Prosiding Seminar Nasional Statistika Universitas Padjadjaran, 13 November 2010 (S.6) PENINGKATAN PEMBELAJARAN MATEMATIKA DI KELAS DENGAN SKAFFOLDING (Sebuah Kaus di Kelas Akselerasi SMPN 3 Malang) Oleh : Turmudi*) ABSTRAK Sejak konstruktivisme digunakan sebagai cara berpikir tentang pengetahuan dan tindakan belajar terjadi perubahan pendekatan pembelajaran di dalam kelas. Pada pendekatan tradisional menempatkan guru sebagai tokoh sentral dalam proses pengajaran yang berperan mentransfer pengetahuan mereka kepada siswa, berubah ke arah pembelajaran yang berpusat kepada siswa. Perubahan-perubahan terhadap pendekatan pengajaran tradisional akan terwujud apabila peran guru berubah dari menunjukkan dan mengatakan ke bimbingan yang responsif untuk pengembangan daya fikir siswa itu sendiri. Seperti dikatakan Heberman dalam Diaz (2006) bahwa guru yang efektif harus menarik keluar pengetahuan dari siswa , bukan mengisinya. Salah satu cara di mana peran guru telah dikonseptualisasikan adalah melalui penggunaan metafora scaffolding yang pertama kali istilah itu digunakan oleh Wood dkk (1976) untuk mengeksplorasi sifat interaksi orang dewasa dalam belajar anak-anak, khususnya dukungan bahwa orang dewasa menyediakan membantu anak untuk belajar bagaimana melakukan tugas yang tidak dapat dikuasai sendiri. Kajian ini merupakan studi kasus yang membahas penerapan scaffolding untuk peningkatan Pembelajaran matematika di kelas Sekolah Menengah Pertama (SMP). Studi kasus ini mengambil subjek Guru Matematika di suatu SMP negeri di Malang yang menyelenggarakan program akselerasi. Scaffolding pada Kegiatan Kelas Menurut teori yang diajukan Vygotsky bahwa proses belajar terjadi ketika anak masih berada pada jangkauan ZPD mereka. Dalam tingkat ZPD, anak mempunyai kemampuan pemecahan masalah di bawah bimbingan orang dewasa atau teman sebaya yang lebih mampu (Sheffer, 1996). Bantuan siswa dalam belajar itu dikenalkan oleh Vygotsky (1978) sebagai scaffolding, yang berarti memberikan kepada seorang anak sejumlah besar bantuan selama tahap-tahap awal pembelajaran dan kemudian Manajemen Risiko di Bidang Perbankan dan Asuransi | 236 Prosiding Seminar Nasional Statistika Universitas Padjadjaran, 13 November 2010 mengurangi bantuan tersebut dan memberikan kesempatan kepada anak tersebut mengambil alih tanggung jawab yang semakin besar setelah mampu mengerjakan sendiri. Pengertian itu juga sejalan dengan yang dikemukakan Wood dkk., bahwa ‘scaffolding’ merefleksikan cara orang dewasa membantu siswa ketika dia belajar dan pada akhirnya melepasnya ketika dia sudah bisa mandiri (Wood, Bruner, & Ross, 1976). Untuk kegiatan kelas, Angghileri (2006) mengajukan tingkatan penerapan skoffolding dengan memilah scaffolding pada tiga level dukungan guru. Level 1 merujuk kepada petunjuk (promt) dan rangsangan yang ada di lingkungan, baik sebagai hasil dari perencanaan yang sadar atau secara tidak sengaja (default), yang melayani untuk mendukung belajar siswa dalam matematika. Level 2 melibatkan interaksi langsung antara guru dan siswa yang difokuskan pada tugas. Strategi tersebut bervariasi dari instruksi langsung yang menunjukkan dan memberitahu kearah membuat makna yang lebih kolaboratif. Level 3 bertujuan untuk membuat koneksi antara pengetahuan awal siswa dan pengalaman dengan matematika baru yang akan dipelajari dengan cara mengembangkan alat representasi dan membangun wacana konseptual adalah dua daerah yang dipertimbangkan di sini. A. Perubahan Paradigma Pembelajaran Abad ke-21 ini ditandai dengan kemajuan pengetahuan dan teknologi pembelajaran. Kemajuan ini telah merubah paradigma dalam pendidikan matematika yang menekankan pada metode-metode kreatif dalam pengajaran dan pembelajaran matematika yang dapat memupuk kemampuan memecahkan masalah, keterampilan berpikir tingkat tinggi, belajar mandiri, kerja tim dan kemampuan komunikasi. Para pakar dan praktisi pendidikan telah aktif terlibat dalam penelitian tentang pendidikan matematika. Temuannya telah banyak diadops dan digunakan dalam menentukan kebijakan yang membantu pengajaran matematika yang efektif. Diharapkan bahwa para siswa akan terlibat dalam pembelajaran lebih bermakna dan berbagai keterampilan berfikir siswa. Meskipun banyak laporan yang telah menunjukkan tentang kemajuan kinerja siswa, matematika tampaknya masih menjadi salah satu mata pelajaran yang sulit bagi siswa. Von Glaserfeld (1995) mengatakan bahwa 'Pendidik’ telah memperhatikan bahwa banyak siswa yang cukup mampu untuk mempelajari formula yang diperlukan dan menerapkannya pada jangkauan terbatas dari situasi buku teks dan tes, tetapi ketika Manajemen Risiko di Bidang Perbankan dan Asuransi | 237 Prosiding Seminar Nasional Statistika Universitas Padjadjaran, 13 November 2010 dihadapkan dengan masalah baru, menunjukkan bahwa mereka jauh dari sudah mengerti konsep-konsep yang relevan dan hubungan konseptual. Di Indonesia rendahnya kualitas matematika dapat dilihat dari temuan hasil penelitian tim Programme of International Student Assessment (PISA) 2001 menunjukkan bahwa Indonesia menempati peringkat ke-9 dari 41 negara pada kategori literacy matematika. Sementara itu, menurut penelitian Trends in International Mathematics and Science Study - Repeat (TIMMS-R)1999, yang membandingkan prestasi matematika dan sains siswa kelas delapan diantara 38 *) Dosen Matematika di UIN Maulana Malik Ibrahim Malang yang sedang mengikuti Program Pendidikan Doktor Falsafah Matematik di Universitas Pendidikan Sultan Idris Malaysia Angkatan Tahun 2009. negara, Indonesia adalah salah satu di antara 38 negara yang berpartisipasi dalam penelitian ini. Temuan menunjukkan bahwa pencapaian rata-rata matematika di semua lima bidang matematika siswa Indonesia adalah 403, lebih rendah daripada rata internasional 487. Dalam hal peringkat, Indonesia ditempatkan di nomor 34 dari 38. Singapura menduduki peringkat pertama dengan rata-rata 604 poin dan Malaysia peringkat ke 16 dengan rata-rata 519 poin. (TIMMS, 1999). Setelah sepuluh tahun reformasi sistem pendidikan, peringkat Indonesia tidak beranjak dari peringkat papan bawah. Seperti ditunjukkan dalam laporan TIMMS tahun 2007, Indonesia berada pada peringkat ke 36 dari 48 negara peserta dengan rata-rata 397 poin, sementara Singapura berada pada peringkat ke 3 dengan rata-rata 593 poin dan Malaysia berada pada peringkat ke 20 dengan rata 474 poin.(TMMS, 2007). Peringkat Indonesia berada di bawah Malaysia dan Singapura, padahal berdasarkan hasil penelitian TIMMS yang dilakukan oleh Frederick K. S. Leung (2003) bahwa jumlah jam pelajaran matematika di Indonesia jauh lebih banyak dibandingkan Malaysia dan Singapura. Dalam satu tahun, siswa kelas 8 di Indonesia Manajemen Risiko di Bidang Perbankan dan Asuransi | 238 Prosiding Seminar Nasional Statistika Universitas Padjadjaran, 13 November 2010 rata-rata mendapat 169 jam pelajaran matematika. Sementara di Malaysia hanya mendapat 120 jam dan Singapura 112 jam. Waktu yang dihabiskan siswa Indonesia di sekolah tidak sebanding dengan prestasi yang diraih. Itu artinya, ada sesuatu dengan metode matematika di negara ini, seperti yang ditemukan dalam penelitian Frederick dari TIMMS. Dalam penelitian itu, Frederick dari Universitas Hongkong menyebutkan, mayoritas soal yang diberikan guru matematika di Indonesia terlalu kaku. Umumnya, siswa di Indonesia lebih banyak mengerjakan soal yang diekspresikan dalam bahasa dan simbol matematika yang diset dalam konteks yang jauh dari realitas kehidupan seharihari (TIMMS,203). Ini berarti bahwa siswa Indonesia kelas delapan dianggap kurang atau tidak memiliki pemahaman matematika, kompetensi strategis, dan keterampilan penalaran yang memadai untuk matematika. Banyak faktor yang dapat mempengaruhi dan berkontribusi bagi pemahaman matematika dan prestasi siswa. Pemahaman matematika mempunyai implikasi yang luas dalam pengembangan akademis di sekolah dan mempunyai peran yang yang sangat penting dalam meningkatkan kemajuan masyarakat khusunya kemajuan ilmu pengetahuan dan teknologi di masa mendatang. Sebagai contoh, di Singapura yang nilai matematikanya sangat tinggi, karena matematika di sekolah dasar sekolah pertama menempatkan aspek dan pembelajaran biasanya dipersiapkan untuk sekolah menengah atau (Kaur dan Pereira, 2000). Sedangkan di Indonesia seperti dikemukakan oleh Marpaung (2003) ada banyak faktor yang menyebabkan rendahnya mutu pendidikan, tanpa mengabaikan faktor eksternal, faktor internal yang tidak kurang pentinya adalah tidak adanya perubahan dalam proses pengajaran dan pembelajaran matematika dan assesmenya. Proses pembelajaran pada umumnya berlangsung secara tradisional, yaitu bersifat mekanistik yang hanya menghasilkan pemahaman instrumental. Siswa tidak diberdayakan untuk berfikir yang lebih canggih, kemampuan yang dikembangkan hanyalah kemampuan menghapal dan kemampuan kognitif aras rendah. Strategi pembelajaran semacam itu mempromosikan penguasaan pengetahuan secara prosedural, dengan guru sebagai pemberi dan murid sebagai penerima, tetapi tidak mempromosikan pandangan bahwa siswa memiliki potensi untuk membangun, Manajemen Risiko di Bidang Perbankan dan Asuransi | 239 Prosiding Seminar Nasional Statistika Universitas Padjadjaran, 13 November 2010 membuat rencana, memonitor, mengajukan alasan, dan mengevaluasi pengetahuan mereka. Sejak konstruktivisme digunakan sebagai cara berpikir tentang pengetahuan dan tindakan belajar terjadi perubahan pendekatan pembelajaran di dalam kelas. Pendekatan tradisional menempatkan guru sebagai tokoh sentral dalam proses pengajaran yang berperan mentransfer pengetahuan mereka kepada siswa, berubah ke arah pembelajaran yang berpusat kepada siswa. Pembelajaran matematika dikatakan memiliki paradigma konstruktivis dalam proses belajar-mengajar jika siswa secara aktif mengkonstruksi suatu makna ketika mereka berpartisipasi dalam upaya meningkatkan kemajuan praktek-praktek matematis (Cobb, Yackel & McClain, 2000). Pembelajaran dengan pendekatan konstruktivis tersebut akan mendorong siswa secara aktif mengembangkan belajar mereka sendiri. Model pembelajaran ini akan memberikan lebih banyak kebebasan siswa dalam memahami dunia mereka dengan cara menemukan atau mengembangkan diri mereka sendiri. Perubahan-perubahan terhadap pendekatan pengajaran tradisional akan terwujud apabila peran guru berubah dari ‘menunjukkan dan mengatakan’ ke bimbingan yang responsif untuk pengembangan daya fikir siswa. Seperti dikatakan Heberman dalam Diaz (2006) bahwa guru yang efektif harus ‘menarik keluar’ pengetahuan dari kepala siswa , bukan mengisinya. Agar guru bisa mengajar di lingkungan sekolah yang terus berubah, tentunya mereka harus mampu menyesuaikan pengetahuan dan keterampilan pada situasi kelas tertentu dan untuk anak tertentu. Ini berarti bahwa guru harus mampu merenungkan dan memikirkan praktik mengajar mereka secara kritis dan kreatif. Selanjutnya guru dapat menyesuaikan peran mereka, yang tidak lagi pemegang penuh otoritas kelas seperti yang terjadi pada kelas tradisional tetapi lebih berperan sebagai pembimbing belajar dan pemantau kemajuan pencapaian siswa. Bimbingan guru kepada siswa membutuhkan sejumlah dukungan bagi pengembangan daya fikir siswa, yaitu dengan cara mengembangkan daya fikir tiap-tiap individu agar menjadi generasi mendatang yang memiliki pemahaman matematika yang Manajemen Risiko di Bidang Perbankan dan Asuransi | 240 Prosiding Seminar Nasional Statistika Universitas Padjadjaran, 13 November 2010 valid. Menurut Anghileri hal ini berkaitan dengan semakin diterimanya secara luas gagasan pembelajaran konstruksi dan paradigma belajar konstruktivis. Selanjutnya Anghileri menyatakan bahwa fungsi guru sebagai rekan yang memiliki misi khusus dan kekuasaan di budaya kelas. Oleh karena itu, guru harus mengambil perhatian khusus terhadap kekayaan budaya kelas, dalam penawaran, tantangan, alternatif, dan model, termasuk 'languaging' (Anghileri, 2006) Salah satu cara di mana peran guru telah dikonseptualisasikan adalah melalui penggunaan metafora scaffolding yang pertama kali digunakan oleh Wood dkk (1976) untuk mengeksplorasi sifat interaksi orang dewasa dalam belajar anak-anak, khususnya dukungan bahwa orang dewasa menyediakan dalam membantu anak untuk belajar bagaimana melakukan tugas yang tidak dapat dikuasai sendiri. Makalah ini membahas upaya peningkatan pembelajaran matematika di kelas dengan penerapan scaffolding. B. Akar Teoritis Pembelajaran dengan Scaffolding Model pembelajaran konstruktivis didasarkan terutama pada karya psikolog Swiss Jean Piaget dan teori sosial pikiran Vygotsky. Di satu sisi mereka mempunyai gagasan yang berbeda tetapi keduanya memandang sama bahwa pengetahuan dibangun dari aktivitas mental yang dikembangkan oleh siswa itu sendiri. Uraian berikut akan memberi gambaran tentang teori belajar, baik oleh Piaget maupun Vygotsky, terutama jika dikaitkan dengan model pembelajaran konstruktivisme. Menurut Piaget, cara yang yang digunakan organisme untuk mengembangkan kemajuan intelektual mereka didasarkan pada kedua fungsi yaitu organisasi dan adaptasi. Slavin juga menggaris bawahi pandangan Piaget bahwa pengetahuan didapat dari pengalaman, dan perkembangan mental siswa bergantung pada keaktifannya berinteraksi dengan lingkungan (Slavin, 2000). Organisasi mengacu pada kemampuan untuk mengestimasi atau mengorganisasi proses-proses fisik atau psikologis menjadi sistem yang teratur dan berhubungan. Sedangkan kemampuan seseorang untuk beradaptasi dengan lingkungan dikendalikan Manajemen Risiko di Bidang Perbankan dan Asuransi | 241 Prosiding Seminar Nasional Statistika Universitas Padjadjaran, 13 November 2010 melalui organisasi-organisasi mental yang disebut skema. Dengan skema anak akan memproses dan mengatur informasi dalam mentalnya. Hudojo (2003, p.59) menyatakan skema adalah pola tingkah laku yang dapat berulang kembali. Slavin (2000, p.30) juga menyatakan siswa mendemonstrasikan pola tingkah laku dan pemikiran yang disebut skema. Jadi mengacu pada kedua pendapat Hudojo dan Slavin, skema adalah pola tingkah laku dan pemikiran yang dapat berulang kembali. Dengan demikian, skema adalah struktur kognitif yang digunakan oleh siswa untuk menyesuaikan dengan lingkungan dan mengorganisasikannya. Penguasaan terhadap suatu skema baru mengindikasikan adanya perubahan di dalam struktur mental siswa. Piaget menduga bahwa skema manusia beroperasi sejak mereka dilahirkan, yang disebut refleks, yang mengendalikan perilaku kebanyakan binatang sepanjang hidup mereka. Berbeda dengan binatang, manusia sebaliknya, mereka beradaptasi dengan lingkungan mereka dengan mengganti refleks mereka dengan skema yang dibangun melalui dunia dengan kedua cara yaitu asimilasi dan akomodasi. Asimilasi merupakan proses kognitif seseorang yang mengintegrasikan persepsi, konsep, atau pengalaman baru ke dalam skema atau pola yang sudah ada dalam pikirannya. Jika seseorang tidak dapat mengasimilasikan pengalaman yang baru pada skema yang telah ada, karena tidak cocok, maka orang akan melakukan akomodasi. Ini dilakukan dengan membangun skema baru yang cocok atau memodifikasi skema yang sudah ada agar menjadi cocok dengan rangsangan atau pengalaman yang baru. Seseorang melakukan adapatasi jika telah terjadi keseimbangan (equilibrium) antara asimilasi atau akomodasi. Sebaliknya jika seseorang tidak dapat beradaptasi dengan lingkungannya maka dikatakan dalam kondisi ketidakseimbangan (disequilibrium). Dalam keadaan ketidakseimbangan itu individu melakukan akomodasi dan struktur yang ada mengalami perubahan atau terbangunnya struktur yang baru. Perkembangan intelektual ini (equilibrium dan disequilibriu) merupakan proses yang terus dalam aktivitas berfikir seseorang, dan ketika terjadi keseimbangan maka dikatakan bahwa intelektual individu berada pada tingkatan yang lebih tinggi dari pada sebelumnya. Menurtu Piaget bahwa proses belajar terkait dengan tingkat perkembangan intelektual anak, yaitu Proses kedewasaan individu menjadi faktor utama yang memepengaruhi pembelajaran siswa. Karena kedewasaan seseorang mencerminkan Manajemen Risiko di Bidang Perbankan dan Asuransi | 242 Prosiding Seminar Nasional Statistika Universitas Padjadjaran, 13 November 2010 karakteristik individual, maka proses pembelajaran menurut Piaget lebih bersifat internal pada individu itu sendiri. Dari sini teorinya Piaget lebih dikenal dengan teori kognitif individual. Namun mendasarkan pada pandangan Piaget yang bersifat individual tersebut memunculkan pertanyaan-pertanyaan penting. Jika individu–individu membangun pengetahuan mereka sendiri, bagaimana suatu kelompok individu (grup sosial) dapat saling tukar pikiran? Apakah individu yang membangun pengetahuan itu bebas dari faktor-faktor eksternal? Bagaimana kebenaran yang dibangun oleh individu bisa diakui kebenarannya secara bersama-sama, dan menjadi milik mereka bersama? Konstruksi adalah suatu proses dimana pengetahuan dibangun dan diuji secara kontinu. Pengetahuan mereka harus diuji kebenarannya oleh dunia luar individu atau grup sosial untuk selajutnya diterima sebagai pengetahuan mereka bersama. Hal ini sejalan dengan yang disampaikan Ernest (1991) bahwa konstruktivisme merupakan proses sosial antar pribadi yang diperlukan untuk mengubah pengetahuan matematika subyektif individual menjadi pengetahuan matematika objektif. Dan objektivitas itu sendiri dipahami sebagai sosial artinya menjadi pengetahuan yang objektif jika sudah ada pengujian dan penerimaan secara sosial (social accepted). Untuk menjawab pertanyaan tersebut di atas kita biasa menggunakan gagasan Vygotsky tentang teori kognitif sosial. Konstruktivis Vygotskian memandang bahwa pengetahuan dikonstruksi secara kolaboratif antara individu dan keadaan tersebut dapat disesuaikan oleh setiap individu. Proses dalam kognisi diarahkan melalui adaptasi intelektual dalam konteks sosial budaya. Proses penyesuaian itu ekivalen dengan pengkonstruksian pengetahuan secara intra individual, yaitu melalui proses regulasi diri secara internal. Dalam hubungan ini, para konstruktivis Vygotskian lebih menekankan pada penerapan teknik saling tukar gagasan antar individu (Sheffer, 1996. p.274-275). Ada dua point penting yang dapat di ambil dari teori Vygostsky, yaitu : (1) fungsi dan pentingnya bahasa dalam komunikasi sosial yang dimulai dari proses pencandraan terhadap tanda (sign) sampai kepada tukar menukar informasi dan pengetahuan. (2) tentang Zona of Proximal Development (ZPD). Guru sebagai mediator memiliki peran mendorong dan menjembatani siswa dalam upayanya membangun pengetahuan, pengertian dan kompetensi. (Dixon-Kraus, 1996:8). Dengan demikian dalam pandangan Manajemen Risiko di Bidang Perbankan dan Asuransi | 243 Prosiding Seminar Nasional Statistika Universitas Padjadjaran, 13 November 2010 Vygotsky bahwa pembelajaran merupakan aspek sosiokultural, yaitu proses yang menekankan pada aspek interkasi sosial masing-masing individu dalam budaya mereka. Disamping itu menurut Vygostky bahwa pembelajaran terjadi saat siswa bekerja menangani tugas-tugas yang belum diperlajari namun tugas tugas itu masih dalam jangkauan kemampuannya atau disebut bahwa tugas-tugas itu berada dalam Zona of Proximal Development mereka. Zona of Proximal Development adalah daerah antar tingkat perkembangan sesungguhnya yang didefinisikan sebagai kemampuan memecahkan masalah secara mandiri dan tingkat perkembangan potensial, yaitu kemampuan pemecahan masalah di bawah bimbingan orang dewasa atau teman sebaya yang lebih mampu (Sheffer, 1996). Teori Vygotsky pada prinsipnya berbeda karakteristik dengan teori Piaget. Jika teori Piaget lebih bersifat internal individual, secara jelas bahwa teori Vygotsky bersifat eksternal, karena Vygotsky lebih menekankan pada faktor luar dalam proses pembelajaran. Menurut Vygotsky bahwa pengetahuan dibangun siswa dalam konteks budaya dan atas interaksinya dengan teman teman sebaya. Menurut dia bahwa pengetahuan tidak bisa dibangun tanpa interaksi sosial. C. Scaffolding dan Level-level pada Kegiatan Kelas Menurut teori yang diajukan Vygotsky bahwa proses belajar terjadi ketika anak masih berada pada jangkauan Zona of Proxymal Development, suatu zona tentang kemampuan memecahkan masalah. Hal ini mengindikasikan tentang kemungkinan pencapaian siswa terhadap tugas-tugas yang diberikan. Vygotsky mengemukakan ada tiga kategori pencapaian siswa dalam upayanya memecahkan masalah, yaitu (1) siswa memcapai keberhasilan dengan baik secara mandiri, (2) siswa mencapai keberhasilan dengan bantuan, dan (3) siswa gagal meraih keberhasilan. ZPD adalah daerah level (2), yaitu antara Zona of Actual Develompment (ZAD) yang didefinisikan sebagai kemampuan memecahkan masalah secara mandiri level (1) dan tingkat perkembangan potensial level (3), anak tidak mampu mengerjakan tugas-tugas yang diberikan. Berarti dalam tingkat ZPD mereka anak mempunyai kemampuan pemecahan masalah di bawah bimbingan orang dewasa atau teman sebaya yang lebih mampu (Sheffer, 1996). Manajemen Risiko di Bidang Perbankan dan Asuransi | 244 Prosiding Seminar Nasional Statistika Universitas Padjadjaran, 13 November 2010 Bantuan siswa dalam belajar itu dikenalkan oleh Vygotsky sebagai scaffolding, yang berarti memberikan kepada seorang anak sejumlah besar bantuan selama tahaptahap awal pembelajaran dan kemudian mengurangi bantuan tersebut dan memberikan kesempatan kepada anak tersebut mengambil alih tanggung jawab yang semakin besar setelah mampu mengerjakan sendiri (Vygotsky, 1978:5). Pengertian itu juga sejalan dengan yang dikemukakan Wood dkk., bahwa ‘scaffolding’ merefleksikan cara orang dewasa membantu siswa ketika dia belajar dan pada akhirnya melepasnya ketika dia sudah bisa mandiri (Wood, Bruner, & Ross, 1976). Demikian juga Tharpe dan Gallimore (1988) menggunakan istilah ‘assited learning’ (belajar berbantuan) untuk mengembangkan pengelompokan interaksi orang dewasa. Hal ini konsisten dengan gagasan Vygotsky (1978) tentang Zona Proksimal Development (ZPD) yang menunjukkan hubungan terbalik antara dukungan guru dan kemandirian siswa. Siswa yang lebih tergantung pada dukungan guru mungkin diharapkan akan bekerja di marjin (batas) ZPD mereka, membutuhkan guru untuk model, prompt, mendemonstrasikan, atau melatih, untuk memperoleh pemahaman dan wawasan baru. Sedangkan siswa yang kurang tergantung pada dukungan guru mungkin diharapkan akan berjalan dengan baik di dalam ZPD mereka, yang memerlukan sedikit atau tidak ada intervensi dari guru, dan mengakses berbagai strategi metakognitif yang tepat untuk memonitor belajar mereka sendiri. Dalam hal ini, serangkaian tindakan guru yang berbeda mungkin akan diperlukan, untuk contoh, refleksi, mengenalkan, menarik dan mendengarkan. Level scaffolding yang berbeda-beda telah diidentifikasi dalam berbagai literatur kognisi. Misalnya, Rogoff (1995) mengidentifikasi tiga perbedaan secara kualitatif `bidang kegiatan sosial-budaya' dalam suasana out-of-sekolah yang ia disebut sebagai ‘magang, partisipasi dipandu, dan pembentukan partisipatif’. Tingkat yang berbeda menelusuri perkembangan individu dalam usaha sosial-budaya dari pemula bergantung kepada prkatisi independen. Sebuah model tiga tahap yang sama diajukan oleh Brown, Collins dan Duguid (1989) untuk menggambarkan kemajuan gradual (bertahap) dari kegiatan tertanam ke ahli reflektif. Pada masa lampau ketika pembelajaran lebih terfokus pada guru, proses pengajaran matematika dipandang sebagai prosedur yang standar dengan berlatih dan Manajemen Risiko di Bidang Perbankan dan Asuransi | 245 Prosiding Seminar Nasional Statistika Universitas Padjadjaran, 13 November 2010 berhitung. Beberapa pengajaran hanya menggunakan alat bantu yang minim, seperti buku buku latihan yang sengaja dibuat dan dinilai hanya dengan penjelasan guru. Ketika metafor pembelajaran mengarah pada kontruktivistik peran guru lebih meningkat dalam upaya meningkatkan pembelajaran yang lebih bermakna , dengan mengoptimalkan bantuan siswa dalam belajar mereka. Scaffolding tidak dimaknai dalam konteks yang sempit seperti alat bantu mengajar yang digunakan guru, tetapi lebih dari itu. Segala aspek yang mempengaruhi interaksi siswa di dalam lingkungan belajarnya dapat dimanfaatkan sebagai scaffolding untuk mecapai pemahaman yang lebih valid tentang matematika. Dalam kajian ini digunakan level-level scaffolding yang diajukan oleh Angghileri (2006), yang membedakan tiga level dukungan guru. Level 1 scaffolding cenderung untuk merujuk kepada petunjuk (promt) dan rangsangan yang ada di lingkungan, baik sebagai hasil dari perencanaan yang sadar atau secara tidak sengaja (default), yang melayani untuk mendukung belajar siswa dalam matematika. Ini mungkin mengambil bentuk generalisasi poster rekaman atau pengamatan kunci dari pelajaran masa lalu, pilihan hati-hati, permainan mengoreksi diri, melibatkan tugas atau teka-teki, bahan / manipulatif, dan / atau alat matematis. Dalam hal ini, keterlibatan langsung guru mungkin rendah tetapi tingkat dukungan yang bisa digambarkan sebagai tinggi tergantung pada pemikiran dan usaha dikeluarkan oleh guru dalam menentukan yang menampilkan, tugas, dan materi akan tersedia. Level 2 scaffolding melibatkan interaksi langsung antara guru dan siswa secara khusus difokuskan pada tugas di tangan. Strategi tersebut bervariasi dari instruksi langsung - menunjukkan dan memberitahu - untuk membuat makna yang lebih kolaboratif ". Scaffold pada tingkat ini, menurut Anghileri, termasuk jenis pola interaksi umum ditemukan di pendekatan 'tradisional', yaitu, dimana guru tetap mempertahankan kontrol, struktur percakapan, menguraikan, dan menjelaskan. Namun, mereka juga mencakup dua kategori praktek yang melibatkan siswa secara langsung di kegiatan awal, yaitu, meninjau dan restrukturisasi. Level 3 scaffolding bertujuan untuk membuat koneksi antara pengetahuan awal siswa dan pengalaman dan matematika baru yang akan dipelajari. Mengembangkan alat representasi dan membangun wacana konseptual adalah dua daerah yang Manajemen Risiko di Bidang Perbankan dan Asuransi | 246 Prosiding Seminar Nasional Statistika Universitas Padjadjaran, 13 November 2010 dipertimbangkan di sini. Dengan negosiasi norma-norma sosial dan nilai-nilai yang nilai penjelasan konseptual (sebagai lawan dari komputasi), siswa yang kemungkinan akan terlibat dalam lagi, diskusi lebih bermakna dan makna yang menjadi milik bersama dari setiap individu melibatkan tindakan komunal yang membuat makna matematika. Hal ini secara tidak langsung didukung oleh Turner et al., (1998) yang membandingkan keterlibatan tinggi dan rendah oleh para guru, dan melaporkan bahwa tekanan lebih tinggi untuk pemahaman - ditandai dengan penentuan guru untuk tetap bekerja dengan siswa sampai mereka menghargai koneksi yang relevan, aplikasi, generalisasi dan perluasan - dikaitkan dengan keterlibatan yang lebih besar dari siswa di kelas matematika. Secara skematis level-level scaffolding menurut Anghelery disajikan pada tabel berikut: LEVEL 1 environmental provisions artefacts classroom organisation Peer squencing and free play structured Manajemen Risiko di Bidang Perbankan dan Asuransi | 247 Prosiding Seminar Nasional Statistika Universitas Padjadjaran, 13 November 2010 LEVEL 2 explaining, reviewing, and restructuring Reviewing Restructuring looking, touching and verbalising promting and probing parallel modelling students explaining and justifying showing and telling providing meaningful contexts rephrasing student’s talk simplifying the problem negotiating meanings teacher explaining Interpreting LEVEL 3 developing conceptual thingking making connection Developing representational tools Generating conceptual discourse D. Strategi Guru pada Pembelajaran dengan Scaffolding di Kelas. Menurut Anghileri (2006), dukungan guru tampaknya dikonseptualisasikan dengan cara yang berbeda baik dalam pendekatan pengajaran maupun literatur kognisi, terletak pada pengakuan peserta didik ke dalam praktik sosial-budaya tertentu. Praktik dijelaskan dalam Level 2 dan 3 dari kerangka Anghileri cenderung lebih terfokus secara khusus pada pola interaksi yang berbeda secara kualitatif. Hal ini mungkin tidak mengherankan mengingat keragaman praktek yang dianut oleh matematika sekolah, tapi menawarkan lain, mungkin lebih berguna, cara berbicara tentang sifat peran guru dalam membentuk komunikasi kelas dan budaya. Manajemen Risiko di Bidang Perbankan dan Asuransi | 248 Prosiding Seminar Nasional Statistika Universitas Padjadjaran, 13 November 2010 Pada penerapan yang paling mendasar bahwa komunikasi verbal menjadi strategi yang hanpir digunakan oleh guru untuk menscafold belajar siswa. Walalaupun scaffolding tipe ini bersifat verbal, di masa lalu, sebagian besar kegiatan komunikasi kelas cenderung berfokus pada strategi ini secara bergiliran mengambil dan pengulangan "hampir tak henti-hentinya dari urutan IRF (Initiation, Response, Feedback) di ranah murid guru" (Pimm, 1994). Guru dan siswa secara refleks belajar bagaimana berkomunikasi dalam ruang kelas dengan cara yang sangat spesifik. Mereka belajar dengan mengatakan apa, kapan dan kepada siapa. Hal ini menunjukkan bahwa guru mungkin sengaja mengadopsi pola interaksi tertentu, seperti `bergerak' hanya akan efektif untuk sebatas bahwa permainan bahasa `baru' dihargai dan dipahami oleh siswa (Morine-Dershirner, 1985; Zevenbergen, 1996). Wood (1994,1996) telah menulis secara luas tentang funnelling dan focussing pada 'pola interaksi' yang diamati di Tahun 2 kelas matematika. Dia membuat titik bahwa pola interaksi alternatif untuk interaksi IRF tradisional. Keduanya beroperasi untuk meningkatkan bukan kendala belajar siswa dan "melayani niat sentral guru berusaha untuk menciptakan situasi belajar yang memungkinkan siswa untuk membangun makna matematika untuk diri mereka sendiri" (Wood, 1994, p.159). Pola funnel secara umum dapat digambarkan sebagai interaksi di mana guru menciptakan serangkaian pertanyaan yang bertindak untuk terus mempersempit kemungkinan siswa sampai mereka tiba pada jawaban yang benar. Dalam situasi ini, guru mengakui bahwa siswa tidak mampu merespons dengan tepat dengan jawaban yang benar, dan karena itu mencoba untuk menawarkan pedoman pertanyaan untuk tujuan memungkinkan siswa untuk memecahkan masalah. Bentuk pertukaran selalu berakhir dengan sebuah solusi untuk masalah yang dihadapi. Pola focus juga dapat digambarkan sebagai suatu situasi di mana aspek-aspek penting untuk memecahkan masalah dibawa kedepan. Selain itu, pola interaksi ini dapat digambarkan sebagai salah satu yang pertanyaan guru bertindak untuk menunjukkan kepada anak fitur penting dari masalah yang belum dipahami. Dalam interaksi tertentu, siswa selalu memiliki beberapa aspek masalah masih harus diselesaikan. (Wood, 1994, hal. 159-160). Manajemen Risiko di Bidang Perbankan dan Asuransi | 249 Prosiding Seminar Nasional Statistika Universitas Padjadjaran, 13 November 2010 Sesuai dengan dengan level scaffolding dijelaskan sebelumnya, pola-pola interaksi dapat dilihat untuk mewakili berbagai tingkat dukungan guru. Artinya, ketika tingkat pemahaman siswa meningkat, tingkat dukungan guru berkurang. Namun, sifat dari dukungan ini jauh lebih jelas dibingkai dalam hal interaksi guru-siswa. Dengan penekanan pada interaksi kelas, dalam kajian ini, gagasan tentang pendekatan pembelajaran merujuk pada tindakan komunikatif guru dalam upaya mereka menscaffolding belajar siswa belajar di kelas matematika. Berapa tahapan dalam membangun scaffolding di kelas dapat diidentifikasi dengan pendekatan atau interaksi yang beragam, diantaranya adalah : 1. Penyediaan lingkungan 2. Discussing, Reviewing, dan excavating (penggalian) 3. Tunjukkan pada saya / meyakinkan saya / bertanya/ Focussing 4. Pemodelan/ Membuat eksplisit Gagasan pendekatan pengajaran pengukuran dibingkai dalam tindakan komunikatif guru dengan tujuan untuk mengakomodasi berbagai praktik. Dalam menguraikan dan mencontohkan daftar, diakui bahwa praktik-praktik yang dijelaskan belum tentu baru. Memang, mereka akan diakui secara luas oleh banyak guru sebagai sesuatu yang mereka "sudah lakukan". Meskipun ini merupakan uji ketahanan dan relevansi sampai batas tertentu, apa yang baru adalah bahwa daftar praktik scaffolding memberikan awal bahasa profesional untuk menggambarkan apa yang guru lakukan ketika mereka berusaha untuk mendukung belajar siswa dalam matematika. DAFTAR PUSTAKA Anghileri, J. 2006. Scaffolding Practices That Enhance Mathematics Learning. Journal of Mathematics Teacher Education (2006), 9, 33-52. Brown, J., Collins, A., & Duguid, P.1989. Situated Cognition and the Culture of Learning. Educational Researcher, 18, 32-42. Diaz, C.F.,Pelletier, C.M.,&Provenzo,E.F.2006. Touch the Future… Teach! Boston: Pearson Education, Inc. Manajemen Risiko di Bidang Perbankan dan Asuransi | 250 Prosiding Seminar Nasional Statistika Universitas Padjadjaran, 13 November 2010 Dixon-Kraus, L. (1996). Vygotsky in the classroom: Mediated literacy instruction and assessment. White Plains, New York: Longmans. Ernest, P. (1991). The Philosophy of Mathematics Education. London: The Falmer Press. Hudojo, H. 2003. PembangunanKurikulum dan Pembelajaran Matematika. JICA. Jakarta: IMSTEP. Pimm, D. (1994). Spoken mathematical classroom culture: Artifice and Artificiality. In S. Lerman (Ed). The culture of the mathematics classrooms (p.149-168). Dordrecht: The Netherlands. Kluwer Academic. Rogoff, B. (1995). Observer sociocultural activity on three planes: Participatory, appropriation, guided participation, and apprenticeship. In J. Wertch, P. del Rio, & A. Alvarez (Eds.). Sociocultural study of minds. New York, NY: Cambridge University Press. Slavin, R.E. (2000). Educational Psychology: Theory and Practice. Boston: Allyn & Bacon. Stone, A. (1998). the metaphor of scaffolding: its utility for the field of learning disabilities. Journal of Learning Disabilities, Vol 3, No 4. Tharpe, R. & Gallimore, R. (1988). Rousing minds to life: Teaching, learning , and schooling in social context. Cambridge: Cambridge University Press. Turner, J., Meyer, D. Cox, K. diCintio, & Thomas, C. (1998). Creating contexts for involvement in mathematics. Journal of Educational Psychology, 90, 730-745. Vygotsky, L.S. (1978). Mind in society. The development of higher psychological processes. Cambridge, MA: Harvard University Press. Wood, T., Bruner, J. & Ross,G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry. 17, 89-100. Wood, T. (1994). Patterns on interaction and the culture of mathematics classrooms. In S. Lerman(Ed.). The culture of the mathematics classrooms (p.149-168). Dordrecht: The Netherlands. Kluwer Academic. Wood, T.(1996). Events in learning mathematics. Insights from research in classrooms. Educational studies in mathematics. 30, 85-105 Manajemen Risiko di Bidang Perbankan dan Asuransi | 251 Prosiding Seminar Nasional Statistika Universitas Padjadjaran, 13 November 2010 Manajemen Risiko di Bidang Perbankan dan Asuransi | 252