan pasien mungkin menjadi afebrile dan dengan gejala yang berbeda. Demam kemudian terulang, mengindikasikan onset dari tahap kedua. UIN Syarif Hidayatullah Jakarta 7 Fase Imun Fase imun berlangsung sebagai konsekuensi dari respon imun tubuh terhadap infeksi, dan berlangsung sampai 30 hari atau lebih. Dimanifestasi oleh demam dengan durasi yang pendek dan keterlibatan sistem saraf pusat (meningitis). Gambar 3. Arah khas Perkembangan Penyakit Leptospirosis (Collins, 2006) 2.1.6 Pemeriksaan Laboratorium Pemeriksaan laboratorium yang dilakukan pada penderita Leptospirosis dapat dibagi menjadi pemeriksaan laboratorium yang bersifat umum dan pemeriksaan laboratorium spesifik. 1. Pemeriksaan Laboratorium Klinik Umum Pemeriksaan laboratorium klinik umum memberikan hasil berbeda antara Leptospirosis yang ringan dan berat. Hasil pemeriksaan laboratorium penderita dengan gejala Leptospirosis berat memperlihatkan kelainan hasil laboratorium yang sangat jelas. Pemeriksaan laboratorium klinik didasarkan dari gejala-gejala yang timbul, seperti mialgia hebat, demam, gangguan ginjal, dan lain-lain (Setiawan, 2008; Setadi dkk., 2001). 2. Pemeriksaan Laboratorium Spesifik 2.a Pemeriksaan Bakteri 2.a.1 Pemeriksaan bakteri secara langsung dengan mikroskop UIN Syarif Hidayatullah Jakarta 8 Leptospira dari spesimen klinik dilihat secara langsung menggunakan mikroskop lapangan gelap atau menggunakan mikroskop cahaya setelah preparat dicat dengan pewarnaan yang sesuai (Levet dkk., 2001). Leptospira tampak sebagai organisme bergerak cepat, berbentuk spiral pegas yang kurus, umumnya ditemukan dalam biakan, darah, dan urin (WHO, 2003). Keuntungan pemeriksaan ini dapat digunakan untuk mengamati Leptospira dalam biakan, terutama bila bakteri dalam jumlah banyak dan untuk mengamati aglutinasi pada pemeriksaan MAT. Kelemahannya, memerlukan tenaga ahli berpengalaman. Bila jumlah sedikit, Leptospira sulit ditemukan (WHO, 2003). 2.b Pemeriksaan Serologis Sebagian besar kasus Leptospirosis didiagnosa dengan tes serologi. Antibodi dapat dideteksi di dalam darah 5-7 hari sesudah munculnya gejala. Ada banyak metode serologis yang dapat digunakan dan yang dianggap paling baik sampai saat ini adalah microscopic agglutination test (MAT) (Setiawan, 2008). 2.b.1 Microscopic Agglutination Test (MAT) Microscopic agglutination test (MAT) adalah tes untuk menentukan antibodi aglutinasi di dalam serum penderita. Cara melakukan tes adalah serum penderita direaksikan dengan suspensi antigen serovar Leptospira hidup atau mati. Setelah diinkubasi, reaksi antigen-antibodi diperiksa di bawah mikroskop lapangan gelap untuk melihat aglutinasi. Yang dipakai batas akhir (end point) pengenceran adalah pengenceran serum tertinggi yang memperlihatkan 50% aglutinasi (WHO, 2003). Metode ini dipakai sebagai metode referensi untuk mengembangkan teknik lain dengan membandingkan sensitivitas, spesifitas dan akurasi. MAT sering mengalami beberapa kendala terutama di negara yang sedang berkembang, karena memerlukan banyak jenis serovar dan tenaga ahli berpengalaman (Saengjaruk dkk., 2002). Kelebihan metode ini dapat dipakai untuk serosurvei epidemiologi dan antigen yang dipakai dapat ditambah atau dikurangi sesuai dengan kebutuhan. Sedangkan kelemahan metode MAT sangat rumit terutama saat UIN Syarif Hidayatullah Jakarta 9 pengawasan, pelaksanaan, dan penilaian hasil. Seluruh biakan serovar hidup harus dipelihara dengan baik. Perlakuan terhadap tes menggunakan Leptospira hidup maupun mati harus sama. Memelihara biakan Leptospira di dalam laboratorium cukup berbahaya bagi para petugas. Disamping itu, sering terjadi kontaminasi silang antara serovar, sehingga perlu dilakukan verifikasi serovar secara berkala (Levett dkk., 2001; WHO, 2003). 2.b.2 Enzyme-linked immunosorbent assay (ELISA) Tes ELISA sangat popular dan bahan yang diperlukan untuk pemeriksaan sudah tersedia secara komersial dengan antigen yang diproduksi sendiri (in house). Untuk mendeteksi IgM umumnya menggunakan antigen spesifik genus yang bereaksi secara luas, teknik ini kadang-kadang juga digunakan untuk mendeteksi antibodi IgG. Adanya antibodi IgM merupakan pertanda adanya infeksi baru Leptospira atau infeksi yang terjadi beberapa minggu terakhir (WHO, 2003). Kelebihan test ELISA ini cukup sensitif untuk mendeteksi Leptospira dengan cepat pada fase akut dan lebih sensitif dibandingkan dengan MAT. Sedangkan kekurangan tes ini adalah waktu diagnosis yang dibutuhkan cukup lama, menunggu sampai titer antibodi dapat dideteksi (WHO, 2003). 3. Pemeriksaan Molekuler 3.a Teknologi PCR Metode ini sangat berguna untuk mendiagnosis Leptospirosis terutama pada fase permulaan penyakit Leptospira beberapa hari setelah munculnya gejala penyakit. Alat ini dapat mendeteksi Leptospira beberapa hari setelah munculnya gejala penyakit. Akan tetapi alat ini belum tersedia secara luas terutama di negara yang sedang berkembang (Yersin dkk., 1998). Keterbatasan PCR adalah tidak mampu untuk mendeteksi jenis serovar yang menginfeksi. Walaupun demikian PCR bermanfaat untuk epidemiologi dan kesehatan masyarakat. Agar lebih bermanfaat, maka hasil yang diperoleh dipotong dengan enzim restriksi endonuklease, kemudian amplikon yang diperoleh disekuen langsung atau dianalisis dengan metode konformasi untai tunggal (Natarajaseenivasan dkk., 2004). UIN Syarif Hidayatullah Jakarta 10 Keuntungan pemeriksaan PCR adalah bila bakteri ada maka diagnosis dapat dipastikan dengan cepat terutama pada fase dini penyakit sebelum titer antibodi dapat dideteksi. Kelemahannya memerlukan peralatan dan tenaga ahli khusus. Disamping itu, PCR dapat memberikan hasil positif palsu, apabila terkontaminasi oleh DNA asing. Dia juga dapat memberikan hasil negatif palsu, karena spesimen klinik yang diperiksa sering mengandung inhibitor seperti heparin dan saponin (WHO, 2003). 2.2 DNA 2.2.1 Struktur DNA dan Sifat Kimia DNA DNA dan RNA merupakan polimer linier (polinukleotida) yang tersusun dari subunit atau monomer nukleotida. Komponen penyusun nukleotida terdiri dari tiga jenis molekul, yaitu gula pentosa (deoksiribosa pada DNA atau ribosa pada RNA), basa nitrogen, dan gugus fosfat (Gambar 4). Basa yang ditemukan pada nukleotida adalah basa purin (adenin = A, guanin = G) dan basa pirimidin (sitosin = C, timin = T, urasil = U). Monomer nukleotida mempunyai gugus hidroksil pada posisi karbon 3’, gugus fosfat pada posisi karbon 5’ dan basa pada posisi karbon 1’ molekul gula. Nukleotida satu dengan yang lainnya berikatan melalui ikatan fosfodiester antara gugus 5’fosfat dengan gugus 3’hidroksil. Struktur DNA mirip dengan struktur RNA. Perbedaan diantara keduanya terdapat pada jenis gula dan basa pada monomernya serta jumlah untai penyusunnya. Pada DNA, tidak terdapat gugus hidroksil pada posisi karbon 2’ dari molekul gula (2deoksiribosa) sementara pada RNA molekul gulanya adalah ribosa. Basa nitrogen yang terdapat pada DNA adalah adenin, guanin, sitosin dan timin, sedangkan pada RNA jenis basanya adalah adenin, sitosin, guanin dan urasil. RNA merupakan polinukleotida yang membentuk satu rantai/untai sedangkan DNA merupakan polinukleotida yang membentuk 2 untai (heliks ganda) (Gaffar, 2007). Menurut Watson dan Crick DNA adalah untai ganda. Backbone dari masing-masing untai adalah rantai dari ribosa (lima karbon gula) dan grup fosfat yang memiliki basa nitrogen (A, T, C, dan G) ikatan hidrogen yang dibentuk oleh pasangan basa (A-T dan C-G) bersama (Stone, 2004). UIN Syarif Hidayatullah Jakarta 11 Struktur molekul DNA merupakan rantai heliks ganda yang memutar ke kanan (Gambar 4). Kedua rantai polinukleotida memutar pada sumbu yang sama dan bergabung satu dengan yang lainnya melalui ikatan hidrogen antara basabasanya. Basa guanin berpasangan dengan basa sitosin, sedangkan basa adenin berpasangan dengan basa timin. Antara basa guanin dan basa sitosin terbentuk tiga ikatan hidrogen, sedang antara basa adenin dan timin terbentuk dua ikatan hidrogen. Sehingga dalam molekul DNA jumlah basa G akan selalu sama dengan jumlah basa C, sedangkan jumlah basa A=T. Kemudian jumlah basa purin (A + G) akan sama dengan jumlah basa pirimidin (C + T). Kedua untai DNA saling berkomplementasi melalui basa penyusunnya dengan arah antiparalel (berlawanan 5’→ 3’ vs 3’→5’), ujung yang mengandung gugus fosfat bebas disebut ujung 5’ sedangkan pada ujung lainnya yang mengandung gugus hidroksil bebas disebut ujung 3’. Kedua untai tersebut saling melilit satu sama lain membentuk struktur heliks ganda. Gugus fosfat dan gula yang tersusun bergantian menjadi tulang punggung (backbone) molekul DNA sementara pada bagian dalam terdapat basa yang melekat pada molekul gula (Gaffar, 2007). Gambar 4. Struktur double helix DNA (Purves dkk., 2003). UIN Syarif Hidayatullah Jakarta 12 2.2.2 Isolasi DNA Semua organisme disusun oleh sel yang mengandung elemen genetik yang sama yaitu DNA yang terdapat dalam kromosom. Kromosom eukariot berbentuk linear sedangkan kromosom prokariot berbentuk sirkular. Selain itu prokariot juga mengandung satu atau lebih plasmid. Plasmid merupakan molekul DNA sirkular dengan ukuran yang jauh lebih kecil dibanding kromosom (Gaffar, 2007). Prinsipnya adalah memisahkan DNA kromosom atau DNA genom dari komponen-komponen sel lain. Sumber DNA bisa dari tanaman, kultur mikroorganise, atau sel manusia. Membran sel dilisis dengan menambahkan detergen untuk membebaskan isinya, kemudian pada ekstrak sel tersebut ditambahkan protease (yang berfungsi mendegradasi protein) dan RNase (yang berfungsi untuk mendegradasi RNA), sehingga yang tinggal adalah DNA. Selanjutnya ekstrak tersebut dipanaskan sampai suhu 90oC untuk menginaktifasi enzim yang mendegradasi DNA (DNase). Larutan DNA kemudian di presipitasi dengan etanol dan bisa dilarutkan lagi dengan air (Gaffar, 2007). 2.3 Polymerase Chain Reaction (PCR) PCR adalah teknik cepat untuk mengamplifikasi fragmen DNA spesifik secara in vitro dengan menggunakan 2 primer untai tunggal pendek. Dengan teknik ini sejumlah kecil fragmen DNA yang diinginkan akan diamplifikasi secara eksponensial sampai jutaan kali dalam beberapa jam (Sulistyaningsih, 2007; Gaffar, 2007). PCR melibatkan banyak siklus yang masing-masing terdiri dari tiga tahap berurutan, yaitu pemisahan (denaturasi) rantai DNA template, penempelan (annealing) pasangan primer pada DNA target dan pemanjangan (extension) primer atau reaksi polimerisasi yang dialkalisis oleh DNA polimerase (Gaffar, 2007). 2.3.1 Komponen PCR Komponen-komponen yang dibutuhkan untuk PCR antara lain fragmen DNA yang akan diamplifikasi (template DNA), sepasang primer oligonukleotida UIN Syarif Hidayatullah Jakarta 13 sintetik, enzim DNA polimerase yang tahan panas (Taq polimerase), semua macam nukleotida (dATP, dGTP, dCTP, dan dTTP) serta buffer reaksi yang mengandung MgCl2 Enzim reverse transcriptase, yang dapat mengubah RNA menjadi sekuen DNA komplementernya, digunakan pada reverse transcription PCR (Innis, 1990). Dan alat yang digunakan untuk proses PCR adalah thermocycler, disini reaksi PCR akan berlangsung. Alat ini mampu secara cepat mengubah temperatur yang dibutuhkan untuk siklus berulang PCR (Sulistyaningsih, 2007). a. Template DNA Template DNA adalah molekul DNA untai ganda yang mengandung sekuen target yang akan diamplifikasi. Ukuran DNA bukan merupakan faktor utama keberhasilan PCR, berapapun panjangnya jika tidak mengandung sekuen yang diinginkan maka tidak akan berhasil proses suatu PCR, namun sebaliknya jika ukuran DNA tidak terlalu panjang tapi mengandung sekuen yang diinginkan maka PCR akan berhasil (Sulistyaningsih, 2007). Konsentrasi DNA juga dapat mempengaruhi keberhasilan PCR. Jika konsentrasinya terlalu rendah maka primer mungkin tidak dapat menemukan target dan jika konsentrasi terlalu tinggi akan meningkatkan kemungkinan mispriming. Disamping itu perlu diperhatikan kemurnian template karena akan mempengaruhi hasil reaksi (Sulistyaningsih, 2007). b. Primer Primer merupakan oligonukleotida pendek rantai tunggal yang mempunyai urutan komplemen dengan DNA template yang akan diperbanyak. Panjang primer berkisar antara 20-30 basa. Untuk merancang urutan primer, perlu diketahui urutan nukleotida pada awal dan akhir DNA target. Primer oligonukleotida disintesis menggunakan suatu alat yang disebut DNA synthesizer (Gaffar, 2007). Konsentrasi primer biasanya optimal pada 0,1-0,5 M. Konsentrasi primer yang terlalu tinggi akan menyebabkan mispriming (penempelan pada tempat yang tidak spesifik) dan akumulasi produk non spesifik serta meningkatkan kemungkinan terbentuk primer-dimer, sebaliknya bila UIN Syarif Hidayatullah Jakarta 14 konsentrasi primer terlalu sedikit maka PCR menjadi tidak efisien sehingga hasilnya rendah (Sulistyaningsih, 2007). c. Enzim DNA Polimerase . DNA polimerase adalah enzim yang mengkatalisis polimerisasi DNA. Biasanya digunakan Taq polimerase yang stabil pada suhu tinggi karena enzim ini diisolasi dari Thermus aquaticus yang hidup pada sumber air panas. Konsentrasi enzim yang dibutuhkan untuk PCR biasanya 0,5-2,5 unit. Kelebihan jumlah enzim mengakibatkan akumulasi produk non spesifik, sedangkan jika terlalu rendah maka dihasilkan sedikit produk yang diinginkan (Sulistyaningsih, 2007). d. Deoxynucleotide Triphosphate (dNTP) Deoxynucleotide Triphosphate merupakan material utama untuk sintesis DNA dalam proses PCR yang terdiri dari dATP, dGTP, dCTP, dan dTTP. Konsentrasi dNTP masing-masing sebesar 20-200 M dapat menghasilkan keseimbangan optimal antara hasil, spesifitas dan ketepatan PCR. Konsentrasi masing-masing dNTP harus seimbang untuk meminimalkan kesalahan penggabungan. Deoxynucleotide Triphosphate akan menurunkan Mg2+ bebas sehingga mempengaruhi aktivitas polimerase dan menurunkan annealing primer. Konsentrasi dNTP yang rendah akan meminimalkan mispriming pada daerah non target dan menurunkan kemungkinan perpanjangan nukleotida yang salah. Oleh karena itu spesifitas dan ketepatan PCR meningkat pada konsentrasi dNTP yang lebih rendah (Sulistyaningsih, 2007). e. Larutan Buffer Larutan buffer yang biasa digunakan untuk reaksi PCR mengandung 10 mM Tris-HCL pH 8,3, 50 mM KCl, dan 1,5 mM MgCl2. Optimalisasi konsentrasi ion Mg2+ merupakan hal yang penting. Konsentrasi ion ini mempengaruhi beberapa hal yaitu annealing primer, suhu pemisahan untai template dan produk PCR, spesifitas produk, pembentukan primer-dimer serta aktivitas dan ketepatan enzim Taq polimerase. PCR harus mengandung 0,5-2,5 M Mg2+ dari total konsentrasi dNTP. Konsentrasi yang lebih tinggi akan meningkatkan produk PCR tetapi menurunkan UIN Syarif Hidayatullah Jakarta 15 spesifitasnya. Konsentrasi ion ini tergantung pada konsentrasi bahan-bahan yang mengikatnya seperti dNTP, EDTA, dan fosfat (Sulistyaningsih, 2007). 2.3.2 Tahapan PCR 1. Denaturasi Selama proses denaturasi, DNA untai ganda akan membuka menjadi dua untai tunggal (Gaffar, 2007). Suhu denaturasi dipengaruhi oleh sekuen target. Jika sekuen target kaya akan G-C maka diperlukan suhu yang lebih tinggi. Suhu denaturasi yang terlalu tinggi dan waktu denaturasi yang terlalu lama mengakibatkan hilangnya atau berkurangnya aktivitas enzim Taq polimerase. Waktu paruh aktivitas enzim Taq polimerase adalah >2 jam pada suhu 92,5oC, 40 menit pada 95oC dan 5 menit pada 97,5oC (Sulistyaningsih, 2007). 2. Penempelan Primer (Annealing) Annealing primer dimaksudkan untuk proses penempelan primer sekuen target DNA. Suhu dan lamanya waktu yang dibutuhkan untuk annealing primer juga tergantung pada komposisi basa, panjang, dan konsentrasi primer. Suhu annealing biasanya 5oC dibawah nilai Tm primer, berada pada range 55-72oC (Sulistyaningsih, 2007). 3. Extension Suhu extension ditujukan untuk proses perpanjangan sekuen DNA. Suhu extension biasanya dipilih 72oC karena merupakan suhu optimum enzim Taq polimerase. Suhu extension yang rendah bersamaan dengan konsentrasi dNTP yang tinggi mengakibatkan misextension primer dan perpanjangan nukleotida yang salah, sebaliknya kombinasi antara suhu annealing/extension yang tinggi dengan dNTP yang rendah akan menghasilkan ketepatan produk akhir PCR yang tinggi. Lamanya waktu extension tergantung pada panjang sekuen target, konsentrasi sekuen target, dan suhu extension (Sulistyaningsih, 2007). UIN Syarif Hidayatullah Jakarta 16 Jumlah siklus yang optimum terutama tergantung pada konsentrasi awal DNA template saat parameter lain telah dioptimasi, biasanya 25-35 siklus. Siklus yang terlalu sedikit akan memberikan hasil yang sedikit, sebaliknya bila terlalu banyak akan meningkatkan jumlah dan kompleksitas produk non spesifik (Sulistyaningsih, 2007). Gambar 5. Siklus PCR yang terdiri dari denaturasi, penempelang primer, dan polimerisasinya (Gaffar, 2007). 2.4 Elektroforesis Gel Agarosa Metoda ini didasarkan pada pergerakan molekul bermuatan dalam media penyangga matriks stabil di bawah pengaruh medan listrik. Media yang umum digunakan adalah gel agarosa atau poliakrilamid. Elektroforesis gel agarosa digunakan untuk memisahkan fragmen DNA yang berukuran lebih besar dari 100 pb dan dijalankan secara horizontal, sedangkan elektroforesis poliakrilamid dapat memisahkan 1 pb dan dijalankan secara vertikal (Gaffar, 2007). Untuk visualisasi maka ditambahkan larutan etidium bromida yang akan masuk diantara ikatan hidrogen pada DNA, sehingga pita fragmen DNA akan kelihatan dibawah lampu UV. Panjang amplikon bisa diperkirakan dengan membandingkannya dengan pita DNA standar (Gaffar, 2007). Faktor-faktor yang menentukan jarak migrasi DNA melalui gel agarosa (Sambrook dan Russel, 2001). UIN Syarif Hidayatullah Jakarta 17 1. Ukuran molekul DNA Molekul besar berpindah lebih lambat karena membutuhkan usaha yang besar dan kurang efisien melewati pori-pori gel dibandingkan dengan molekul yang kecil. 2. Konsentrasi agarosa Fragmen DNA linear memberikan jarak perpindahan yang berbeda melalui gel yang mengandung konsentrasi yang berbeda. Tabel 1. Ukuran pemisahan molekul DNA linear pada standar gel agarosa Konsentrasi agarosa Jarak pemisahan DNA linear (% [w/v]) (kb) 0,3 5-60 0,6 1-20 0,7 0,8-10 0,9 0,5-7 1,2 0,4-6 1,5 0,2-3 2,0 0,1-2 Sumber : Sambrook dan Russel, 2001 3. Konformasi DNA DNA bentuk I (superhelical circular), bentuk II (nicked circular), dan bentuk III (linear) berpindah melalui gel agarosa pada jarak yang berbeda. Pergerakan relatif dari ketiga bentuk utamanya bergantung pada konsentrasi dan tipe agarosa yang digunakan, selain itu dipengaruhi juga oleh kekuatan arus listrik yang digunakan, kekuatan buffer ionik dan bentuk superhelical dari DNA bentuk I. Pada beberapa kondisi, DNA bentuk I lebih cepat daripada DNA bentuk III, tetapi pada kondisi yang lain DNA bentuk III lebih cepat daripada DNA bentuk I. UIN Syarif Hidayatullah Jakarta 18 4. Voltase yang digunakan Perpindahan molekul DNA di dalam gel dirangsang oleh arus listrik yang mengalir dari kutub negatif menuju kutub positif. Pada voltase rendah, DNA linear mengalami perpindahan secara proposional. Semakin besar tegangan arus listrik, maka perpindahan molekul DNA semakin cepat, demikian pula sebaliknya. Untuk mencapai resolusi maksimum dari fragmen DNA dengan ukuran >2 kb, gel agarosa harus dijalankan tidak boleh lebih dari 5-8 V/cm. 5. Tipe agarosa Terdapat dua tipe utama dari agarosa yaitu agarosa standar dan agarosa pada suhu rendah (low-melting temperature). 6. Buffer elektroforesis Mobilitas elektroforesis DNA dipengaruhi oleh komposisi dan kekuatan ionik buffer elektroforesis. 2.5 Insulated Isothermal PCR (ii-PCR) Didasarkan pada reaksi teknologi beratai polimerase (PCR), yang merupakan teknik biologi molekuler yang digunakan untuk amplifikasi asam nukleat. Dengan sensitivitas tinggi dan spesifitas, PCR telah menjadi alat yang ampuh dan sering sangat diperlukan dalam aplikasi medis dan biologis termasuk pengujian genetik, deteksi, diagnosis penyakit menular, dan sidik jari genetik untuk ilmu forensik dan pengujian paternitas (Anonim, 2012). Insulated Isotermal PCR (ii-PCR) didasarkan pada teknologi isotermal terisolasi yang memanfaatkan fenomena konveksi termal alami untuk mendorong reaksi PCR. Reaksi ii-PCR dilakukan dalam tabung kapiler yang dirancang khusus, R-tube yang merupakan perangkat PCR konvektif menyediakan isolasi dengan sumber panas tunggal isotermal. Ketika pemanasan isotermal 95oC diterapkan ke bagian bawah R-tube, solusi panas menjadi pematik api menghasilkan arus untuk naik dan solusi pendingin di bagian atas menjadi lebih berat untuk turun. Akibatnya, arus konveksi dengan gradien termal sepanjang Rtube dihasilkan untuk reaksi PCR. Reaksi konvektif terus-menerus membuat UIN Syarif Hidayatullah Jakarta 19 reaksi PCR sangat efisien dan dapat mengurangi waktu reaksi PCR rutin secara signifikan tanpa mempengaruhi sensitivitas (Anonim, 2012). Keterangan gambar : 1. 2. 3. 4. 5. 6. 7. Reaksi terisolasi oleh perisai termal Konveksi termal alami diinduksi oleh panas Konveksi termal peredaran cairan dan hasil dalam reaksi PCR Denaturasi dari dsDNA Penempelan Primer Perpanjangan dari strand baru DNA diduplikasi dengan penyelesaian dari 1 perputaran dari konveksi termal Gambar 6. Reaksi ii-PCR Beberapa komponen insulated isothermal PCR yang perlu diperhatikan yaitu (Anonim, 2012) : 1. Buffer Insulated isothermal PCR menggunakan Uni-ii buffer yang mengandung reagen-reagen yang berfungsi untuk mengoptimasi laju konveksi termal, menstabilisasi gradien temperatur, mengurangi UIN Syarif Hidayatullah Jakarta 20 interaksi antara larutan dan R-tube, dan meningkatkan efisiensi DNA polimerase untuk keberhasilan reaksi ii-PCR. 2. R-tube Tube terbuat dari bahan plastik optik yang memastikan transmisi fluoresensi yang optimal. Bahan plastik berkelas medis juga memastikan bahwa produk bebas dari DNase dan RNase. Tube telah dipatenkan dengan rasio diameter dan panjang tertentu yang memastikan konveksi isotermal untuk reaksi ii-PCR yang optimal. Tutup yang didesain secara khusus menjaga keamanan reaksi larutan dan mencegah penguapan pada saat reaksi berlangsung yang dapat menyebabkan kontaminasi. 3. Probe Probe POCKIT harus: a. Terdiri dari 40-80 % GC b. Mempunyai panjang 15-30 basa, lebih pendek lebih baik. c. Menghindari daerah target pada template yang dapat membentuk struktur sekunder. d. Membuat proses annealing antara probe 5’- dan template cukup kuat dan bebas energi. UIN Syarif Hidayatullah Jakarta BAB 3 METODOLOGI PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilaksanakan di Laboratorium Teknologi Gen, Balai Pengkajian Bioteknologi-BPPT Serpong, Tangerang. Waktu pelaksanaan dari bulan Maret 2013 sampai November 2013. 3.2 Alat dan Bahan 3.2.1 Alat Alat yang digunakan adalah pipet mikro 0,1-2 l, 2-20 l, 20-200 l, 1001000 l [Finnpipette, BIO-RAD, Nichiryo, BenchMate], tip 10 l, 100 l, dan 1000 l [Sorenson], freezer -20oC [Angelantoni Scientifica], lemari pendingin 4oC [Glacio-TOSHIBA], mesin PCR [TaKaRa & BIO-RAD], thermostat & shaking bath [Heto], tabung sentrifugasi 15 ml [Iwaki, Corning, FALCON, BIOLOGIX], tabung mikrosentrifugasi 1,5 ml [Sorenson], tabung mikrosentrifugasi 200 l [Axygen], rak tabung, mesin sentrifugasi [Beckman J2-HS & Tomy, timbangan [Metter], ice maker [HOSHIZAKI], vorteks [Heidolph], magnetic stirrer [Heidolph MR30001], inkubator [memmert], microwave [National], laminar air flow, heat block [Thermolyne], spatula, gunting , elektroforesis tray [Bio-rad], chamber elektroforesis [Mupid2], comb, gel documentation, spektrofotometer Nano Drop ND-1000. Alat gelas yang digunakan adalah gelas ukur, labu Erlenmeyer (100 ml & 250 ml), gelas Beker (600 ml & 1000 ml), tabung penyimpanan bahan (50 ml, 100 ml, 250 ml & 500 ml)[Schott-DURAN], R-tube, petri dish, ose, bunsen. 21 UIN Syarif Hidayatullah Jakarta 22 3.2.2 Bahan Bahan yang digunakan dalam penelitian ini adalah DNA Leptospira interrogens yang sudah terisolasi yang diperoleh dari Balai Besar Penelitian Vektor dan Reservoir Penyakit Salatiga, dan bakteri Eschericia coli DH5-Alpha. Bahan lain yang digunakan CTAB (Cetyl Trimetyl Ammonium Bromide) 10%, TE (Tris-EDTA) buffer 1X, SDS (Sodium Dodecyl Sulfate) 10%, proteinase-K 18 mg/ml, NaCl (Natrium Klorida) 5M, buffer TAE (Tris Acetate EDTA) 0,5X, kloroform, isoamilalkohol, isopropanol, etanol 70%, Fenol, Tripton, Yeast Extract, Bacto Agar, Go Taq Green Master Mix, primer spesifik Leptospira, agarosa, TAE 0,5 x, SYBR safe, probe, buffer ii-PCR. 3.3 Tahapan Penelitian 1. Persiapan sampel pembanding dan DNA Leptospira 2. Isolasi DNA pembanding 3. Cek DNA bakteri pembanding dengan elektroforesis 4. Amplifikasi DNA Leptospira dengan PCR konvensional 5. Pembuatan gel agarosa dan elektroforesis 6. Dokumentasi gel 7. Optimasi ii-PCR 3.4 Prosedur Kerja 3.4.1 Persiapan Media Tumbuh E. coli Media Luria Bertani (LB) padat, sebanyak 1 gram tripton, 0,5 gram yeast extract, 0,5 gram NaCl, dan 1,5 gram bacto agar di masukkan ke dalam erlenmeyer, ditambahkan aqua dest 100 ml dan ditutup dengan sumbat kapas. Campuran larutan diaduk hingga homogen dan disterilkan dalam autoklaf pada suhu 121oC selama 15 menit. Larutan homogen yang sudah disterilkan di tuang masing-masing sebanyak 25 ml ke dalam 4 petri dish dan biarkan hingga mengeras. Setelah itu media disimpan di lemari pendingin pada suhu 4oC. UIN Syarif Hidayatullah Jakarta 23 3.4.2 Peremajaan E. coli Biakan stok E. coli dalam media LB padat dipindahkan sebanyak satu ose, digoreskan secara zig zag ke dalam petri dish yang berisi media LB padat dan diinkubasi pada suhu 37oC selama 16-18 jam. 3.4.3 Isolasi DNA E. coli Satu koloni dipilih dengan menggunakan tusuk gigi steril dimasukkan ke dalam tabung mikrosentrifugasi steril di tambahkan TE buffer sebanyak 557 l. Campuran diresuspensi atau divortex. Tambahkan 30 l SDS 10% dan 3 l proteinase-K. Campur dan diinkubasi selama 1 jam pada suhu 37oC. Setelah diinkubasi tambahkan 100 l NaCl 5M dan dicampur. Ditambahkan 80 l CTAB 10%, inkubasi pada suhu 65oC selama 10 menit. Kemudian tambahkan kloroform dan isoamilalkohol volume sama banyak. Sentrifus pada kecepatan 13.000 rpm selama 5 menit pada suhu 4oC, dan pindahkan larutan ke tube baru. Tambahkan PCI volume sama banyak dan aduk rata. Sentrifus pada kecepatan 14.000 rpm selama 5 menit pada suhu 4oC dan pindahkan supernatan ke tube baru. Ulangi ekstraksi kembali (kloroform : isoamilalkohol saja). Tambahkan 0,6 ml isopropanol dan campur sampai DNA mengendap. Sentrifus pada kecepatan 13.000 rpm selama 5 menit pada suhu 4oC dan buang isopropanol. Tambahkan 1 ml etanol 70% untuk mencuci garam dari DNA. Sentrifus pada kecepatan 13.000 rpm selama 5 menit pada suhu 4oC dan buang etanol, keringkan pada suhu ruangan. Resuspensi pelet dengan 50-100 l TE buffer dan simpan pada suhu 4oC. 3.4.4 Pembuatan Gel Agarosa dan Elektroforesis 3.4.4.1 Pembuatan Gel Agarosa 1% Gel agarosa 1% dibuat dengan menambahkan 0,25 gr agarosa dalam 25 ml buffer TAE 0,5x, dipanaskan hingga larut (1 menit) dalam microwave. Larutan agarosa didinginkan hingga suhu 40oC dan ditambah dengan SYBR safe 0,5 l, dituang ke dalam tray. Agarosa didinginkan hingga membeku selama 30-45 menit UIN Syarif Hidayatullah Jakarta 24 3.4.4.2 Elektroforesis Gel diangkat dari cetakan dan dimasukkan ke dalam chamber elektroforesis kemudian ditambahkan buffer TAE 0,5x sehingga gel terendam kira-kira 1 mm. Sebanyak 5 l sampel DNA dicampur dengan 21 l loading dye kemudian dimasukkan ke dalam sumur gel dan ladder dimasukkan 3 l sebagai marker. Alat elektroforesis dinyalakan (diberi arus listrik) selama 30 menit. DNA akan bergerak menuju muatan positif. Hasil elektroforesis dilihat dengan menggunakan dokumentasi gel (gel documentation). 3.4.5 Gel Documentation Komputer dan kamera digital dinyalakan. Gel agarosa hasil dari elektroforesis dimasukkan ke dalam UV transiluminator. UV transiluminator dinyalakan dan pita DNA akan berpendar saat terkena sinar UV. Hasil gel agarosa saat disinari UV didokumentasikan dalam komputer. 3.4.6 Amplifikasi PCR Amplifikasi menggunakan dua jenis primer spesifik untuk Leptospira. Amplifikasi DNA dilakukan dalam total volume 25 l (Lampiran 4). Denaturasi awal DNA pada 93oC selama 3 menit, denaturasi pada 93oC selama 3 menit, annealing pada 50oC selama 1 menit, dan ekstensi 72oC selama 1 menit. Akhir ekstensi diamplifikasi pada suhu 72oC selama 5 menit dan dilakukan dalam 25 siklus. Produk dianalisa di gel agarosa 1% dilihat di bawah pencahayaan UV dan didokumentasikan 3.4.7 Uji Spesifitas Primer Primer yang digunakan diuji spesifitasnya dengan menggunakan PCR konvensional. Primer spesifik DNA Leptospira digunakan untuk mengamplifikasi DNA dari E. coli dan DNA Leptospira. Hasil PCR kemudian dielektroforesis dan dibandingkan. Primer spesifik DNA Leptospira dikatakan spesifik jika hanya UIN Syarif Hidayatullah Jakarta 25 mengamplifikasi DNA dari Leptospira dan tidak dapat mengamplifikasi DNA E.coli. 3.4.8 Uji Sensitivitas Primer Sensitivitas PCR dilakukan dengan melakukan pengenceran DNA Leptospira dengan konsentrasi yang digunakan 200 ng/25 l, 20 ng/25 l, 2 ng/25 l, 0,2 ng/25 l, 0,02 ng/25 l, 0,002 ng/25 l, dan 0,0002 ng/25 l. Masingmasing konsentrasi diamplifikasi dengan kondisi PCR yang sama dan dilihat sampai konsentrasi berapa primer yang digunakan dapat mengamplifikasi DNA Leptospira yang digunakan. 3.5 Insulated Isotermal PCR (ii-PCR) 3.5.1 Amplifikasi Insulated Isothermal PCR (ii-PCR) Amplifikasi PCR dilakukan dengan campuran reaksi total PCR (Lampiran 5) dan dibuat dalam volume 50 µL. Setelah campuran reaksi total PCR dibuat, campuran reaksi tersebut dimasukkan ke dalam R-tube dan diletakkan pada multiwell plate yang kemudian diletakkan pada mesin insulated isothermal PCR. Kemudian program amplifikasi dijalankan dan hasil amplifikasi DNA dapat dilihat pada akhir reaksi dalam bentuk “+” atau “-“. UIN Syarif Hidayatullah Jakarta 26 3.6 Alur Penelitian Isolasi Bakteri Pembanding Ekstraksi DNA bakteri Pembanding DNA Leptospira yang sudah terisolasi Cek dengan Elektroforesis DNA terisolasi DNA tidak terisolasi Penentuan Konsentrasi DNA Amplifikasi DNA dengan PCR konvensional Cek dengan elektroforesis Primer Spesifik Primer tidak spesifik Amplifikasi DNA dengani ii-PCR Hasil UIN Syarif Hidayatullah Jakarta BAB 4 HASIL DAN PEMBAHASAN 4.1 Isolasi DNA Penelitian ini diawali dengan mengisolasi DNA E. coli. Metode yang umum digunakan dalam isolasi DNA yang banyak mengandung polisakarida adalah dengan menggunakan metode CTAB (Cetyltrimetyl Ammonium Bromide). Ada tiga langkah utama dalam isolasi DNA, yaitu perusakan dinding sel (lisis), pemisahan DNA dari bahan padat seperti selulosa dan protein, serta pemurnian DNA (Syafaruddin dan Tri Joko Santoso, 2011). Langkah pertama yang dilakukan adalah perusakan dinding sel (lisis). Perusakan dinding sel dilakukan dengan menggunakan TE buffer, SDS, dan CTAB. Pemisahan bahan padat seperti selulosa dan protein dengan menggunakan proteinase-K, NaCl, kloroform : isoamilalkohol (24:1), dan PCI (fenol : kloroform : isoamilalkohol). Sedangkan pemurnian DNA dengan menggunakan isopropanol dan etanol (K. Nishiguchi, Michele, dkk., 2002). Sampel diisolasi sebanyak satu koloni, kemudian ditambahkan larutan TE buffer, SDS, dan proteinase-K kemudian diinkubasi pada suhu 37oC selama satu jam. Metode ini menggunakan TE buffer pH 8,0 yang terdiri dari 100 mM Tris-Cl pH 8,0 dan 10 mM EDTA pH 8,0 (Sambrook dan Russel, 2001). Tris-Cl merupakan dapar yang berfungsi untuk menjaga pH, sangat larut dalam air dan inert untuk berbagai jenis reaksi enzimatik (Sambrook dan Russel, 2001). Sedangkan EDTA (Ethylene Diamine Tetra Acetic Acid) berfungsi sebagai bahan pengkhelat yang mengikat kation divalen, sehingga mengakibatkan ketidakstabilan membran (Dale dan Malcom, 2002). Penggunaan SDS (Sodium Dedosil Sulfate/Natrium Lauril Sulfat) sebagai detergen anonik untuk melisiskan dinding sel dengan cara melarutkan membran lipid, sehingga dinding sel menjadi rusak dan mengeluarkan komponen-komponennya, yaitu protein, lipid, polisakarida, DNA, dan RNA (Dale dan Malcom, 2002; Surzycki, 2003). Proteinase-K digunakan pada tahap pemecahan protein. Proteinase-K disini yang merupakan salah satu dari enzim golongan serin protease yang merupakan protease endolitik, memecah ikatan peptida sisi karboksilat pada 27 UIN Syarif Hidayatullah Jakarta 28 gugus alifatik dan aromatik khususnya alanin, sehingga digunakan untuk menghilangkan kontaminan dari protein. (Sweeney dan Walker, 1993; Surzycki, 2003; Agrawal, 2008). Kemudian ditambahkan NaCl 5 M yang berfungsi sebagai pengendap protein dan CTAB dalam larutan dengan ion yang tinggi (konsentrasi NaCl >0,7 M) digunakan sebagai pengendap protein dimana CTAB akan membentuk kompleks dengan protein dan polisakarida tetapi tidak akan mengendapkan DNA (Sambrook dan Russel, 2001). NaCl dengan kandungan garam yang tinggi dapat memisahkan polisakarida dari dinding sel (Syafaruddin dan Tri Joko Santoso, 2011) yang dikenal dengan fenomena salting out, yaitu fenomena penurunan kelarutan protein pada konsentrasi garam yang tinggi (Holme, David. J dan Hazel Peck, 1998). Residu dari protein dan lipid dapat dihilangkan dengan penambahan kloroform dan isoamilalkohol dengan perbandingan 24:1 (K. Nishiguchi, Michele, dkk., 2002). Kloroform dan isoamilalkohol memiliki fungsi sebagai pendenaturasi protein, dimana DNA dan RNA sendiri tidak akan ikut terdenaturasi karena DNA dan RNA ini tidak larut dalam pelarut organik seperti kloroform (Syafaruddin dan Tri Joko Santoso, 2011). Kemampuan deproteinisasi dari kloroform didasarkan pada kemampuan dari kloroform untuk mendenaturasi rantai polipeptida yang sebagian masuk atau termobilisasi pada interfase air-kloroform sedangkan isoamilalkohol digunakan untuk mempermudah dalam meningkatkan luas tegangan permukaan dari air-kloroform, sehingga memudahkan dalam pemisahan air dan kloroform (Agrawal, 2008). Pengendapan protein dengan polisakarida dan komponen lain yang telah lisis selain dengan bantuan garam juga dipisahkan dengan cara pengendapan dengan bantuan sentrifugasi. Penambahan PCI (Fenol-Kloroform-Isoamilalkohol) juga membantu dalam menghilangkan protein dari DNA (Sambrook dan Russel, 2001. Penambahan kloroform-isoamilalkohol dengan PCI dilakukan dua kali untuk memaksimalkan pemisahan DNA dengan komponen-komponen lain yang dapat mengkontaminasi DNA. DNA total kemudian dipisahkan dari larutan dengan cara pengendapan dengan menggunakan isopropanol (Sambrook dan Russel, 2001) dan etanol 70% (Agrawal, 2008; Surzycki, 2003). Etanol 70% selain berfungsi sebagai pengendap UIN Syarif Hidayatullah Jakarta 29 DNA juga sebagai penghilang fenol-kloroform dan juga garam yang masih terdapat dalam DNA (Sambrook dan Russel, 2001; Syafaruddin dan Tri Joko Santoso, 2011). Konsentrasi dari genom diukur dengan menggunakan Nano Drop ND1000 pada panjang gelombang 260 nm. Konsentrasi yang diperoleh dari pengukuran genom Leptospira dengan menggunakan Nano Drop 225,5 ng/l dan kemurnian 1,825. Sedangkan genom E. coli memberikan konsentrasi 546,8 ng/l dengan kemurnian 2,065. Dari hasil pengukuran tersebut menunjukkan kualitas dan kuantitas DNA baik. Nilai kemurnian genom diperoleh antara perbandingan panjang gelombang 260 nm dan 280 nm (Harisha. S., 2007) dan dikatakan murni jika berada dalam kisaran antara 1,8-2,0 (Sambrook, dkk, 1989). Sementara itu nilai kemurnian yang ditunjukkan dari isolasi genom E. coli memberikan hasil lebih dari 2,0 yang menunjukkan adanya kontaminasi dari RNA (Stephenson, 2003). Kontaminasi dari RNA disebabkan tidak digunakannya RNase yang berfungsi untuk memecah RNA yang dapat mengurangi adanya kontaminasi dari RNA (Surzycki, 2003) dan adanya kontaminasi dari RNA dapat dibuktikan dengan adanya pola bayangan smear di bawah pita DNA pada visualisai gel agarosa (Sauer, dkk., 1998). Genom kemudian divisualisasikan dengan menggunakan elektroforesis gel agarosa 1% dengan menggunakan tegangan 100 volt. Gel ditambahkan SYBR safe yang digunakan untuk memvisualisasikan DNA di agarosa dan diformulasikan khusus untuk menjadi alternatif yang lebih aman dibanding etidium bromida (Anonim, 2013). DNA yang akan dielektroforesis ditambahkan loading dye yang terdiri dari glycerol dan bromphenol blue. Glycerol berfungsi sebagai pemberat yang menyebabkan DNA berada di bawah sumur gel, sedangkan bromphenol blue berfungsi sebagai visualisasi pada gel (Carson, 2006) sehingga proses elektroforesis dapat terlihat dan tidak melebihi jarak yang diinginkan. Hasil elektroforesis tersebut ditampilkan pada Gambar 7. UIN Syarif Hidayatullah Jakarta 30 Keterangan : 1. Leptospira 2. E. coli M. Ladder 100 bp Gambar 7. Hasil elektroforesis isolasi genom dari Leptospira dan E. coli Hasil pengamatan pada gel documentation (Gambar 7) menunjukkan hasil isolasi dari genom E. coli dan Leptospira. Gambar ini menunjukkan pola bayangan smear di bawah pita DNA yang menunjukkan DNA tidak utuh sehingga menyebabkan timbulnya fragmen-fragmen yang berbeda ukuran dan tertahan pada gel sesuai dengan ukurannya. Pola bayangan smear juga dapat menunjukkan adanya kontaminasi dari RNA sedangkan hasil isolasi yang baik ditandai dengan pita yang dihasilkan jelas dan tidak adanya pola bayangan smear di bawah pita DNA(Sauer dkk., 1998). 4.2 Polymerase Chain Reaction (PCR) Reaksi PCR dilakukan dengan menggunakan konsentrasi DNA template 200 ng/ 25 l. Konsentrasi ini optimal untuk mendapatkan amplikon yang tebal pada 25 siklus. Suhu optimal annealing yang digunakan untuk primer Leptospira adalah 50oC untuk dan waktu reaksi PCR untuk mengamplifikasi DNA Leptospira dengan primer spesifik Leptospira adalah 150 menit. Uji spesifitas dari primer Leptospira dilakukan untuk menguji kemampuan dari primer Leptospira yang digunakan hanya mampu mengamplifikasi DNA Leptospira dan tidak dapat mengamplifikasi DNA yang lain, yang dalam penelitian ini yang digunakan sebagai pembanding adalah E. coli. Gambar 8 merupakan hasil uji spesifitas dari primer Leptospira yang digunakan. UIN Syarif Hidayatullah Jakarta 31 Keterangan : 1. E. coli 2. Leptospira M. Ladder 100 bp 139 bp Gambar 8. Hasil elektroforesis produk PCR menggunakan primer Leptospira pada uji spesifitas primer Pada gambar 8 dapat terlihat bahwa primer Leptospira yang digunakan hanya dapat mengamplifikasi DNA Leptospira, sedangkan DNA E. coli tidak teramplifikasi sama sekali, sehingga dapat dikatakan bahwa primer Leptospira yang digunakan spesifik. Proses amplifikasi DNA Leptospira menghasilkan panjang produk 139 pasang basa yang terletak pada lokus 16S Ribosomal RNA. Pasang basa yang dihasilkan diusahakan dalam kisaran pendek untuk mempermudah dalam pengujian dengan menggunakan ii-PCR (Anonim, 2012). Uji sensitivitas dari primer Leptospira ini dimaksudkan untuk mengukur kemampuan dari primer Leptospira yang digunakan dalam mengamplifikasi konsentrasi terendah dari DNA Leptospira yang digunakan dalam sampel. Sensitivitas primer Leptospira dilakukan dengan melakukan pengenceran DNA Leptospira dengan seri konsentrasi yang digunakan adalah 200 ng/25l, 20ng/25l, 2ng/25l, 0,2 ng/25l, 0,02 ng/25l, 0,002 ng/25l, dan 0,0002 ng/25l. Gambar 9 menunjukkan hasil elektroforesis dari uji sensitivitas dari primer yang digunakan. UIN Syarif Hidayatullah Jakarta 32 Keterangan : 1. Konsentrasi DNA 200 ng/25 µL 2. KonsentrasiDNA 20 ng/25 µL 3. KonsentrasiDNA 2 ng/25 µL 4. KonsentrasiDNA 0,2 ng/25 µL 5. KonsentrasiDNA 0,02ng/25 µL 6.KonsentrasiDNA 0,002ng/25 µL 7.KonsentrasiDNA 0,0002ng/25 µL Gambar 9. Hasil elektroforesis produk PCR dengan menggunakan primer spesifik DNA Leptospira pada uji sensitivitas primer. Pada gambar 9 dapat terlihat, dari tujuh konsentrasi yang digunakan, primer Leptospira mampu mengamplifikasi DNA Leptospira sampai dengan konsentrasi 0,002 ng/25 µL, meskipun pada konsentrasi 0,002 ng/25 µL menghasilkan pita yang tipis. Pada konsentrasi 0,0002 ng/25 µL tidak terlihat adanya pita pada gel elektroforesis yang menandakan bahwa primer Leptospira tidak dapat mengamplifikasi DNA Leptospira pada konsentrasi 0,0002 ng/25 µL, sehingga dapat dikatakan bahwa primer spesfik Leptospira yang digunakan sensitif dan mampu mengamplifikasi DNA Leptospira sampai konsentrasi 0,002 ng/25 µL. 4.3 Insulated Isothermal Polymerase Chain Reaction (ii-PCR) Alat ii-PCR tidaksepertialat PCR konvensional, alat ii-PCR tidak mempunyai pengaturan suhu dan waktu denaturasi, annealing ,dan ekstensi. Reaksi ii-PCR dilakukan dalam tabung kapiler khusus yang disebut R-tube. Rtube dirancang khusus karena R-tube terbuat dari bahan plastik optis untuk memastikan transmisi dari fluoresensi optimal. Bahan plastik optis tersebut memastikan tidak adanya kontaminasi dari DNA maupun RNase dari luar reaksi UIN Syarif Hidayatullah Jakarta 33 yang tidak diinginkan. Desain dari struktur tabung dan rasio yang dihitung dari diameter tabung atau panjang yang memastikan efisiensi dari reaksi konveksi termal pada proses reaksi ii-PCR. Penutup karet R-tube juga didesain khusus untuk membuat cairan reaksi aman dan mencegah penguapan selama reaksi yang dapat menyebabkan terjadinya kontaminasi (Anonim, 2012). Reaksi ii-PCR bergantung pada tiga temperatur yang digunakan, yaitu denaturasi pada suhu 92-95oC, annealing pada suhu 37-65oC, dan ekstensi pada suhu 72oC (Anonim, 2012). Suhu annealing pada saat proses ii-PCR berlangsung tidak dapat diketahui secara pasti dan suhu annealing dapat berbeda-beda di setiap siklusnya, sehingga optimasi komposisi perlu dilakukan. Optimasi komposisi campuran ii-PCR dengan melakukan variasi dari Taq DNA polymerase dan buffer yang digunakan. Taq DNA polimerase yang digunakan adalah dari Thermo Scientific™ Long PCR Enzyme Mix dan KAPA2G™ Robust PCR Kit serta buffer yang digunakan adalah ii-buffer dan buffer dari masing-masing Taq polimerase yang digunakan. Pada akhir reaksi ii-PCR yang berlangsung selama 58 menit didapati hasil positif dan negatif pada layar touch panel (Gambar 10). Gambar tersebut menunjukkan hasil reaksi ii-PCR dengan ii-buffer dengan buffer dari Taq DNA polimerase Thermo Scientific™ Long PCR Enzyme Mix yang keduanya menggunakan Taq DNA polimerase Thermo Scientific™ Long PCR Enzyme Mix.Gambar 11 menunjukkan hasil reaksi ii-PCR dengan ii-buffer danTaq DNA polimerase KAPA2G™ Robust PCR Kit dengan buffer dari Taq DNA KAPA2G™ Robust dimana keduanya menggunakan Taq DNA polimerase KAPA2G™ Robust PCR Kit. UIN Syarif Hidayatullah Jakarta 34 Gambar 10.Hasilreaksi ii-PCR denganTaq DNA polimerase Thermo Scientific™ Long PCR Enzyme Mix (A) dengan ii-buffer dan (B) dengan menggunakan buffer dari kit. Gambar 11.Hasilreaksi ii-PCR dengan menggunakanTaq DNA polimerase KAPA2G™ Robust(A) dengan menggunakan buffer dari kit dan (B) dengan ii-buffer. Pada Gambar 10 dan 11 dapat terlihat hasil positif diperoleh dengan menggunakan Taq DNA polimerase KAPA2G™ Robust PCR Kit dengan iibuffer, sedangkan reaksi lainnya menunjukkan hasil negatif. Hal ini berkaitan dengan jenis dari Taq DNA polymerase dan buffer yang digunakan. Jenis dari Taq DNA polymerase berhubungan dengan panjang target yang akan diamplifikasi dan efisiensi dari amplifikasi suatu produk (Handoyo, Darmodan Ari Rudiretna, 2001; Arezi, dkk., 2003). Taq DNA polymerase Thermo Scientific™ Long PCR UIN Syarif Hidayatullah Jakarta 35 Enzyme Mix yang memiliki hasil dan ketepatan yang tinggi digunakan untuk hasil amplifikasi dengan panjang basa yang lebih tinggi jika dibandingkan dengan Taq DNA polymerase KAPA2G™ Robust PCR Kit dan membutuhkan proses reaksi PCR yang cukup lama jika dibandingkan dengan Taq DNA polymerase KAPA2G™ Robust PCR Kit, sedangkan proses reaksi yang terdapat pada ii-PCR hanya dalam waktu singkat, sehingga efisiensi dari Taq DNA polymerase Thermo Scientific™ Long PCR Enzyme Mix memberikan hasil yang tidak baik dan memunculkan hasil negatif pada alat ii-PCR. Reaksi PCR hanya akan berlangsung pada kondisi pH tertentu, oleh karena itu untuk melakukan proses PCR diperlukan buffer PCR (Handoyo, Darmodan Ari Rudiretna, 2001). Penggunaan buffer yang disarankan oleh alat ii-PCR adalah iibuffer yang berfungsi untuk menstabilkan gradient suhu, mengurangi interaksi antara campuran reaksi dan R-tube, dan meningkatkan efisiensi DNA polymerase untuk mensukseskan reaksi ii-PCR (Anonim, 2012). Oleh karena itu penggunaan buffer selain ii-buffer memunculkan hasil negatif. Hasil dari reaksi ii-PCR tersebut kemudian dielektroforesis untuk melihat pita yang dihasilkan dari reaksi ii-PCR ini (Gambar 12). Keterangan : 1. KAPA2G™ Robust + iibuffer 2. KAPA2G™ Robusrt + buffer kit 3. Thermo scientific™ Long PCR Enzyme Mix + buffer kit 4. Thermo scientific™ Long PCR Enzyme Mix + ii- buffer M. Ladder 100 bp Gambar 12. Hasil elektroforesis produk ii-PCR UIN Syarif Hidayatullah Jakarta 36 Pada Gambar 12 menunjukkan hasil elektroforesis dari reaksi ii-PCR dengan menggunakan empat komposisi yang berbeda. Gambar ini menunjukkan dua komposisi yang digunakan dapat teramplifikasi, yaitu dengan menggunakan Taq DNA polimerase KAPA2G™ Robust, namun hanya reaksi yang menggunakan komposisi no.1 yang terdeteksi positif oleh alat ii-PCR. Hasil positif yang dimunculkan oleh alat ii-PCR disebabkan oleh fluoresensi dari probe hidrolisis dapat dideteksi secara efisien oleh sistem optik di dalam alat ii-PCR. Fluoresensi yang dihasilkan di dalam alat ii-PCR ditunjukkan dalam rasio S/N (signal intensityafter/signal intensitybefore) yang mempunyai ambang batas minimal 1,34 untuk dapat memberikan hasil positif pada alat ii-PCR (Tsai, dkk., 2012). Pada sampel no. 1 menunjukkan rasio S/N 1,8062 sedangkan pada sampel no.2 sampai dengan no.4 menunjukkan rasio S/N di bawah 1,34 (Lampiran 6). Rasio S/N yang dihasilkan sampel no.1 menunjukkan nilai ambang batas di atas 1,34, sehingga memberikan hasil positif pada alat ii-PCR. Pada Gambar 12 dapat terlihat juga bahwa hasil elektroforesis yang didapat dari keempat hasil reaksi ii-PCR menunjukkan pita yang smear. Hasil pita yang smear ini disebabkan oleh suhu annealing yang beragam dari alat ii-PCR yang berkisar pada 37-65oC. Suhu annealing yang terlalu tinggi dari suhu annealing optimum akan menyebabkkan primer tidak menempel dengan DNA cetakan. Sedangkan jika suhu penempelan primer terlalu rendah dari suhu penempelan primer optimum menyebabkan mispriming, yaitu penempelan primer pada tempat yang salah pada DNA cetakan sehingga dihasilkan produk non spesifik (Yuwono, 2006). UIN Syarif Hidayatullah Jakarta BAB 5 KESIMPULAN DAN SARAN 5.1 Kesimpulan Primer spesifik Leptospira mampu mengamplifikasi DNA Leptospira sampai konsentrasi 0,002 ng/25 µl dan amplifikasi DNA Leptopira dengan metode ii-PCR yang menggunakan DNA Leptospira, primer, dan probe spesifik menunjukkan rasio S/N 1,87 memberikan hasil positif dalam waktu 58 menit bila dibandingkan dengan metode PCR konvensional yang membutuhkan waktu 150 menit dan diperlukan analisa dengan gel elektroforesis. 5.2 Saran Perlu dilakukan penelitian lebih lanjut mengenai konsentrasi terendah dari DNA Leptospira yang masih dapat diamplifikasi oleh alat ii-PCR. 37 UIN Syarif Hidayatullah Jakarta DAFTAR PUSTAKA Agrawal, Suraksha. 2008. Techniques in Molecular Biology. International Book Distributing Co. : India. Anonim. 2003. Human Leptospirosis: Guidance for Diagnosis, Surveillance and Control. WHO. Anonim. 2011. Profil Kesehatan Indonesia 2010. Kementrian Kesehatan Republik Indonesia : Jakarta. Anonim. 2012. http://www.iipcr.com/faq.php [12 Maret 2012, pukul 12.50]. Anonim. 2013. http://www.lifetechnologies.com/id/en/home/life-science/dna-rnapurification-analysis/nucleic-acid-gel-electrophoresis/dna-stains/sybrsafe.html [7 Desember 2013, pukul 08.10]. Arezi, Bahram, dkk. 2003. Amplification efficiency of thermostable DNA polymerases. Analytical Biochemistry 321 (2003) 226-235. Bal, A. E., dkk. 1994. Detection of Leptospires in Urine by PCR for Early Diagnosis of Leptospirosis. J. Clin. Microbiol, Vol. 32. Bovet, Pascal, dkk. 1999. Factors Assosiated with Clinical Leptospirosis: a Population-Based Case-Control Study in the Seychelles (Indian Ocean). Intl. J. Epidemiol 1999; 28: 583-590. Carson, Susan. 2006. Manipulation and Expression of Recombinant DNA A Sensitive Method to Identify Pork in Precessed and Unprocessed Food by PCR Amplification of A New Spesific DNA Fragment. J Anim Sci. (79): 2108-2112. Collins, Richard A. 2006. Leptospirosis. The Biomedical Scientist. Dale, Jeremy W. dan Malcom von Schantz. 2002. From Genes to Genomes: Concepts and Applications of DNA Technology. John Wiley & Sons, Ltd. 38 UIN Syarif Hidayatullah Jakarta 39 Ernawati, Kholis. 2008. Leptospirosis Sebagai Penyakit Pasca Banjir Serta Cara pencegahannya. Fak. Kedokteran Universitas YARSI Jakarta. Gaaffar, Shabarni. 2007. Buku Ajar Bioteknologi Molekul. Universitas Padjadjaran: Bandung. Handoyo, Darmo dan Ari Rudiretna. 2001. Prinsip Umum dan Pelaksanaan Polymerase Chain Reaction (PCR). Unitas, Vol. 9. No.1. Harisha, S. 2007. Biotechnology Procedures and Experimental Handbook, New Delhi, India: Infinity Science Press LLC. Holme, David. J. dan Hazel Peck. 1998. Analytical Biocemistry, third edition, London: Pearson Education. Jose, J dan R. Usha. 2000. Extraction of Geminiviral DNA from Highly Mucilaginous Plant (Abelmoschus esculentus). Plant Molecular Biology Reporter 18: 349-355. K. Nishiguchi, Michele, dkk. 2002. DNA Isolation Procedures. Method and Tools in Biosciences and Medicine Technique in molecular systematic and evolution, ed . by Rob DeSalle, dkk. Birkhāuser Verlag Basel/Switzerland. Kumari, Rajni. 2007. Meat Species Identificatin by Real Time PCR. Levett, Paul N. 2001. Leptospirosis. Clin. Microbiol. Rev. 2001, 14 (2): 296. Levett, Paul N., dkk. 2001. Two Method for Rapid Serological Diagnosis of Acute Leptospirosis. Clinical and Diagnostic Laboratorium Immunology, Vol. 8 Natarajaseenivasan, Kalimuthusamy, dkk. 2004. Human Leptospirosis in Erode, South India: Serology, Isolation, and Characterization of the Isolates by Randomly Amplified Polymorphic DNA (RAPD) Fingerprinting. Jpn. J. Infect. Dis., 57, 193-197. Purves, William K., dkk. 2003. Life, The Science of Biology Seventh Edition. Sinauer Associastes and W.H. Freeman. UIN Syarif Hidayatullah Jakarta 40 Riyaningsih, Suharyo Hadisaputro, dan Suhartono. 2012. Faktor Risiko Lingkungan Kejadian Leptospirosis di Jawa Tengah (Studi Kasus di Kota Semarang, Kabupaten Demak, dan Pati). Jurnal Kesehatan Lingkungan Indonesia, Vol. 11, No. 1. Saengjaruk, Patcharin, dkk. 2002. Diagnosis of Human Leptospirosis by Monoclonal Antibody-Based Antigen Detection in Urine. J. Clin. Microbiol, Vol. 40, No. 2. Sambrook, J., dan Russell, D.W., 2001. Molecular Cloning, A Laboratory Manual 3rd edition, New York: Cold Spring Harbor Laboratory Press. Sambrook, J., Fritsch, E.F, dan Maniatis, T. 1989. Molecular Cloning. Cold Spring Harbor Press. University of Texas South Western Medical Centre, Texas. Sauer, P., M. M ller, dan J. Kang. 1998. Quantitation DNA. Qiagen News 2: 2326. Setadi, Bobby, dkk. 2001. Leptospirosis. Sari Pediatri, Vol 3, No.3, Desember 2001: 163-167. Setiawan, I Made. 2008. Pemeriksaan Laboratorium Untuk Mendiagnosis Penyakit Leptospirosis. Media Litbang Kesehatan Volume XVIII Nomor 1. Shekatkar, Smita, Belgode Narasimha Harish, dan Subhash Chandra Parija. 2010. Diagnosis of Leptospirosis by Polymerase Chain Reaction. International Journal of Pharma and Bio Sciences, ISSN 0975-6299, Vol.1/Issue3/Jul-Sep 2010. Stephenson, Frank, H. 2003. Calculations in MolecularBiology and Biotechnology, A Guide to Mathematics in The Laboratory, Academic Press, California, USA. Stone, Carol Leth. 2004. The Basic of Biology. Greenwood Press : London . UIN Syarif Hidayatullah Jakarta 41 Sulistyaningsih, Erma. 2007. Polymerase Chain Reaction (PCR): Era Baru Diagnosis dan Manajemen Penyakit Infeksi. Biomedis, Vol. 1. Surzycki, Stefan. 2003. Human Molecular Biology Laboratory. Blackwell Publishing : USA. Sweeney J. Patricia dan John M. Walker. 1993. dalam Michael M. Burrell, Enzymes of Molecular Biology, New Jersey: Humana press inc. Syafaruddin dan Tri Joko Santoso. 2011. Optimasi Teknik Isolasi dan Purifikasi DNA yang Efisien pada Kemiri Sunan (Reutalis trisperna (Blanco) Airy Shaw. Jurnal Litri Vol. 17 (1), Maret 2011 : 11-17. Thornley, C.N, dkk. 2002. Changing Eidemiology of Human Leptospirosis in New Zealand. Epidemiol. Infect, 128, 29-36. Tilahun, Z, D. Reta, dan K. Simenew. 2013. Global Epidemiological Overview of Leptospirosis. Intl. J. Microbiol. Res., 4 (1): 09-15, 2013 Tsai, Yun-Long, dkk. 2012. Development of TaqMan Probe-Based Insulated Isothermal PCR (iiPCR) for Sensitive and Spesific On-Site Pathogen Detection. Plos One ,Issue 9, Volume 7, September 2012. Yersin, Claude, dkk. 1998. Human Leptospirosis in the Seychelles (Indian Ocean) a Population-Based Study. Am. J. Trop. Med. Hyg., 59(6). Yuwono, T. 2006. Teori dan Aplikasi Polymerase Chain Reaction. Yogyakarta : Penerbit Andi. Zavitsanou, Assimina, dan Fotoula Babatsikou. 2008. Leptospirosis: Epidemiology and Preventive Measure. Health Science Journal, Volume 2, Issue 2. UIN Syarif Hidayatullah Jakarta 42 Lampiran 1 Hasil peremajaan E.coli dan DNA Leptospira yang sudah terisolasi Gambar 13. Hasil Peremajaan E.coli DNA Leptospira yang sudah terisolasi yang diperoleh dari Balai Besar Penelitian Vektor dan Reservoir Penyakit Salatiga Gambar 14. DNA Leptospira yang sudah terisolasi UIN Syarif Hidayatullah Jakarta 43 Lampiran 2 Hasil konsentrasi dan kemurnian DNA Leptospira dan DNA E. coli Tabel 2. Hasil konsentrasi dan kemurnian DNA Leptospira dan DNA E.coli diukur dengan spektrofotometer Nano Drop ND-1000 Sampel ID Leptospira Rata-rata E. coli Rata-rata Konsentrasi DNA (ng/µL) 225.4 225.6 225.5 546.7 546.9 546.8 Kemurnian DNA A260/A280 1.82 1,83 1.825 2.07 2.06 2.065 UIN Syarif Hidayatullah Jakarta 44 Lampiran 3 Membuat Larutan induk primer dan probe 1. Membuat larutan induk primer dan probe 100 µM Jenis Nama oligo µg To make 100 µM Forward 479.75 Add 480 µL ddH2O Leptospira Reverse 431.13 Add 431 µL ddH2O Probe 569.95 Add 570 µL ddH2O 2. Membuat larutan primer 10 µM dari larutan induk V1 . M1 = V2 . M2 X . 100 µM = 100 µL . 10 µM X = = 10 µL Maka, 10 µL diambil dari masing- masing primer 100 µM dan di add 90 µL ddH2O 3. Membuat larutan probe 5 µM dari larutan induk V1 . M1 = V2 . M2 X . 100 µM = 100 µL . 5 µM X = = 5 µL Maka, 5 µL diambil dari masing-masing probe 100 µM dan di add 95 µL ddH2O 4. Rekomendasi konsentrasi untuk primer dipilih konsentrasi akhir 0,5 µM (Tsai, 2012) untuk tiap primer V1 . M1 = V2 . M2 X . 10 µM = 50 µL . 0.5 µM X = = 2.5 µL Maka, diambil 2.5 µL dari larutan primer konsentrasi 10 µM 5. Rekomendasi konsentrasi untuk probe dipilih konsentrasi akhir 0,15 µM (Tsai, 2012) V1 . M1 = V2 . M2 X . 5 µM = 50 µL . 0.15 µM X = = 1.5 µL Maka, diambil 1.5 µL dari larutan konsentrasi 5 µM UIN Syarif Hidayatullah Jakarta 45 Lampiran 4. Campuran reaksi master mix untuk amplifikasi DNA untuk PCR konvensional Campuran reaksi master mix untuk PCR konvensional Tabel 3. Campuran reaksi master mix PCR konvensional GoTaq® Green Master Mix Primer Forward Primer Reverse DNA template ddH2O Konsentrasi Lar. Induk - Konsenrasi Akhir - Volume yang digunakan 12.5 µL 10 µM 10 µM 100 ng Total volume reaksi 0,8 µM 0,8 µM 8 ng - 2 µL 2 µL 2 µL 6.5 µL 25 µL UIN Syarif Hidayatullah Jakarta 46 Lampiran 5 Campuran reaksi master mix untuk amplifikasi DNA untuk ii-PCR 1. Campuran reaksi master mix untuk ii-PCR dengan Taq DNA polymerase KAPA2G™ Robust PCR Kit Tabel 4. Campuran reaksi master mix dengan Taq DNA polymerase KAPA2G™ Robust PCR Kit dengan ii-buffer KAPA2G™ Robust PCR Kit dNTP Primer Forward Primer Reverse Probe DNA template ii-Buffer Konsentrasi Lar. Induk 5 U/µL Konsentrasi Akhir 2,5 U/50 µL Volume yang digunakan 0.5 µL 10 mM 10 µM 10 µM 5 µM 50 ng 1X Total volume reaksi 0,2 mM 0,5 µM 0,5 µM 0,15 µM 5 ng 1 µL 2.5 µL 2.5 µL 1.5 µL 5 µL 37 µL 50 µL Tabel 5. Campuran reaksi master mix untuk ii-PCR dengan Taq DNA polymerase KAPA2G™ Robust PCR Kit dengan buffer dari kit Konsentrasi Lar. Induk 5 U/µL KAPA2G™ Robust PCR Kit dNTP 10 mM Primer Forward 10 µM Primer Reverse 10 µM Probe 5 µM DNA template 50 ng Buffer A 5X Nuclease Free Water Total volume reaksi Konsentrasi Akhir 2,5 U/50 µL Volume yang digunakan 0.5 µL 0,2 mM 0,5 µM 0,5µM 0,15 µM 5 ng - 1 µL 2.5 µL 2.5 µL 1.5 µL 5 µL 10 µL 27 µL 50 L UIN Syarif Hidayatullah Jakarta 47 2. Campuran reaksi master mix untuk ii-PCR dengan Taq DNA polymerase Thermo Scientific™ Long PCR Master Mix Tabel 6. Campuran reaksi master mix untuk ii-PCR dengan Taq DNA polymerase Thermo Scientific™ Long PCR Master Mix dengan ii-buffer Thermo Scientific™ Long PCR Master Mix dNTP Primer Forward Primer Reverse Probe DNA template ii-Buffer Konsentrasi Lar. Induk 5 U/µL 2.5 mM 10 µM 10 µM 5 µM 50 ng 1X Total volume reaksi Konsentrasi Akhir 2,5 U/50 µL Volume yang digunakan 0.25 µL 0,2 mM 0,5 µM 0,5 µM 0,15 µM 5 ng 4 µL 2.5 µL 2.5 µL 1.5 µL 5 µL 34.25 µL 50 µL Tabel 7. Campuran reaksi master mix untuk ii-PCR dengan taq DNA polymerase Thermo Scientific™Long PCR Master Mix dengan buffer dari kit Thermo Scientific™ Long PCR Master Mix dNTP Primer Forward Primer Reverse Probe DNA template Buffer with MgCl2 Nucluase Free Water Konsentrasi Lar. induk 5 U/µL 2,5 U/50 µL Volume yang digunakan 0.25 µL 2.5 mM 10 µM 10 µM 5 µM 50 ng 10X 0,2 mM 0,5 µM 0,5 µM 0,15 µM 5 ng - 4 µL 2.5 µL 2.5 µL 1.5 µL 5 µL 5 µL - - 29.25 µL Total volume reaksi 50 µL UIN Syarif Hidayatullah Jakarta 48 Lampiran 6 Rasio S/N pada sampel hasil reaksi ii-PCR. Tabel 8. Nilai rasio S/N pada sampel hasil reaksi ii-PCR No. 1 2 3 4 Sampel KAPA2G™ Robust + ii-buffer KAPA2G™ Robusrt + buffer kit Thermo scientific™ Long PCR Enzyme Mix + buffer kit Thermo scientific™ Long PCR Enzyme Mix + ii-buffer Rasio S/N 1,8062 1,0014 0,9799 0,9475 UIN Syarif Hidayatullah Jakarta