Uploaded by User75433

Jobsheet Menemukan Pola Barisan dan Deret Aritmatika

advertisement
Jobsheet Menemukan Konsep Barisan dan Deret Aritmatika
Soal Nomor 1
Rumus umum suku ke-n untuk barisan aritmetika −1,1,3,5,7,⋯ adalah ….
Soal Nomor 2
Rumus umum dari barisan aritmetika −8,0,8,16,⋯ adalah ….
Soal Nomor 3
Rumus suku ke-n dari barisan aritmetika −18,−15,−12,−9 adalah ….
Soal Nomor 4
Rumus suku ke-n dari barisan aritmetika 5,2,−1,−4,⋯ adalah ….
Soal Nomor 5
Diketahui barisan aritmetika 6,10,14,⋯. Rumus umum suku ke-n untuk barisan bilangan tersebut adalah ….
Soal Nomor 6
Diketahui barisan aritmetika: 4,1,−2,−5,⋯. Suku ke-10 barisan tersebut adalah ….
Soal Nomor 7
Suku ke-n suatu barisan bilangan dirumuskan Un=15−3n. Suku ke-15 dari barisan tersebut adalah ….
Soal Nomor 8
Diketahui suku ke-5 dan suku ke-9 dari suatu barisan bilangan aritmetika adalah 18 dan 6. Suku ke-3 barisan tersebut
adalah ….
Soal Nomor 9
Diketahui suku ke-3 dan suku ke-5 dari barisan aritmetika secara berturut-turut adalah −5 dan −9. Suku ke-10 dari barisan
tersebut adalah ….
Soal Nomor 10
Diketahui suatu barisan aritmetika dengan U4=17 dan U9=37. Suku ketujuh barisan tersebut adalah ….
Soal Nomor 11
Diketahui barisan aritmetika dengan suku pertama 3 dan suku ke-5 adalah 11. Suku ke-25 dari barisan tersebut adalah ….
Soal Nomor 12
Diketahui barisan aritmetika dengan U5=17 dan U10=32. Suku ke-20 adalah ….
Soal Nomor 13
Dari suatu deret aritmetika, diketahui suku pertama adalah 20 dan suku keenam adalah 40. Jumlah sepuluh suku pertama
dari deret tersebut adalah ….
Soal Nomor 16
Suku ketiga suatu deret aritmetika adalah 11. Jumlah suku keenam hingga suku kesembilan ialah 134. Suku pertama dan
beda deret itu berturut-turut adalah ….
Soal Nomor 17
Suku pertama suatu barisan aritmetika adalah 5. Diketahui suku kesepuluh adalah dua kali suku keempat. Jumlah enam suku
pertama barisan tersebut adalah ….
Soal Nomor 19
5
Jumlah n suku pertama deret aritmetika dinyatakan dengan 𝑆𝑛 = 2 𝑛2 + 32𝑛. Suku ke-10 dari deret aritmetika tersebut
adalah ….
Sumber Literatur :
https://mathcyber1997.com/soal-dan-pembahasan-barisan-dan-deret-aritmetika/
Download