Uploaded by vhartanto20

Karbohidrat 7Senin

advertisement
LAPORAN RESMI
PRAKTIKUM DASAR TEKNIK KIMIA II
Materi :
KARBOHIDRAT
Disusun Oleh :
7-Senin
Group
: 7 - Senin
Rekan Kerja
: 1. Aurellia Livia Hidayat
NIM. 21030120130110
2. Desita Rachmawanti
NIM. 21030120120011
3. Ergian Janitra
NIM. 21030120130103
4. Ghea Fsyifa Hidawati
NIM. 21030120120025
LABORATORIUM DASAR TEKNIK KIMIA
DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK
UNIVERSITAS DIPONEGORO
SEMARANG
2021
LEMBAR PENGESAHAN
PRAKTIKUM DASAR TEKNIK KIMIA II
UNIVERSITAS DIPONEGORO
Materi
: Karbohidrat
Kelompok
: 7 - Senin
Anggota
: 1. Aurellia Livia Hidayat
NIM. 21030120130110
2. Desita Rachmawanti
NIM. 21030120120011
3. Ergian Janitra
NIM. 21030120130103
4. Ghea Fsyifa Hidawati
NIM. 21030120120025
Semarang,
Mengetahui
Dosen Pengampu
Asisten Pembimbing
Ir. Kristinah Haryani, M.T.
Vincent Hartanto
NIP. 196402141991022002
NIM. 21030118130144
ii
RINGKASAN
Dalam kehidupan sehari-hari kita sering melakukan aktivitas yang
membutuhkan energi cukup banyak sehingga memerlukan asupan makanan. Bahan
makanan mengandung karbohidrat yang memegang peran penting dan sebagai sumber
energi utama. Tujuan praktikum kali ini adalah membuat rangkaian alat analisa
karbohidrat dan mengoperasikannya, menentukan reaksi-reaksi pada uji penentuan
kadar pati, dan menentukan kadar karbohidrat (pati) pada tepung singkong.
Karbohidrat adalah polisakarida aldehid/keton yang mempunyai rumus (CH2O)n.
Karbohidrat dapat digolongkan menjadi 3, yaitu monosakarida, disakarida, dan
polisakarida. Monosakarida merupakan karbohidrat yang paling sederhana,
contohnya glukosa, galaktosa, fruktosa, dan ribosa. Disakarida merupakan
karbohidrat yang terdiri dari dua satuan monosakarida, contohnya sukrosa (gabungan
glukosa dan fruktosa), maltosa (gabungan dari dua unit glukosa), dan laktosa
(gabungan glukosa dan galaktosa). Polisakarida merupakan karbohidrat yang terdiri
dari banyak satuan (lebih dari delapan satuan) monosakarida, contohnya pati,
selulosa, pektin, kitin, dan lain-lain.
Pada praktikum ini, kami menggunakan bahan yaitu tepung singkong sebagai
sampel, HCl 37%, NaOH 0,5 N, aquadest, glukosa anhidris 0,0025 gr/ml, metilen blue,
fehling A, dan fehling B. Alat yang digunakan adalah rangkaian alat yang terdiri dari
magnetic stirrer plus heater, waterbath, labu leher tiga, thermometer, pendingin balik,
klem dan statif yang dirangkai sedemikian rupa, timbangan, buret, pipet volume, pipet
tetes, gelas ukur, oven, kompor listrik, erlenmeyer, beaker glass, cawan porselin,
corong, dan indikator pH. Prosedur kerja yang dilakukan yaitu analisa kadar pati
dengan persiapan bahan untuk mengetahui densitas tepung singkong, standarisasi
larutan Fehling dengan larutan glukosa standart, dan penentuan kadar pati pada
tepung singkong.
Pada praktikum ini, ditemukan kadar pati tepung singkong praktis sebesar
81,45% dan kadar pati tepung singkong acuan dari jurnal sebesar 85,045%. Penyebab
dari kadar praktis lebih kecil dari kadar teoritis adalah sifat fisikokimia pati,
kelarutan, dan konsentrasi asam di dalam larutan pada saat hidrolisa terlalu
berlebihan. Saran-saran yang diberikan dari praktikum ini adalah Larutan Fehling
dijaga agar tidak terkontaminasi dan HCl dijada agar tidak menguap, kecepatan
magnetic stirrer diperhatikan agar tidak menimbulkan pusaran (vortex), dan titrasi
harus dilakukan di atas kompor listrik untuk menjaga suhu larutan yang dititrasi agar
konstan.
iii
PRAKATA
Puji syukur kehadirat Tuhan Yang Maha Esa yang telah memberikan rahmat dan
hidayah-Nya sehingga laporan Praktikum Dasar Teknik Kimia II ini dapat diselesaikan
dengan lancar dan sesuai dengan harapan. Laporan praktikum ini diperuntukkan untuk
memenuhi salah satu tugas mata kuliah Praktikum Dasar Teknik Kimia II.
Adapun isi laporan praktikum ini adalah pembahasan mengenai hasil percobaan
dari praktikum Karbohidrat. Berbagai dukungan dan doa sehingga penyusun dapat
menyelesaikan laporan praktikum ini. Untuk itu, tim penyusun mengucapkan terima
kasih kepada :
1.
Dr. Ing. Ir. Silviana, S.T., M.T., IPM., ASEAN Eng. selaku dosen penanggung
jawab Laboratorium Dasar Teknik Kimia II.
2.
Ir. Kristinah Haryani, M.T. selaku dosen pengampu materi Karbohidrat.
3.
Andrew Reynaldo Kristianto Handoko selaku koordinator asisten Laboratorium
Dasar Teknik Kimia II.
4.
Andrew Christian Timothy Prasetyo, Vincent Hartanto, dan Maria Asel selaku
asisten pengampu materi Karbohidrat.
5.
Asisten-asisten Laboratorium Dasar Teknik Kimia II lainnya.
Kritik dan saran dari pembaca sangat diharapkan untuk penyempurnaan laporan
praktikum ini karena masih banyak kekurangan yang perlu diperbaiki. Akhir kata,
semoga laporan praktikum ini dapat bermanfaat sebagai bahan penambah ilmu
pengetahuan.
Semarang, 14 Maret 2021
Tim Penyusun
iv
DAFTAR ISI
HALAMAN JUDUL ................................................................................................ i
LEMBAR PENGESAHAN ..................................................................................... ii
RINGKASAN ......................................................................................................... iii
PRAKATA ............................................................................................................. iv
DAFTAR ISI ........................................................................................................... v
DAFTAR TABEL .................................................................................................. vi
DAFTAR GAMBAR ............................................................................................. vii
DAFTAR LAMPIRAN ........................................................................................ viii
BAB I PENDAHULUAN ........................................................................................ 1
1.1
Latar Belakang............................................................................................ 1
1.2
Tujuan Praktikum ....................................................................................... 1
1.3
Manfaat Praktikum ..................................................................................... 2
BAB II TINJAUAN PUSTAKA ............................................................................. 3
2.1
Pengertian Karbohidrat ............................................................................... 3
2.2
Pati ............................................................................................................. 3
2.3
Hidrolisa Pati .............................................................................................. 5
2.4
Faktor-Faktor yang Mempengaruhi Hidrolisa .............................................. 6
2.5
Aplikasi Pati di Bidang Industri .................................................................. 7
BAB III METODE PRAKTIKUM......................................................................... 9
3.1
Alat dan Bahan yang Digunakan ................................................................. 9
3.1.1
Bahan .................................................................................................. 9
3.1.2
Alat ..................................................................................................... 9
3.2
Prosedur Praktikum .................................................................................. 10
1.
Analisa Kadar Pati .................................................................................... 10
2.
Pembuatan larutan fehling......................................................................... 11
3.
Pembuatan Larutan Glukosa standart ........................................................ 12
BAB IV HASIL DAN PEMBAHASAN................................................................ 13
4.1
Perbandingan Kadar Praktis dan Teoritis................................................... 13
4.2
Mekanisme Hidrolisa Pati dengan Katalis Asam ....................................... 14
4.3
Mekanisme Penentuan Kadar Pati dengan Uji Fehling .............................. 15
BAB V PENUTUP ................................................................................................ 17
5.1
Kesimpulan............................................................................................... 17
5.2
Saran ........................................................................................................ 17
DAFTAR PUSTAKA ............................................................................................ 18
v
DAFTAR TABEL
Tabel 4.1 Perbandingan kadar pati tepung singkong acuan dengan kadar pati tepung
singkong praktis ...................................................................................................... 13
vi
DAFTAR GAMBAR
Gambar 2.1 Struktur amilosa ..................................................................................... 4
Gambar 2.2 Struktur amilopektin .............................................................................. 4
Gambar 3.1 Rangkaian alat ..................................................................................... 10
Gambar 4.1 Mekanisme Hidrolisis Pati dengan Katalis Asam (Hoover, 2000) ......... 15
vii
DAFTAR LAMPIRAN
LAPORAN SEMENTARA................................................................................... A-1
LEMBAR PERHITUNGAN ................................................................................. B-1
LEMBAR KUANTITAS REAGEN ...................................................................... C-1
LEMBAR PERHITUNGAN REAGEN ................................................................ D-1
REFERENSI .......................................................................................................... E-1
LEMBAR ASISTENSI
viii
BAB I
PENDAHULUAN
1.1
Latar Belakang
Dalam kehidupan sehari-hari kita sering melakukan aktivitas yang
membutuhkan energi cukup banyak. Energi ini kita peroleh dari bahan makanan
yang kita makan. Pada umumnya bahan makanan itu mengandung tiga kelompok
utama senyawa kimia yaitu karbohidrat, protein dan lemak. Karbohidrat
memegang peranan yang sangat penting di alam karena merupakan sumber
energi utama bagi manusia dan hewan. Kita dapat mengenal berbagai jenis
karbohidrat dalam kehidupan sehari-hari contohnya amilum atau pati, selulosa,
glikogen, gula atau sukrosa, yang berfungsi sebagai pembangun struktur maupun
yang berperan fungsional dalam proses metabolisme. Pati merupakan karbohidrat
utama dalam makanan yang berasal dari tumbuh-tumbuhan. Pati merupakan
polisakarida yang diproduksi selama proses fotosintesis. Energi matahari diubah
menjadi energi kimia dengan menggabungkan karbon dioksida dengan air untuk
membentuk karbohidrat sederhana (glukosa) dan oksigen molekuler. Pati
umumnya ditemukan pada umbi-umbian, biji-bijian, kacang-kacangan dan buahbuahan.
Pada metabolisme manusia, karbohidrat kompleks perlu diubah menjadi
bentuk yang lebih sederhana dengan bantuan enzim agar bisa dicerna oleh tubuh
untuk menghasilkan energi. Dalam proses pencernaan semua bentuk pati
dihidrolisis menjadi glukosa. Pada tahap petengahan akan dihasilkan dekstin dan
maltosa. Dekstrin, merupakan produk antara pada pencernaan pati atau dibentuk
melalui hidrolisis parsial pati. Glikogen, dinamakan juga pati hewan karena
merupakan bentuk simpanan karbohidat di dalam tubuh manusia dan hewan,
yang terutama terdapat di dalam hati dan otot. Glikogen dalam otot hanya dapat
digunakan untuk keperluan energi di dalam otot tersebut, sedangkan glikogen
dalam hati dapat digunakan sebagai sumber energi untuk keperluan semua sel
tubuh.
1.2
Tujuan Praktikum
1.
Membuat rangkaian alat analisa karbohidrat dan mengoperasikannya.
2.
Menentukan reaksi-reaksi pada uji penentuan kadar pati.
3.
Menentukan kadar karbohidrat (pati) pada tepung singkong dengan prosedur
yang benar.
1
1.3
Manfaat Praktikum
1.
Mahsiswa mampu menyusun rangkaian alat analisa karbohidrat dan
mengoperasikannya.
2.
Mahasiswa mampu memahami reaksi-reaksi pada uji penentuan kadar pati.
3.
Mahasiswa mampu menentukan kadar karbohidrat (pati) pada tepung
singkong dengan prosedur yang benar.
2
BAB II
TINJAUAN PUSTAKA
2.1
Pengertian Karbohidrat
Karbohidrat merupakan salah satu senyawa organik yang banyak
dijumpai di alam yang mengandung atom karbon (C), hidrogen (H), dan oksigen
(O). Rumus umum dari senyawa karbohidrat adalah (CH 2O)n. Senyawa
karbohidrat merupakan polihidroksi aldehid dan keton atau turunannya.
Berdasarkan ukuran molekulnya, karbohidrat diklasifikasikan dalam tiga
golongan, yaitu monosakarida, disakarida, dan polisakarida.
Monosakarida merupakan karbohidrat yang paling sederhana, contohnya
glukosa, galaktosa, fruktosa, dan ribosa. Disakarida merupakan karbohidrat yang
terdiri dari dua satuan monosakarida. Ada 3 isomer penting yang menjadi
kelompok disakarida, yaitu sukrosa (gabungan glukosa dan fruktosa), maltosa
(gabungan dari dua unit glukosa), dan laktosa (gabungan glukosa dan galaktosa).
Polisakarida merupakan karbohidrat yang terdiri dari banyak satuan (lebih dari
delapan satuan) monosakarida, contohnya pati, selulosa, pektin, kitin, dll.
Karbohidrat pada umumnya memiliki sifat yaitu, senyawa karbohidrat dari
tingkat yang lebih tinggi dapat diubah menjadi tingkat yang lebih rendah dengan
cara menghidrolisa, gugus hemiasetal (keton maupun aldehid) mempunyai sifat
pereduksi, dan gugus-gugus hidroksil pada karbohidrat juga bertabiat serupa
dengan yang terdapat pada gugus alkohol lain.
2.2
Pati
Pati merupakan homopolimer glukosa dengan ikatan α-glikosidik yang
terdiri dari dua fraksi. Fraksi terlarut disebut amilosa dan fraksi tidak terlarut
disebut amilopektin. Rumus umum dari senyawa pati adalah (C 6H10O5)n. Pati
atau amilum adalah karbohidrat kompleks (polisakarida) yang bersifat tidak
dapat larut dalam air pada temperatur ruangan, berwujud bubuk putih, tawar,
tidak berbau, dan dalam bentuk aslinya pati secara alami berbentuk butiranbutiran kecil yang disebut granula. Sebagian besar pati disimpan dalam umbi (ubi
kayu, ubi jalar, kentang, dan lain-lain), biji (padi, jagung, gandum, sorghum),
batang (sagu), dan buah. Pati dapat dibagi menjadi 2 jenis yaitu pati alami (Native
Starch) dan pati yang termodifikasi (Modified Starch).
3
Secara garis besar pati dapat dibedakan atas :
a.
Amilosa (± 30%)
Gambar 2.1 Struktur amilosa
 Yang mempunyai sifat larut dalam air panas.
 Merupakan polimer linier dengan ikatan 1,4’ α – D glukosa.
 Tiap molekul amilosa terdapat ± 250 satuan glukosa.
 Hidrolisis parsial menghasilkan maltosa dan oligomer lain (maltodextrin)
 Hidrolisis lengkap hanya menghasilkan D-glukosa.
 Molekul amilosa membentuk spiral di sekitar molekul I 2 dan antaraksi
keduanya akan menimbulkan warna biru. Hal ini digunakan sebagai dasar
uji Iod pada pati.
b.
Amilopektin (± 70%)
Gambar 2.2 Struktur amilopektin
 Mempunyai sifat tidak larut dalam air.
 Struktur bangun dari senyawa amilopektin hampir sama dengan amilosa,
perbedaannya rantai amilopektin mempunyai percabangan.
 Rantai
utama
amilopektin
mengandung
1,4’–α–D-glukosa,
dan
percabangan rantai mengandung 1,6’–α – D-glukosa. Tiap molekul
mengandung ± 1000 satuan glukosa.
4
 Hidrolisa parsial dari amilopektin dapat menghasilkan oligosakarida yang
disebut dekstrin, yang sering digunakan sebagai perekat (lem), pasta, dan
kanji tekstil.
 Hidrolisa lanjut dari dekstrin dapat menghasilkan maltosa dan isomaltosa.
 Hidrolisa lengkap amilopektin hanya menghasilkan D-glukosa.
Pati dan juga produk turunannya merupakan bahan yang multiguna dan
banyak digunakan pada berbagai industri antara lain pada minuman, makanan
yang diproses, kertas, makanan ternak, farmasi dan bahan kimia serta industri
nonpangan seperti tekstil, detergent, kemasan dan sebagainya. Dalam industri
makanan dapat digunakan sebagai pembentuk gel dan encapsulating agent.
Dalam industri kertas dapat digunakan sebagai zat aditive seperti wet-end untuk
surface size dan coating binder, bahan perekat. Dapat juga digunakan untuk
proses glass fiber sizing.
2.3
Hidrolisa Pati
Hidrolisis adalah proses dekomposisi kimia dengan menggunakan air
untuk memisahkan ikatan kimia dari substansinya. Hidrolisis pati merupakan
proses pemecahan molekul amilum menjadi bagian-bagian penyusunnya yang
lebih sederhana seperti dekstrin, isomaltosa, maltosa dan glukosa. Reaksi
Hidrolisa pati berlangsung menurut reaksi berikut :
(C6H10O5)n + nH2O
Pati
n(C6H12O6)
Glukosa
(Yuniwati, 2011)
Reaksi antara pati dengan air berlangsung sangat lambat, sehingga perlu
bantuan katalisator. Katalisator yang digunakan adalah asam (contoh : HCl,
HNO3, H2SO4) dan enzim. Katalisator yang sering digunakan adalah katalisator
asam. Asam khlorida (HCl) merupakan asam yang paling sering digunakan
sebagai katalis terutama untuk industri makanan karena sifatnya mudah menguap
sehingga memudahkan pemisahan dari produknya. Selain itu asam tersebut dapat
menghasilkan produk yang berwarna terang. Penggunaan HCl sebagai katalis
karena harganya murah, mudah diperoleh dan memiliki efektifitas yang tinggi
dalam meningkatkan kecepatan reaksi dan garam yang terbentuk tidak
berbahaya, yaitu garam dapur NaCl.
5
2.4
Faktor-Faktor yang Mempengaruhi Hidrolisa
Hidrolisa merupakan proses reaktan dengan air untuk memecah senyawa
(Coney, 1979 dalam Budiyati dan Bandi, 2015). Faktor-faktor yang
mempengaruhi hidrolisa :
1. Katalis
Katalis digunakan dalam reaksi hidrolisa untuk mempercepat reaksi.
Katalis yang digunakan yaitu enzim atau asam. Katalis asam yang sering
digunakan adalah asam klorida (Agra et al., 1973 dalam Budiyati dan Bandi,
2015), asam sulfat, dan asam nitrat. Konsentrasi ion H+ memberikan pengaruh
yang besar terhadap laju reaksi dibandingkan dengan jenis asam yang
digunakan. Pada umumnya industri banyak menggunakan asam klorida
sebagai katalis. Hal ini dikarenakan garam yang terbentuk dalam reaksi
netralisasi aman dan dapat dikendalikan dengan air (Budiyati dan Bandi,
2015).
2. Suhu dan Tekanan
Pengaruh suhu pada laju reaksi mengikuti persamaan Arrhenius. Pada
saat suhu tinggi, laju reaksi juga akan meningkat. Namun ketika suhu reaksi
hampir mencapai 0 dan reaksi berada pada fase cair, maka suhu dan
temperatur tidak terlalu mempengaruhi keseimbangan (Budiyati dan Bandi,
2015).
3. Pengadukan
Laju reaksi akan lebih cepat jika reaktan dapat bertabrakan antara satu
dengan yang lain sebaik mungkin. Oleh karena itu, pengadukan sangat
diperlukan. Di dalam batch process, hal ini dapat dicapai dengan
menggunakan stirrer atau shaker (Agra et al., 1973 dalam Budiyati dan Bandi,
2015). Jika proses merupakan flow process (continuous), maka pengadukan
dapat diselesaikan dengan mengatur aliran di dalam reaktor untuk
meningkatkan turbulensi (Budiyati dan Bandi, 2015).
4. Perbandingan Reagen
Perbandingan reaktan di dalam proses hidrolisa sangat penting. Apabila
salah satu reaktan terlalu banyak, maka kesetimbangan akan bergeser ke
kanan. Oleh karena itu, suspensi pati dengan kadar yang rendah dapat
memberikan hasil yang lebih baik daripada kadar pati yang tinggi. Hal ini
dikarenakan molekul pada kadar pati yang lebih tinggi akan sulit bergerak
dibandingkan dengan molekul pada kadar pati yang rendah (Budiyati dan
Bandi, 2015).
6
2.5
Aplikasi Pati di Bidang Industri
1. Bidang Biofuel
Etanol yang dihasilkan dari fermentasi pati hidrolisa dianggap setara
dengan alkohol biji-bijian dan dapat digunakan dalam minuman. Hal ini juga
memenuhi syarat bebas apabila dicampur dengan bensin pada tingkat 10%
sebagai bahan bakar motor. Etanol merupakan komoditas terbarukan yang
bisa diproduksi dari bahan-bahan alami. Etanol yang berasal dari bahan alami
menawarkan manfaat yang lebih besar jika dibandingkan dengan produkproduk yang berbasis minyak bumi. Ada dua proses dasar untuk memproduksi
etanol dari pati yaitu dengan penggilingan basah dan penggilingan kering.
Pada awalnya, penggilingan basah merupakan cara yang disukai untuk
memproduksi etanol dikarenakan hasil samping dari proses tersebut memiliki
harga yang tinggi daripada etanol itu sendiri. Namun karena harga etanol yang
kian meningkat, proses penggilingan kering menjadi lebih menguntungkan
sebab modal yang dibutuhkan lebih sedikit dibandingkan dengan
penggilingan basah (Echkoff dan Watson, 2009).
2. Bidang Industri Kertas
Pati merupakan komponen penting dari kualitas kertas. Penggunaan pati
di dalam proses pembuatan kertas dan proses konversi kertas menempati
urutan ketiga setelah serat selulosa dan pigmen mineral. Pati digunakan
sebagai bahan flokulan dan retensi, bahan pengikat, surfice size, pengikat
untuk pelapis, dan juga sebagai perekat pada papan. Dispersi pati telah
digunakan secara luas dalam pembuatan kertas dan konversi kertas karena
sifat uniknya, yaitu merupakan perekat yang terbarukan, murah, viskositas
dapat dikontrol, karakteristik reologi yang spesifik, tahan air, memiliki
muatan elektrostatik, dapat membentuk film dan ikatan setelah pengeringan
(Maurer, 2009).
3. Bidang Plastik
Dalam beberapa tahun terakhir ini, pati dimanfaatkan dalam pembuatan
plastik yang dapat terurai. Pada awalnya, pati hanya difokuskan pada
penggunaan butirannya sebagai pengisi. Dalam perkembangannya, lahirlah
termoplastik yang merupakan campuran dari molekul pati dengan polimer
vinil hidrofilik, seperti poly(ethylene-co-acrylic acid), poly(ethylene-co-vinyl
alcohol), poly(ethylene glycol), polylactic acid, dan polycaprolactone. Selain
itu, busa yang kaku serta fleksibel, film, dan bahan bantalan yang mengandung
pati juga telah dikembangkan (Maningat et al., 2009).
7
4. Bidang Kosmetik
Pati dalam wujud tepung dapat digunakan di dalam bidang kosmetik
karena tidak beracun, tidak menyebabkan iritasi, dan tidak menyebabkan
sensitivitas. Pati secara umum digunakan sebagai bahan di dalam bubuk
kosmetik. Hal ini dikarenakan ukuran pati yang kecil serta luas permukaan,
mobilitas, sifat selip, dan daya serap yang besar. Pati dapat meningkatkan
kelembutan dan kehalusan produk kosmetik untuk wajah dan tubuh. Selain
itu, pati yang telah dimodifikasi telah berhasil diformulasikan dengan krim,
lotion, make-up cair, dan bedak kosmetik (Maningat et al., 2009).
8
BAB III
METODE PRAKTIKUM
3.1
Alat dan Bahan yang Digunakan
3.1.1 Bahan
1.
Tepung singkong 50 gram
2.
HCl 37% ; 0,3 N ; ρ = 1,19 gr/ml
3.
NaOH 0,5 N ; 20 ml
4.
Aquadest secukupnya
5.
Glukosa anhidris 0,0025 gr/ml, 250 ml
6.
Metilen blue
7.
Fehling A 10 ml
8.
Fehling B 10 ml
3.1.2 Alat
9.
Timbangan
10. Buret
11. Magnetic stirrer plus heater
12. Waterbath
13. Labu leher tiga
14. Thermometer
15. Pendingin balik
16. Klem
17. Statif
18. Pipet volume
19. Pipet tetes
20. Gelas ukur
21. Oven
22. Kompor listrik
23. Erlenmeyer
24. Beaker glass
25. Cawan porselin
26. Corong
27. Indikator pH
9
3.1
Gambar Rangkaian Alat
6
5
7
4
3
2
1
Gambar 3.1 Rangkaian alat
Keterangan :
3.2
1.
Magnetic stirrer plus heater
2.
Waterbath
3.
Labu leher tiga
4.
Thermometer
5.
Pendingin balik
6.
Klem
7.
Statif
Prosedur Praktikum
1.
Analisa Kadar Pati
a.
Persiapan Bahan
Tumbuk dan haluskan singkong padat. Hilangkan kadar airnya
menggunakan oven sampai berat sampel menjadi konstan. Memasukkan
1 gr tepung singkong tersebut kedalam gelas ukur kemudian tambahkan
aquadest 5 ml lalu amati perubahan volume yang terukur. Hitung
densitasnya. Hitung massa tepung singkong yang dibutuhkan untuk
hidrolisa.
b.
Standarisasi Larutan Fehling
Larutan fehling A sebanyak 5 ml dan larutan fehling B 5 ml dicampur
dalam erlenmeyer, lalu ditambah 15 ml larutan glukosa standart dari
buret. Campuran dipanaskan hingga 70ºC. Tambahkan 3 tetes indikator
metilen blue (MB). Larutan dititrasi dengan glukosa standar hingga
warna berubah menjadi merah bata. Catat volume titran (F) yang
10
diperlukan. Proses titrasi dilakukan dalam keadaan panas (diatas
kompor), suhu dijaga konstan 65ºC - 70ºC.
c.
Penentuan kadar pati
Sebanyak 16,205 gram tepung singkong, 4,947 ml katalis HCl, dan
180,387 ml aquadest dimasukkan ke dalam labu leher tiga dan
dipanaskan hingga suhu 70ºC selama 1,5 jam dengan disertai
pengadukan. Setelah waktu operasi selesai, campuran kemudian
didinginkan, diencerkan dengan aquades sampai 500 ml, dan
dinetralkan menggunakan NaOH. Kemudian campuran yang sudah
netral diambil sebanyak 5 ml dan diencerkan sampai 100 ml. Campuran
yang sudah diencerkan kemudian diambil sebanyak 5 ml dan
ditambahkan 5 ml fehling A, 5 ml fehling B, 15 ml glukosa standar lalu
dipanaskan sampai 70ºC. Kemudian tambahkan 3 tetes indikator MB.
Larutan dititrasi dengan glukosa standar hingga warna berubah menjadi
merah bata. Catat kebutuhan titran (M). Hitung kadar pati. Yang perlu
diperhatikan, proses titrasi dilakukan dalam keadaan panas (di atas
kompor) dengan suhu dijaga konstan 60ºC - 70ºC.
B = 500 ml
Jika ingin diperoleh kadar pati, nilai X dikalikan dengan 0,9.
Keterangan :
X
= hasil glukosa, dalam bagian berat pati.
F
= larutan glukosa standart yang diperlukan, ml.
M
= larutan glukose standart yang digunakan untuk menitrasi
sampel, ml.
2.
N
= gr glukose / ml larutan standart = 0,0025 gr/ml.
W
= berat pati yang dihidrolisis, gram.
B
= volume pengenceran suspensi pati.
Pembuatan larutan fehling
a.
Larutan Fehling A
Dibuat dengan melarutkan 34,639 gram CuSO4.5H2O dalam 500 ml
aquades. Zat padat yang tidak larut disaring.
11
b.
Larutan Fehling B
Dibuat dengan malarutkan 172 gram Kalium Natrium Tartrat
(KNaC4H4O6.4H2O) dan 50 gram NaOH dalam aquades sampai
volumenya menjadi 500 ml lalu dibiarkan selama 2 hari. Selanjutnya
larutan disaring dengan wol glass.
3.
Pembuatan Larutan Glukosa standart
Dibuat dengan melarutkan 0,625 gram glukosa anhidris dengan air suling
sampai volume 250 ml.
12
BAB IV
HASIL DAN PEMBAHASAN
4.1
Perbandingan Kadar Praktis dan Teoritis
Bedasarkan praktikum karbohidrat untuk menganalisa kadar pati dalam
tepung singkong dengan metode hidrolisis menggunakan katalis asam (HCl)
diperoleh data yang disajikan dalam tabel berikut.
Tabel 4.1 Perbandingan kadar pati tepung singkong acuan dengan kadar pati
tepung singkong praktis
Sampel
Kadar Pati Praktis
Tepung Singkong
81,45%
Kadar Pati Acuan
85,045% (Novitasari dan
Arief, 2018)
Kadar pati tepung singkong praktis lebih kecil daripada kadar pati acuan
disebabkan oleh adanya sifat fisikokimia pati. Sifat fisikokimia pati sangat
dipengaruhi oleh kondisi lingkungan selama pertumbuhan tanaman, terutama
pertumbuhan akar. Sifat ini juga terkait dengan kecenderungan perilaku pati
properti fungsional seperti suhu tinggi dan viskositas rendah. Pati yang ditanam
di daerah dengan suhu yang lebih hangat akan menghasilkan butiran yang lebih
kecil, kandungan amilosa yang tinggi, serta suhu dan entalpi yang lebih tinggi,
begitu juga dengan sebaliknya. Suhu yang lebih tinggi berbanding lurus dengan
viskositas yang rendah. Viskositas yang rendah ini dapat dikaitkan dengan lebih
rendahnya kadar pati di dalam tepung singkong (Aldana dan Quintero, 2013).
Dengan suhu yang tinggi, maka pati akan dapat lebih mudah larut dalam
proses hidrolisa. Kelarutan pati ini dikarenakan pemendekan panjang rantai pati,
yang mana juga diikuti melemahnya ikatan hidrogen (Osunsami dkk., 1989
dalam Omojola dkk., 2011) atau karena peningkatan gugus hidroksil (Aiyeleye
dkk., 1983 dalam Omojola dkk., 2011). Kelarutan pati yang tinggi ini juga dapat
disebabkan oleh hilangnya struktur butiran dan pelepasan amilosa dari butiranbutiran pati. Amilosa yang memisahkan diri dari butiran pati inilah yang ikut
serta di dalam meningkatnya larutan (Marcon dkk., 2007 dalam Thys dkk., 2013).
Oleh karena itu, kadar pati yang didapatkan dari proses hidrolisa ini rendah.
Apabila konsentrasi asam di dalam larutan pada saat hidrolisa terlalu
berlebihan, maka akan menyebabkan waktu yang dibutuhkan untuk hidrolisis
semakin singkat karena pati lebih cepat terhidrolisis. Kecenderungan penurunan
kandungan pati oleh asam yang mana akan menipiskan pati seiring dengan
bertambahnya waktu reaksi (Babu dkk., 2015). Asam akan menyerang daerah
amorf dan kristal dari butiran pati untuk mendapatkan molekul air. Asam akan
13
menghidrolisis daerah amorf dari molekul pati dan menghasilkan pengurangan
yang signifikan dalam rantai amilosa yang panjang dan mengakibatkan
pelarutannya mengalami peningkatan. Hilangnya amilosa ini juga secara tidak
langsung akan menurunkan titik leleh butiran pati (Thys dkk., 2013). Semakin
rendah suhu yang dibutuhkan, maka waktu yang dibutuhkan juga semakin
singkat. Hal-hal inilah yang mempengaruhi rendahnya kadar pati.
4.2
Mekanisme Hidrolisa Pati dengan Katalis Asam
Hidrolisa pati dapat dilakukan dengan menggunakan asam atau enzim.
Hidrolisis asam ditemukan pada awal abad ke-19 ketika seorang ahli kimia
Jerman, Kirchoff menunjukkan bahwa merebus pati gandum dengan asam sulfat
encer, dapat diperoleh sirup manis. Kemudian, pati kentang digunakan sebagai
sumber pati dan asam sulfat diganti dengan asam klorida dan pemanasan tidak
langsung dari bejana reaksi biasa terjadi. Sejak itu, asam telah banyak digunakan
untuk pemecahan pati menjadi glukosa (Dziedzic dan Kearsley, 2012 dalam
Azmi dkk., 2017).
Dalam hidrolisis asam, ion hidroksonium (H3O+) melakukan serangan
elektrofilik pada atom oksigen dari ikatan glikosidik α (1 → 4) (Gambar 4.1a).
Pada langkah selanjutnya, elektron di salah satu ikatan karbon-oksigen bergerak
ke atom oksigen (Gambar 4.1b) untuk menghasilkan zat antara karbokation
berenergi tinggi yang tidak stabil (Gambar 4.1c). Antara karbokation intermediet
adalah asam Lewis, sehingga selanjutnya bereaksi dengan air (Gambar 4.1d),
basa Lewis mengarah ke regenerasi gugus hidroksil (Gambar 4.1e) (Hoover,
2000). Reaksi hidrolisa pati dengan katalis asam adalah sebagai berikut :
hidrolisa
(C6H10O5)n + nH2O → nC6H12O6
14
Gambar 4.1 Mekanisme Hidrolisis Pati dengan Katalis Asam (Hoover, 2000)
Hidrolisa asam telah digunakan untuk memodifikasi struktur butiran pati
dan menghasilkan larutan pati. Penggunaan hidrolisis pati oleh asam pada
industri adalah sebagai pra modifikasi langkah produksi pati kationik dan
amfoter, sebagai bahan pengatur ukuran lungsin untuk meningkatkan kekuatan
benang dan ketahanan abrasi dalam operasi penenunan, untuk persiapan permen
karet pati, untuk pembuatan papan gipsum sebagai konstruksi dinding kering,
dan untuk pembuatan kertas dan karton (Hoover, 2000). Amilodekstrin beras
dibuat dengan menghidrolisis pati beras dalam larutan asam (4% HCl) alkohol
(70%) pada suhu 78-80° C mudah dilarutkan dengan air hangat (50° C). Emulsi
dibuat dengan mengganti sebagian dari minyak (digunakan dalam formulasi
emulsi jenis mayonaise) dengan amilodekstrin beras, menunjukkan viskositas
dan stabilitas tinggi. Hal ini membuat amilodekstrin dapat dijadikan sebagai
pengganti lemak (Chun et al., 1997 dalam Hoover, 2000).
4.3
Mekanisme Penentuan Kadar Pati dengan Uji Fehling
Uji Fehling digunakan secara luas dalam uji karbohidrat. Reagen Fehling
biasanya digunakan untuk gula pereduksi tetapi diketahui tidak spesifik untuk
aldehida. Hasil uji Fehling pada karbohidrat ditunjukkan dengan terbentuknya
endapan berwarna merah bata. Larutan Fehling mengandung larutan hidroksida
cupric alkali biru, yang dipanaskan dengan gula pereduksi direduksi menjadi
15
cuprous oksida kuning atau merah dan diendapkan. Oleh karena itu,
pembentukan endapan berwarna kuning atau merah kecoklatan membantu dalam
mendeteksi gula pereduksi dalam larutan uji (Mohamed, 2019). Reaksi
penentuan kadar pati dengan uji Fehling :
R-CHO + Cu++ →
Cu+ + OH- →
R-COOH + Cu+
∆
CuOH → Cu2O
W.B
Red ppt
(Mohamed, 2019)
Uji Fehling memanfaatkan reaktivitas siap aldehida dengan menggunakan
Red ppt
ion cupri zat pengoksidasi lemah (Cu2+) dalam larutan∆ basa. Selain ion tembaga,
larutan Fehling mengandung ion tartrat sebagai W.B
agen pengompleks untuk
menjaga ion tembaga tetap dalam larutan. Tanpa ion tartrat, cupric hidroksida
akan mengendap dari larutan basa. Ion tartrat tidak dapat membentuk ion
tembaga kompleks Cu+, sehingga reduksi Cu2+ menjadi Cu+ dengan gula reduksi
menghasilkan endapan Cu2O berwarna oranye menjadi merah (Mohamed, 2019).
16
BAB V
PENUTUP
5.1
Kesimpulan
1.
Berdasarkan percobaan ini, diperoleh kadar pati tepung singkong praktis
sebesar 81,45%. Sedangkan, kadar pati tepung singkong acuan dari jurnal
sebesar 85,045%. Kadar pati praktis lebih kecil daripada kadar pati acuan hal
ini disebabkan oleh beberapa faktor. Faktor-faktor tersebut adalah adanya
sifat fisikokimia pati, kelarutan, dan konsentrasi asam di dalam larutan pada
saat hidrolisa terlalu berlebihan.
2.
Mekanisme hidrolisis asam adalah ion hidroksonium melakukan serangan
elektrofilik pada atom oksigen. Selanjutnya, elektron di salah satu ikatan
karbon-oksigen bergerak ke atom oksigen. Terdapat asam Lewis di antara
karbokation intermediet yang selanjutnya bereaksi dengan air dan basa
Lewis mengarah ke regenerasi gugus hidroksil. Aplikasi hidrolisis pati oleh
asam pada industri adalah meningkatkan kekuatan benang dan ketahanan
abrasi pada penenunan, persiapan permen karet pati, dan pembuatan papan
gipsum.
3.
Salah satu uji karbohidrat yang sering digunakan adalah uji Fehling
menggunakan reagen Fehling yang mengandung larutan hidroksida cupric
alkali biru. Selain itu, reagen Fehling juga mengandung ion tartrat yang
berperan sebagai agen pengompleks untuk menjaga agar ion tembaga tetap
berada dalam larutan. Adanya karbohidrat ditunjukkan dengan terbentuknya
endapan merah bata. Warna merah bata ini ditimbulkan dari reduksi Cu 2+
menjadi Cu+.
5.2
Saran
1.
Larutan Fehling dijaga agar tidak terkontaminasi dan HCl dijada agar tidak
menguap.
2.
Kecepatan magnetic stirrer diperhatikan agar tidak menimbulkan pusaran
(vortex).
3.
Titrasi harus dilakukan di atas kompor listrik untuk menjaga suhu larutan
yang dititrasi agar konstan.
17
DAFTAR PUSTAKA
Aldana, A. S. dan Quintero, A. F. 2013. Physicochemical characterization of two
cassava (Manihot esculenta Crantiz). Scientia Agroalimentaria, Vol. 1, 1925.
A.O.A.C., Oficial Method of Analysis of the A.O.A.C., 11 ed, p.539 – 540,
Washington, D.C., 1970.
Azmi, A.S., Malek, M. I. A., dan Puad, N. I. M. 2017. A review on acid and enzymatic
hydrolyses of sagp starch. International Food Research Journal,
24(Suppl), 265-273.
Babu, A. S., Parimalavalli, R., dan Rudra, S. G. 2015. Effect of citric acid concentration
and hydrolysis time on physicochemical properties of sweet potato
starches. International Journal of Biological Macromolecules, 80, 557565.
Budiyati, E. dan Bandi, U. 2015. The Effect of Hydrolysis Temperature and Catalyst
Concentration on Bio-ethanol Production from Banana Weevil.
Proceedings of The 9th Joint Conference on Chemistry. Semarang :
Chemistry Department, FSM, Diponegoro University.
Echkoff, S. R. dan Watson, S. A. 2009. Corn ad sorghum starches : production. Starch
: Chemistry and Technology, 3(9), 374-431.
Groggins, PH, Unit Processes in Organic Synthesis, 5 ed, pp. 750 – 783, Mc Graw
HillBook Company Inc, New York, 1950.
Herawati, Heny. 2010. Potensi Pengembangan Produk Pati Tahan Cerna Sebagai
Pangan Fungsional. Ungaran: Balai Pengkajian Teknologi Pertanian Jawa
Tengah. Hoover, R. 2000. Acid-treated starches. Food Reviews
International, 16(3), 369-392.
Kerr, R. W., “Chemistry and Industry of Starch”, 2 ed, pp. 375 – 403, Academic Press,
Inc, New York, 1950.
Maningat, C. D., Seib, P. A., Bassi, S. D., Woo, K. S., dan Lasater, G. D. 2009. Wheat
starch : Production, properties, modification, and uses. Starch : Chemistry
and Technology, 3(10), 442-491.
Maurer, H. W. 2009. Starch in the paper industry. Starch : Chemistry and Technology,
3(18), 658-706.
Mohamed, A. M. H. 2019. Course Book of Chemistry 2 (Biochemistry). Benha :
Department of Biochemistry, Benha University.
18
Novitasari, Erliana dan Arief, Ratna Wylis. 2018. Analisis Karakteristik Kimia Tepung
Kasava dari Ubikayu Varietas Klenteng dan Casessart (UJ5). Jurnal
Penelitian Pertanian Terapan, 18(1), 52-58.
Omojola, M. O., Manu, N., dan Thomas, S. A. 2011. Effect of acid hydrolysis on the
physicochemical properties of cola starch. African Journal of Pure and
Applied Chemistry, 5(9), 307-315.
Robyt, John F., “Essential of Carbohydrate Chemistry”. Springer, New York, NY,
1998.
Thys, R. C. S., Aires, A. G., Marczak, L. D. F., dan Norena, C. P. Z. 2013. The effect
of acid hydrolysis on the technological functional properties of pinhao
(Araucaria brasiliensis) starch. Ciencia e Tecnologia de Alimentos, 33(1),
89-94.
Woodman, A., “Food Analysis”, 4ed, pp. 264 – 265, Mc Graw Hill Book Company,
Inc, New York, 1941.
Yuniwati, M., Dian Ismiyati, dan Reny Kurniasih. 2011. Kinetika Reaksi Hidrolisis
Pati Pisang Tanduk dengan Katalisator Asam Chlorida. Jurnal Teknologi
Vol. 4, No. 2.
19
LAPORAN SEMENTARA
PRAKTIKUM DASAR TEKNIK KIMIA II
Materi :
Karbohidrat
GROUP
: 7 - Senin
REKAN KERJA : 1. Aurellia Livia Hidayat
NIM. 21030120130110
2. Desita Rachmawanti
NIM. 21030120120011
3. Ergian Janitra
NIM. 21030120130103
4. Ghea Fsyifa Hidawati
NIM. 21030120120025
LABORATORIUM DASAR TEKNIK KIMIA
DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK
UNIVERSITAS DIPONEGORO
SEMARANG
2021
A-1
I. TUJUAN PERCOBAAN
1.
Menyusun rangkaian alat analisa karbohidrat dan mengoperasikannya.
2.
Memahami reaksi-reaksi pada uji penentuan kadar pati.
3.
Menentukan kadar karbohidrat (pati) pada suatu tepung singkong dengan
prosedur yang benar
II. PERCOBAAN
2.1
2.2
Bahan yang Digunkana
1.
Tepung singkong 50 gram
2.
HCl 37% ; 0,3 N ; ρ = 1,19 gr/ml
3.
NaOH 0,5 N ; 20 ml
4.
Aquadest secukupnya
5.
Glukosa anhidris 0,0025 gr/ml, 250 ml
6.
Metilen blue
7.
Fehling A 10 ml
8.
Fehling B 10 ml
Alat yang Dipakai
1.
Timbangan
11. Pipet tetes
2.
Buret
12. Gelas ukur
3.
Magnetic stirrer plus heater
13. Oven
4.
Waterbath
14. Kompor listrik
5.
Labu leher tiga
15. Erlenmeyer
6.
Thermometer
16. Beaker glass
7.
Pendingin balik
17 Cawan porselen
8.
Klem
18. Corong
9.
Statif
19. Indikator Ph
A-2
Rangkaian Alat
Keterangan :
6
5
7
4
3
2
1.
Magnetic stirrer plus heater
2.
Waterbath
3.
Labu leher tiga
4.
Thermometer
5.
Pendingin balik
6.
Klem
7.
Statif
1
Gambar 2.1 Rangkaian Alat
2.3
Cara Kerja
2.3.1 Analisa Kadar Pati
a.
Persiapan Bahan
Tumbuk dan haluskan singkong padat. Hilangkan kadar airnya
menggunakan oven sampai berat tepung singkong menjadi
konstan. Memasukkan 1 gr tepung singkong tersebut kedalam
gelas ukur kemudian tambahkan aquadest 5 ml lalu amati
perubahan volum yang terukur, hitung densitasnya. Hitung
massa tepung singkong yang dibutuhkan untuk hidrolisa.
b.
Standarisasi Larutan Fehling
Larutan fehling A sebanyak 5 ml dan larutan fehling B 5 ml
dicampur dalam erlenmeyer, lalu ditambah 15 ml larutan
glukosa standart dari buret. Campuran dipanaskan hingga 70ºC.
Tambahkan 3 tetes indikator metilen blue (MB). Larutan dititrasi
dengan glukosa standar hingga warna berubah menjadi merah
bata. Catat volume titran (F) yang diperlukan, proses titrasi
dilakukan dalam keadaan panas (diatas kompor), suhu dijaga
konstan 65ºC-70ºC.
c.
Penentuan Kadar Pati
Sebanyak 16,205 gram tepung singkong, 4,947 ml katalis HCl,
dan 180,387 ml aquadest dimasukkan ke dalam labu leher tiga
dan dipanaskan hingga suhu 70ºC selama 1,5 jam dengan disertai
pengadukan. Setelah waktu operasi selesai, campuran kemudian
didinginkan, diencerkan dengan aquades sampai 500 ml, dan
dinetralkan menggunakan NaOH. Kemudian campuran yang
A-3
sudah netral diambil sebanyak 5 ml dan diencerkan sampai 100
ml. Campuran yang sudah diencerkan kemudian diambil
sebanyak 5 ml dan ditambahkan 5 ml fehling A, 5 ml fehling B,
15 ml glukosa standar lalu dipanaskan sampai 70ºC. Kemudian
tambahkan 3 tetes indikator MB. Larutan dititrasi dan catat
kebutuhan titran (M). Hitung kadar pati. Yang perlu
diperhatikan, proses titrasi dilakukan dalam keadaan panas (di
atas kompor) suhu dijaga konstan 60ºC - 70ºC.
Dengan B = 500 ml, jika ingin diperoleh kadar pati dikalikan
dengan 0,9.
Keterangan :
X = hasil glukosa, dalam bagian berat pati.
F = larutan glukosa standart yang diperlukan, ml.
M = larutan glukosa standart yang digunakan untuk menitrasi
tepung tapioka, ml.
N = gr glukosa / ml larutan standart = 0,0025 gr/ml.
W = berat pati yang dihidrolisis, gram.
B = volume pengenceran suspensi pati.
2.3.2 Pembuatan Larutan Fehling
a.
Larutan Fehling A
Dibuat dengan melarutkan 34,639 gram CuSO4.5H2O dalam 500
ml aquades. Zat padat yang tidak larut disaring.
b.
Larutan Fehling B
Dibuat dengan malarutkan 172 gram Kalium Natrium Tartrat
(KNaC4H4O6.4H2O) dan 50 gram NaOH dalam aquadest sampai
volumenya menjadi 500 ml lalu dibiarkan selama 2 hari.
Selanjutnya larutan disaring dengan wol glass.
2.3.3 Pembuatan Larutan Glukosa Standart
Dibuat dengan melarutkan 0,625 gram glukosa anhidris dengan air
suling sampai volume 250 ml
A-4
2.4
Hasil Percobaan
Massa sampel untuk mencari densitas
: 0,0996 gram
V awal
: 5 ml
V akhir
: 5,9 ml
V HCl
: 4,974 ml
Massa NaOH
: 0,4 gram
Massa Gluka Anhidris
: 0,625 gram
V sampel
: 14,639 ml
ρ sampel
: 1,107 gram/ml
Massa sampel yang dihidrolisa
: 16,205 gram
1.
2.
Volume Glukosa Standar yang Diperlukan (F)
F1 (ml)
F2 (ml)
F3 (ml)
Rata-Rata (ml)
9,5
9,2
9,1
9,267
Volume Larutan Glukosa Standar untuk Menitrasi Tepung Singkong
(M)
M1 (ml)
M2 (ml)
M3 (ml)
Rata-Rata (ml)
6,3
6,2
6,5
6,333
MENGETAHUI
PRAKTIKAN
Aurellia Livia Hidayat
Desita Rachmawanti
NIM. 20130120130110 NIM. 21030120120011
Ergian Janitra
ASISTEN
Vincent Hartanto
NIM. 21030118130144
Ghea Fsyifa Hidawati
NIM. 21030120130103 NIM. 21030120120025
A-5
LEMBAR PERHITUNGAN
1.
Titrasi Standarisasi Larutan Fehling (F)
Diketahui
: F1
= 9,5 ml
F2
= 9,2 ml
F3
= 9,1 ml
Ditanya
: F̅
Jawab
: F̅ =
=…?
𝐹1+𝐹2+𝐹3
3
F̅ =
9,5 𝑚𝑙+9,2 𝑚𝑙+9,1 𝑚𝑙
F̅ =
27,8 𝑚𝑙
3
3
F̅ = 9,267 𝑚𝑙
2.
Titrasi Penentuan Kadar Pati
Diketahui
: M1
= 6,3 ml
M2
= 6,2 ml
M3
= 6,5 ml
Ditanya
: M̅
=…?
Jawab
̅ =
:M
𝑀1+𝑀2+𝑀3
3
M̅ =
6,3 𝑚𝑙+6,2 𝑚𝑙+6,2 𝑚𝑙
M̅ =
19 𝑚𝑙
3
3
̅ = 6,333 𝑚𝑙
M
3.
Penentuan Kadar Pati
Diketahui
: F̅
= 9,267 ml
M̅
= 6,333 ml
N
= 0,0025 gr/ml
W
= 16,205 gr
B
= 500 ml
Ditanya
: % Pati = … ?
Jawab
:𝑥=
̅ −M
̅ )N(100)(𝐵)
(F
5
5
𝑊
B-1
𝑥=
𝑥=
(9,267 ml − 6,333 ml)(0,0025 𝑔𝑟⁄𝑚𝑙 )(
100 500
)(
)
5
5
16,205 𝑔𝑟
(2,934 ml)(0,0025 𝑔𝑟⁄𝑚𝑙)(20)(100)
16,205 𝑔𝑟
𝑥 = 0,905
% 𝑃𝑎𝑡𝑖 = 𝑥 × 0,9 × 100%
% 𝑃𝑎𝑡𝑖 = 0,905 × 0,9 × 100%
% 𝑃𝑎𝑡𝑖 = 81,45%
B-2
LEMBAR KUANTITAS REAGEN
LABORATORIUM DASAR TEKNIK KIMIA II
DEPARTEMEN TEKNIK KIMIA FAKULTAS TEKNIK
UNIVERSITAS DIPONEGORO
LEMBAR KUANTITAS REAGEN
MATERI
HARI/TANGGAL
KELOMPOK
NAMA
:
:
:
:
ASISTEN
:
Karbohidrat
Senin, 1 Maret 2021
7 Senin
1. Aurellia Livia Hidayat
2. Desita Rachmawanti
3. Ergian Janitra
4. Ghea Fsyifa Hidawati
Vincent Hartanto
KUANTITAS REAGEN
NO.
JENIS REAGEN
KUANTITAS
1.
Tepung Singkong
50 gram
2.
HCl 37 % ; 0,3 N ; (⍴ = 1,19 gr/mL)
Sesuaikan
3.
NaOH 0.5 N
20 Ml
4.
Fehling A dan Fehling B
@ 5 Ml
5.
Indikator Metilen Blue (MB)
@ 3 tetes
6.
Glukosa Anhidris (⍴ = 0,0025 gr/mL)
250 Ml
7.
Aquadest
Sesuaikan
TUGAS TAMBAHAN :
 Mencari jurnal kadar pati Tepung Singkong (ACC DATA)
 Faktor – faktor yang mempengaruhi hidrolisa (Tambahkan di bab 2)
 Mencari dan mempelajari mekanisme Uji Fehling (ACC DATA)
 Aplikasi Pati dalam Bidang Industri (Tambahkan di bab 2)
 Mencari jurnal kadar pati Tepung Singkong (ACC DATA)
 Faktor – faktor yang mempengaruhi hidrolisa (Tambahkan di bab 2)
 Mencari dan mempelajari mekanisme Uji Fehling (ACC DATA)
CATATAN
 Aplikasi Pati dalam Bidang Industri (Tambahkan di bab 2)Semarang, 24 Februari 2021
ASISTEN
T Hidrolisa = 70˚C
t Hidrolisa
= 1,5 jam
T Titrasi
= 65˚C - 70˚C
% suspense
= 8%
Volume basis = 200 mL
Vincent Hartanto
NIM. 21030118130144
C-1
LEMBAR PERHITUNGAN REAGEN
1.
Menghitung Densitas Sampel
Massa sampel
= 0,996 gram
Volume awal
= 5 ml
Volume akhir
= 5,9 ml
𝑀𝑎𝑠𝑠𝑎 𝑠𝑎𝑚𝑝𝑒𝑙
𝑉𝑜𝑙𝑢𝑚𝑒 𝑎𝑘ℎ𝑖𝑟 − 𝑉𝑜𝑙𝑢𝑚𝑒 𝑎𝑤𝑎𝑙
0,996 𝑔𝑟
ρ sampel =
5,9 𝑚𝑙 − 5 𝑚𝑙
ρ sampel =
0,996 𝑔𝑟
0,9 𝑚𝑙
𝑔𝑟
ρ sampel = 1,107 ⁄𝑚𝑙
ρ sampel =
2.
Menghitung Volume HCl
V basis
= 200 ml
ρ HCl
= 1,19 gr/ml
BM HCl
= 36,5
N HCl
= 0,3 N
Kadar HCl
= 37%
𝑔𝑟 𝐻𝐶𝑙
1000
×
× 𝑣𝑎𝑙𝑒𝑛𝑠𝑖 × 𝑘𝑎𝑑𝑎𝑟
𝐵𝑀 𝐻𝐶𝑙 𝑉 𝑏𝑎𝑠𝑖𝑠
(ρ × V) 𝐻𝐶𝑙
1000
𝑁=
×
× 𝑣𝑎𝑙𝑒𝑛𝑠𝑖 × 𝑘𝑎𝑑𝑎𝑟
𝐵𝑀 𝐻𝐶𝑙
𝑉 𝑏𝑎𝑠𝑖𝑠
𝑔𝑟
(1,19 ⁄𝑚𝑜𝑙 × 𝑉 𝐻𝐶𝑙)
1000
0,3 𝑁 =
×
× 1 × 37%
36,5
200 𝑚𝑙
𝑁=
𝑉 𝐻𝐶𝑙 = 4,947 𝑚𝑙
3.
4.
Menghitung Volume Sampel
V basis
= V HCl + V aquadest + V sampel
200 ml
= 4,947 ml + V aquadest + V sampel
V sampel
= 195,026 ml – V aquadest
Menghitung Massa Sampel yang Dibutuhkan
% suspensi
= 8%
% suspensi =
𝑚𝑎𝑠𝑠𝑎 𝑠𝑎𝑚𝑝𝑒𝑙
𝑚𝑎𝑠𝑠𝑎 𝑏𝑎𝑠𝑖𝑠
D-1
% suspensi =
𝑚𝑎𝑠𝑠𝑎 𝑠𝑎𝑚𝑝𝑒𝑙
𝑚𝑎𝑠𝑠𝑎 𝐻𝐶𝑙 + 𝑚𝑎𝑠𝑠𝑎 𝑎𝑞𝑢𝑎𝑑𝑒𝑠𝑡 + 𝑚𝑎𝑠𝑠𝑎 𝑠𝑎𝑚𝑝𝑒𝑙
(ρ × V) 𝑠𝑎𝑚𝑝𝑒𝑙
(ρ × V) 𝐻𝐶𝑙 + (ρ × V) aquadest + (ρ × V) 𝑠𝑎𝑚𝑝𝑒𝑙
𝑔𝑟
1,107 ⁄𝑚𝑙 × (195,026 𝑚𝑙 − 𝑉 𝑎𝑞𝑢𝑎𝑑𝑒𝑠𝑡)
0,08 =
𝑔𝑟
𝑔𝑟
(1,19 ⁄𝑚𝑙 × 4,947 𝑚𝑙) + (1 ⁄𝑚𝑙 × V aquadest)
𝑔𝑟
+ (1,107 ⁄𝑚𝑙 × (195,026 ml − V aquadest))
% suspensi =
0,08 =
215,894 − 1,107 𝑉 𝑎𝑞𝑢𝑎𝑑𝑒𝑠𝑡
5,919 + 𝑉 𝑎𝑞𝑢𝑎𝑑𝑒𝑠𝑡 + 215,894 − 1,107 𝑉 𝑎𝑞𝑢𝑎𝑑𝑒𝑠𝑡
0,08 =
215,894 − 1,107 𝑉 𝑎𝑞𝑢𝑎𝑑𝑒𝑠𝑡
221,813 − 0,107 𝑉 𝑎𝑞𝑢𝑎𝑑𝑒𝑠𝑡
V aquadest
= 180,3871 ml
V sampel
= 195,026 ml – V aquadest
= 195,026 ml – 180,3871 ml
= 14,6398 ml = 14,639 ml
5.
Menghitung Massa NaOH
N NaOH
= 0,5 N
V basis NaOH = 20 ml
BM NaOH
= 40
𝑔𝑟 𝑁𝑎𝑂𝐻
1000
×
× 𝑣𝑎𝑙𝑒𝑛𝑠𝑖
𝐵𝑀 𝑁𝑎𝑂𝐻 𝑉 𝑏𝑎𝑠𝑖𝑠 𝑁𝑎𝑂𝐻
𝑔𝑟 𝑁𝑎𝑂𝐻 1000
0,5 𝑁 =
×
×1
40
20 𝑚𝑙
𝑁=
𝑚𝑎𝑠𝑠𝑎 𝑁𝑎𝑂𝐻 = 0,4 𝑔𝑟𝑎𝑚
6.
Menghitung Massa Glukosa Anhidris
ρ
= 0,0025 gr/ml
V basis = 250 ml
Massa
= ρ × V basis
= 0,0025 gr/ml × 250 ml
= 0,625 gram
D-2
REFERENSI
E-1
9
Corn and
Sorghum Starches:
Production
Steven R. Eckhoff 1 and Stanley A. Watson2
1
Department of Agricultural Engineering University of Illinois,
Urbana, Illinois, USA
2
Ohio Agricultural Research and Development Center
The Ohio State University, Wooster, Ohio, USA (Retired)
I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
II. Structure, Composition and Quality of Grain . . . . . . . . . . . . . . . . . . . . . .
1. Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3. Grain Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
III. Wet-milling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. Grain Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Steeping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3. Milling and Fraction Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4. Starch Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5. Product Drying, Energy Use and Pollution Control . . . . . . . . . . . . . . .
6. Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IV. The Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. Starch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Sweeteners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3. Ethanol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4. Corn Oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5. Feed Products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
V. Alternative Fractionation Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VI. Future Directions in Starch Manufacturing . . . . . . . . . . . . . . . . . . . . . . . .
1. Continued Expansion into Fermentation Products . . . . . . . . . . . . . . . .
2. Biosolids as Animal Food . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3. Processing of Specific Hybrids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4. New Corn Genotypes and Phenotypes via Biotechnology and
Genetic Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5. Segregation of the Corn Starch Industry. . . . . . . . . . . . . . . . . . . . . . . .
VII. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Starch: Chemistry and Technology, Third Edition
ISBN: 978-0-12-746275-2
374
375
376
381
385
391
392
394
408
421
421
423
423
423
423
424
425
426
427
429
429
429
430
430
430
431
Copyright © 2009, Elsevier Inc.
All rights reserved
E-2
424 Corn and Sorghum Starches: Production
Table 9.10 Analysis and properties of powdered corn and sorghum starchesa
Corn
Starch (%)
Moisture (%)
Protein (N 6.25) (%)
Ash (%)
Fat (by ether extraction) (%)
Lipids, total (%)b
SO2 (mg/kg)c
Crude fiber (%)
pH
Linear starch fraction (amylose) (%)
Branched starch fraction (amulopectin) (%)d
Granule size (microns)e
Average granule size (microns)e
Granule gelatinization temperature range (°C)f
Swelling power at 95°Cg
Solubility at 95°Cg
Specific gravity
Weight per cubic foot (pounds)
Sorghum
Waxy
Normal
Normal
88
11
0.28
0.1
0.04
0.23
–
0.1
5
0
100
–
–
63–72
64
23
1.5
44–45
88
11
0.35
0.1
0.04
0.87
49
0.1
5
28
72
5–30
9.2
62–72
24
25
1.5
44–45
88
11
0.37
0.1
0.06
0.72
–
0.2
5
28
72
4–25
15
68–75
22
22
1.5
44–45
a
Reference 233, except as noted. Values for waxy corn and sorghum from unpublished data except as
noted
b
Reference 235
c
Reference 237
d
Percentage of carbohydrate
e
Reference 236
f
Initial and end temperatures for loss of microscopic birefringence234,236
g
Reference 234
properties of the most popular of the liquid sweetener products.238 Three other products are normally sold in dry form: D-glucose (dextrose) in the monohydrate and
anhydrous crystal forms; very low DE (22–30) corn syrup; and maltodextrins (5–20
DE). The latter two products are sold as amorphous powders.
3. Ethanol
Ethanol produced by fermentation of starch hydrolyzates is regarded legally as
equivalent to grain alcohol and may be used in beverages. It also qualifies for taxexempt status when blended with gasoline at a level of 10% for use as a motor fuel.
Ethanol is a renewable commodity when produced from a biological material, has a
current net energy ratio (energy from ethanol:energy to produce corn and ethanol) of
2.51:1,239 and offers societal benefits when compared to petroleum-based products.
Ethanol production in the US increased dramatically in a three-year period around
2005, to the point that use of corn for ethanol production became almost twice that
used for starch production.
E-3
IV. The Products 425
Table 9.11 Properties of commercial corn syrups234
Acid
Conversion,
DE level
Acid-enzyme
43°
80
20
43°
80.3
19.7
43°
81
19
43°
80.3
19.7
43°
82
18
43°
82.2
17.8
–
71
29
–
71
29
37
0.4
42
0.4
52
0.4
42
0.4
62
0.4
69
0.4
96
0.03
(95)
0.03
Monosaccharides (%)
D-Glucose (%)
Fructose (%)
Disaccharides (%)
Trisaccharides (%)
Tetrasaccharides (%)
Pentasaccharides
Hexasaccharides (%)
Higher saccharides (%)
15
0
12
11
10
8
6
38
19
0
14
12
10
8
6
31
28
0
17
13
10
8
6
18
6
0
45
15
2
1
1
30
39
0
28
14
4
5
2
8
50
0
27
8
5
3
2
5
93
0
4
52
42
3
46
55
2
3
3
2
Viscosity, centipoises at:
24E
37.7E
44E
15000
30000
8000
56000
14500
4900
31500
8500
2900
56000
14500
4900
22000
6000
2050
–
–
–
–
–
–
–
–
–
–
–
–
Commercial Baume
Solids (%)
Moisture (%)
Dry basis
Dextrose equivalent
Ash (sulfated) (%)
Carbohydrate
composition
Enzyme–enzyme
There are two basic processes for ethanol production. One is traditional wet-milling;
the other is the dry grind process, sometimes referred to as dry-milling. Until the early
part of the twenty-first century, wet-milling was the preferred means of producing ethanol because the co-products of wet-milling are of greater value than those from the dry
grind process. Because ethanol had a low price, the value of the co-products was the
difference between profitability and negative revenue. However, as the price of ethanol
increased, the dry grind process became more profitable than wet-milling, because of its
lower capital requirements and higher yield of ethanol per unit weight of corn. Modified
dry grind processes have been proposed and offer to increase the co-product value.240–243
4. Corn Oil
About 70 kg of crude corn oil is recovered from the germ isolated from a metric ton
of corn (1260 bushels). The crude oil is refined by standard methods to reduce the
content of free fatty acids, waxes, phospholipids, color and miscellaneous unsapponifiable substances. Its low solidifying point, low smoke point and slightly ‘corny’
flavor make it a preferred oil for household use, where 50–60% of the production is
utilized. Nearly all the remainder is used in the manufacture of oleomargarine. The
high level of linoleic acid is claimed to be a dietary advantage. The low level of linolenic acid and an adequate level of tocopherols contribute to corn oil’s good oxidative stability.53 Grain sorghum oil is similar in fatty acid composition to corn oil; the
crude oil has a higher wax content and is more difficult to refine.
E-4
18
Starch in the Paper
Industry
Hans W. Maurer
Highland, Maryland 20777
I.
II.
III.
IV.
V.
VI.
VII.
VIII.
IX.
Introduction to the Paper Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The Papermaking Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Starch Consumption by the Paper Industry . . . . . . . . . . . . . . . . . . . . . . . .
Starches for Use in Papermaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. Current Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Recent Trends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application Requirements for Starch. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. Viscosity Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Charge Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3. Retrogradation Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4. Purity Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dispersion of Starch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. Delivery to the Paper Mill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Suspension in Water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3. Dispersion Under Atmospheric Pressure. . . . . . . . . . . . . . . . . . . . . . . .
4. Dispersion Under Elevated Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . .
5. Chemical Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6. Enzymic Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Use of Starch in the Papermaking Furnish . . . . . . . . . . . . . . . . . . . . . . . . .
1. The Wet End of the Paper Machine . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Flocculation of Cellulose Fibers and Fines . . . . . . . . . . . . . . . . . . . . . .
3. Adsorption of Starch on Cellulose and Pigments . . . . . . . . . . . . . . . . .
4. Retention of Pigments and Cellulose Fines . . . . . . . . . . . . . . . . . . . . . .
5. Sheet Bonding by Starch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6. Wet-end Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7. Starch Selection for Wet-end Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Use of Starch for Surface Sizing of Paper. . . . . . . . . . . . . . . . . . . . . . . . . .
1. The Size Press in the Paper Machine . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. The Water Box at the Calender. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3. Spray Application of Starch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4. Starch Selection for Surface Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Use of Starch as a Coating Binder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. The Coater in the Paper Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Starch Selection for Paper Coating . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Starch: Chemistry and Technology, Third Edition
ISBN: 978-0-12-746275-2
658
660
662
663
663
665
666
666
668
669
671
672
672
673
674
674
676
677
681
681
681
682
683
684
685
687
688
688
693
693
693
695
695
698
Copyright © 2009, Elsevier Inc.
All rights reserved
E-5
662 Starch in the Paper Industry
pigments, binders and additives. Starch is a major coating binder. In one system roll
coaters, a train of hydraulically loaded rolls, occasionally with a cell (gravure) pattern, are used. The coating color is metered by film splitting through a sequence of
two or more nips prior to application to the paper. Current practice relies primarily
on the use of various forms of blade coaters. The coating color is applied to paper
by a pickup roll, an overflow device (SDTA) or a fountain (jet). A stiff (scraping)
or a bent (gliding) blade is used to remove the excess. This process levels the coating on the sheet and generates a substrate for quality printing. In board coating, a
pressurized air curtain (air knife) is often used to remove excess coating fluid from
the sheet. In the newest technical development, a free-falling curtain of a coating is
applied to the surface of paper or paperboard. Corrugating and laminating are subsequent converting processes for paper and board that require large quantities of starch.
III. Starch Consumption by the Paper Industry
Starch is an important component of many paper grades. Starch consumption by
weight in papermaking and paper conversion processes ranks third after cellulose
fiber and mineral pigments. Starch is used as a flocculant and retention aid, as a
bonding agent, as a surface size, as a binder for coatings and as an adhesive in corrugated board, laminated grades and other products.14 Current consumption of industrial corn starch for paper and paperboard production in the US exceeds 2.5 billion
pounds (1.1 million metric tons) of which 40% is chemically modified. Another
750 million pounds are used for corrugated and laminated paper products.15 Data
for starch use are summarized in Table 18.2. The shipment reports of CRA, the Corn
Refiners Association,15 are the main source for starch consumption data.
Table 18.2 North American demand for starch in the manufacture of paper products
Application
Starch grade
Actual use 1995a
Projected for 2000a
Wet endb
Corn starch
Potato starch
Unmodified starch
Oxidized starch
Hydroxyethylated starch
Cationic starch
Unmodified starch
Oxidized starch
Hydroxyethylated starch
Unmodified starch
Modified starch
309
287
819
718
735
118
212
55
275
899
134
424
349
839
703
1034
137
203
81
340
Size pressc
Coatingc
Corrugating and laminatingd
a
Million pounds
b
Cationic, anionic or amphoteric
c
All corn starch
d
1994 demand, members of CRA only
Reprinted by permission of TAPPI
E-6
666 Starch in the Paper Industry
A previous trend in the paper industry of limiting starch purchases to unmodified
grades and effecting modification on-site in the paper mill has changed. The variance in products thus obtained was frequently wider than in products supplied by
the starch manufacturer. As a result, there is now more preference to utilize modified
starches with specific application properties. Growth in paper recycling should lead
to an increased use of starch as a coating binder in place of synthetic materials.
New starch products might be derived from emulsion copolymerization with synthetic monomers and the replacement of all-synthetic polymers. Potential applications
could be in flocculation, sizing, modified rheological characteristics, bonding to a
wide range of substrates, film formation and in effluent treatment. A critical requirement will be the removal of hazardous residuals and Food and Drug Administration
(FDA) approval for use in specific paper grades.
Introduction of new starch products will require extensive technical services, especially for adaptation to closed paper machine wet-end systems, for use with deinked
pulp and for the high shear conditions of high-speed paper coating.46
V. Application Requirements for Starch
Dispersions of starch have found wide use in papermaking and paper conversion
due to their unique properties, viz., low-cost renewable adhesive, controlled viscosity, specific rheological characteristics, water-holding properties, electrostatic charge,
film formation and bonding after drying.
Starches are chemically or physically modified to obtain specific properties of viscosity, charge, bonding to fibers and pigments, and bond strength. The viscosity of
a dispersion of starch depends on concentration, chemical substitution on the starch
molecule and molecular weight.47 Natural starch has a slight anionic electrostatic
charge. The charge can be modified by chemical substitution that introduces anionic
and/or cationic ionizing moieties and generates a specific charge or amphoteric property. Film-forming and bonding properties depend on molecular weight, the state of
the starch dispersion and its water-holding properties. Improvements are obtained by
chemical substitution.
Modified starches, however, are only moderately different in their abilities to
provide bonding strength and elongation. Humidity (moisture content) affects the
strength and elongation of starch films and is often a dominating factor. Increasing
humidity from 35% to 65% may decrease film strength by more than 40%.48 Various
starch products are, therefore, distinguished more by rheological and charge characteristics than by bonding strength. Trade associations of the starch, paper, and agriculture industries have defined standard analytical methods for starch characterization.
1. Viscosity Specifications
Starch is a natural product and as such is not uniform. Type, genetic variety and
environmental factors of soil quality and weather during the growing season for the
starch source may influence the rheological characteristics of the product. Additional
E-7
Wheat Starch:
Production, Properties,
Modification and Uses
10
C.C. Maningat,1 P.A. Seib,2 S.D. Bassi,3 K.S. Woo4
and G.D. Lasater5
1
MGP Ingredients Inc., Atchison, Kansas, USA
Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
3
MGP Ingredients Inc., Atchison, Kansas, USA
4
MGP Ingredients Inc., Atchison, Kansas, USA
5
MGP Ingredients Inc., Atchison, Kansas, USA
2
I. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
II. Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
III. Industrial Processes for Wheat Starch Production . . . . . . . . . . . . . . . . . . .
1. Conventional Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Hydrocyclone Process (Dough–Batter) . . . . . . . . . . . . . . . . . . . . . . . . .
3. High-pressure Disintegration Process . . . . . . . . . . . . . . . . . . . . . . . . . .
IV. Properties of Wheat Starch and Wheat Starch Amylose and
Amylopectin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. Large Versus Small Granules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Fine Structures of Amylose and Amylopectin. . . . . . . . . . . . . . . . . . . . .
3. Partial Waxy and Waxy Wheat Starches . . . . . . . . . . . . . . . . . . . . . . . .
4. High-amylose Wheat Starch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5. A Unique Combination of Properties . . . . . . . . . . . . . . . . . . . . . . . . . .
V. Modification of Wheat Starch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. Crosslinking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3. Dual Derivatization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4. Bleaching, Oxidation and Acid-thinning . . . . . . . . . . . . . . . . . . . . . . . .
VI. Uses of Unmodified and Modified Wheat Starches . . . . . . . . . . . . . . . . . .
1. Role in Baked Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Functionality in Noodles and Pasta. . . . . . . . . . . . . . . . . . . . . . . . . . . .
3. Other Food Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4. Industrial Uses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VII. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Starch: Chemistry and Technology, Third Edition
ISBN: 978-0-12-746275-2
442
442
444
446
448
450
451
452
457
465
470
471
475
475
478
479
480
481
481
485
488
489
491
Copyright © 2009, Elsevier Inc.
All rights reserved
E-8
VII. References 491
rigid as to resist writing pressure. Large granule wheat starch (sometimes called calibrated wheat starch) provided the best results for optimal functionality as a stilt material, because of the appropriate granule size and smooth surface. Thermoresistant
large granule wheat starch (presumably highly crosslinked) is required for modern
high-speed coaters running at 700–800 meters/minute and equipped with infrared
driers to provide intensive drying due to a short residence time in the drying section
of the coaters.204
One of the primary industrial applications of pregelatinized wheat starch is in the
oil field services industry to thicken drilling fluids.4–6 In the building industry, both
modified and unmodified wheat starches in pregelatinized form are used to texturize wall and ceiling coatings, as bonding agents in joint compounds for embedding
joint tape, and in finishing gypsum panel joints, nail heads and metal corner beads.28
Starch in a glassy state was prepared from wheat starch by twin-screw extrusion for
use as an environmentally-friendly abrasive grit to remove paints from aircraft surfaces.608–611 Another application of wheat starch is in cosmetics, where it was found
to be non-toxic, non-irritating, non-sensitizing, and functional.612,613 Starch, in general, is useful in cosmetic powders because of its small size, enormous surface area,
mobility, porosity, slip property and absorptive capacity.613 Wheat starch can enhance
the softness and smoothness of face and body powders.614 Several modified wheat
starches have been successfully formulated in creams, lotions, depilatories, hair
relaxers, liquid make-up and cosmetic powders.
Interest has been increasing in recent years to develop degradable plastics from
starch, especially for disposable applications.615–621 The early efforts in the 1970s
focused on using starch granules as fillers.589,593 More recent developments include
thermoplastics that are intimate blends of starch molecules with hydrophilic vinyl
polymers, such as poly(ethylene-co-acrylic acid) and poly(ethylene-co-vinyl alcohol), and with poly(ethylene glycol), polylactic acid and polycaprolactone622–628 (see
Chapter 19). The function of the compatibilizer and the relationship of composition
and morphology to mechanical properties of starch–polyolefin blends are the subject of several studies.629–633 Rigid and flexible foams, films and cushioning materials containing starch have also been developed.634–649 Native and modified wheat
starches have been included in these investigations.
VII. References
1. Olsen BT. In: Bushuk W, Rasper VF, eds. Wheat: Production, Properties and Quality.
London, UK: Chapman and Hall; 1994 [Chapter 1].
2. Olewnik MC. In: Chung OK, Lookhart GL, eds. Third International Wheat Quality
Conference. Manhattan, KS: Grain Industry Alliance; 2005 [Session I].
3. Radley JA. Starch and Its Derivatives. London, UK: Chapman and Hall; 1968.
4. Knight JW. Wheat Starch and Gluten. London, UK: Leonard Hill; 1965.
5. Knight JW. The Starch Industry. New York, NY: Pergamon Press; 1969.
6. Knight JW, Olson RM. In: Whistler RL, BeMiller JN, Paschall EF, eds. Starch:
Chemistry and Technology. New York, NY: Academic Press; 1984 [Chapter 15].
E-9
Proceedings of
The 9th Joint Conference on Chemistry
ISBN 978-602-285-049-6
The Effects of Hydrolysis Temperature and Catalyst Concentration on
Bio-ethanol Production from Banana Weevil
Eni Budiyatia and Umar Bandia
Abstract
An energy need of petroleum fuels in various countries in the world in recent years has increased
sharply. It doesn’t only happen in the developed countries but also in developing countries,
including Indonesia. Scientists have a develop a renewable energy source to anticipate the crisis
of petroleum fuels. Several types of renewable energy are biomass, geothermal, solar energy,
water energy, wind energy, and ocean energy. Ethanol is a bio-fuel, and has good prospects as
a substitute for liquid fuel and gasohol with renewable raw materials and environmentally
friendly. Four steps are applied in this study. The first is preparation of tools and raw materials.
All instruments were sterilized and banana weevil as raw material is cut and grind. The second
is hydrolysis process, which HCl is used as catalyst. in the process,temperature are varied at 70
°C, 80 °C, 90 °C, and concentration of catalyst are 0.1; 0.2; and 0.3 N. The third step is
fermentation, which is conducted at the ambient temperature (27 °C) and anaerobic conditions.
The last is distillation process. The results show the greater hydrolysis temperature, the
concentration and the yield of produced bio-ethanol greater. The hydrolysis process of HCl 0.3
N at 90 °C, resulted in the greatest level of bio-ethanol, which is 61.20%. This research should
be developed, especially for the purification process on order to obtain higher ethanol
concentration.
aChemical
Engineering Program – Muhammadiyah University of Surakarta, A. Yani Street Tromol Pos I Pabelan Kartasura
Surakarta–Indonesia
Corresponding author e-mail address: [email protected] and [email protected]
Introduction
Banana (Musa paradisiacal)
Ethanol is a bio-fuel, has good prospects as a substitute
for liquid fuel and gasohol with renewable raw
materials, environmentally friendly and very beneficial
economically for rural communities, especially
farmers. According to the Energy Minister's decision
No. 32 of 2008 "bio-ethanol (E100) is product of
ethanol produced from biological raw materials and
other processed biomass in biotechnology and shall
meet the quality standard (specification) in accordance
with the provisions of the legislation to be used as
alternative fuel ".
Banana (Musa paradisiacal) is an herbaceous fruit
plants originating from areas in Southeast Asia. These
plants then spread to Africa (Madagascar), South and
Central America. Bananas in West Java called “cau”, in
Central Java and East Java called “gedang”. Banana
plants can be easily found almost in every place.
Banana production centre in West Java is Cianjur,
Sukabumi and the area around Cirebon. Bananas are
generally able to grow in the lowlands to the
mountains with an altitude of 2000 m. Bananas can
grow on wet tropical climate, humid and hot with
optimum rainfall is 1520-3800 mm/year with 2 months
to dry (Rismunandar, 1990).
This study used banana weevil as raw material for bioethanol production because the banana weevil has a
composition of 76% starch, 20% water, and the rest is
protein and vitamins (Yuanita et al., 2008). The benefit
to the community is this process can reduce banana
plant waste, especially banana weevil. Besides that, it
can be used to raise the added value of banana weevil
into valuable chemical. Industry of ethanol in
Indonesia can use banana weevil as an alternative to
the manufacture bio-ethanol, as a reference and
development potential hump banana biomass as a
feedstock for bio-ethanol production.
Banana weevil can be used to be taken the starch, this
starch resembling sago starch flour and tapioca flour.
The potential content of banana weevil starch can be
used as an alternative fuel that is, bio-ethanol. Starchy
materials are used as raw material for bio-ethanol
suggested that high levels of starch, has a high yield
potential, flexible in farming and harvesting
(Prihandana, 2007 and Aswandi et al., 2012).
Green Chemistry Section 2: Physical Chemistry, Eni Budiyati, et al.
P a g e | 161
This Proceedings©Chemistry Department, FSM, Diponegoro University 2015
E-10
Proceedings of
The 9th Joint Conference on Chemistry
ISBN 978-602-285-049-6
Table 1. Chemical content of 100 gram banana weevil
No
Component
Wet
Dry
1
Starch (gram)
96
76
2
Calories (cal)
43
425
3
Protein (gram)
0.6
3.4
4
Carbohydrates (gram)
11.6
66.2
5
Ca (mg)
15
60
6
P (mg)
60
150
7
Fe (mg)
1
2
8
Vitamin C (mg)
12
4
Bio-ethanol
Bio-ethanol production is determined by: 1) number of
raw material, 2) the amount of sugar that ready to be
fermented, and 3) efficiency of fermentation process
to convert sugar into alcohol (Smith, et al., 2006). Bioethanol is ethanol (ethyl alcohol) produced using
natural raw materials and biological processes. Ethanol
is used as a vehicle fuel has a chemical structure that is
identical to that found in ethanol liquor. Ethanol used
for fuel called by Fuel Grade Ethanol (FGE) with a purity
level of 99.5%. Ethanol is an organic compound
composed of carbon, hydrogen and oxygen. So it can
be viewed as derivatives of hydrocarbon compounds
having a hydroxyl group with the formula C2H5OH
(Hendroko, 2008).
b.
: 46.07 g/mol
: No Colour
: Liquid
: 78.4 °C
: -112 °C
: 0.7893
: Infinity
:Infinity
2007)
(Perry,
Chemical properties of ethanol
Burning ethanol produces carbon dioxide and water:
C2H5OH (g) + 3 O2 (g) → 2 CO2 (g) + 3 H2O (l)
Ethanol can be used as an automotive fuel is varied,
from blend to pure bio-ethanol. Bio-ethanol is often
referred to by the notation "Ex", where x is the
percentage of ethanol content in the fuel. Some
examples of the use of the notation "Ex" are:
1.
2.
3.
E100, 100% bio-ethanol or without a mixture
E85, a blend of 85% bio-ethanol and 15% petrol
E5, a mixture of 5% bio-ethanol and 95% petrol
162|P a g e
Hydrolysis is a process of the reactants with water to
break compound. in the hydrolysis of starch with
water, the water will attack the starch on α 1-4
glucosidal bond form dextrin, syrup or glucose
depending on the degree of starch breakdown in the
polysaccharide chain. Reaction is first order reaction if
excess water is used, so that changes of reactants can
be ignored. The reaction between water and starch
goes so slowly, so it needs a catalyst to increase the
reactivity of water. This catalyst can be acidic, alkaline
or enzyme (Coney, 1979 in Retno 2009).
Hydrolysis process of starch into sugars is required
following reaction:
(C6H10O5) n
+ nH2O
Polysaccharides
Water
a.
Physical properties of ethanol
Molecular weight
Colour
Phase
The normal boiling point
Freezing Point
Specific Gravity
Solubility in 100 parts
Water
Other reagents
Hydrolysis
→
n(C6H1206)
Glucose
The Influence variables of the hydrolysis reaction:
Characteristics of ethanol:
a.
PERTAMINA has sold bio-premium (E5) containing 5%
bio-ethanol and 95% premium. E5 fuel can be used on
vehicles that use petrol (gasoline) standard, without
any modification. However, E15 fuel up or a
percentage of more than 15% ethanol must utilize the
vehicle with the type of Flexible-Fuel Vehicle. Brazil as
one of the countries that use the world's largest bioethanol, has adopted the E100 fuel, which contains
100% bio-ethanol (Atmojo, 2010).
Catalyst
Almost all of the hydrolysis reaction requires a catalyst
to accelerate the reaction. The catalyst used can be
either enzymes or acid. The acids usually used are
hydrochloric acid (Agra et al., 1973; Stout & Rydberg
Jr., 1939 in Prasetyo, 2011), sulphuric acid, and nitric
acid. The H ion concentration give bigger affect to
reaction rate than the type of acid. Nevertheless,
generally the industry use hydrochloric acid. This
selection was based on the salt formed in
neutralization reaction. Sodium chloride is safe and
there is dangerous when the concentration is too high
(just give salty taste). So, the acid concentration in
water is controlled. Commonly acid solution
concentration that used has a higher than
concentration of acid in the manufacture of syrup.
Hydrolysis at a pressure of 1 atm requires a much more
concentrated acid. The rate of hydrolysis process will
increase by a high concentration of acid. in addition to
adding the rate of hydrolysis process, a high
concentration of acid will also result in binding of ions
such as SiO2 controller, phosphate, and salts such as
Ca, Mg, and Na in starch. Therefore, the appropriate
comparison is required between the starch will be
hydrolysed to the acid concentration (Sun and Cheng,
2005).
Green Chemistry Section 2: Physical Chemistry, Eni Budiyati, et al.
This Proceedings©Chemistry Department, FSM, Diponegoro University 2015
E-11
Proceedings of
The 9th Joint Conference on Chemistry
b.
Temperature and pressure
The influence of temperature on the reaction rate
follows Arrhenius equations. The higher temperature
will increase the reaction rate. for example, to achieve
a certain conversion takes about 3 hours to hydrolyse
starch sweet potatoes at 100 °C. But if the temperature
is raised to a temperature of 135 °C, the reach the
same conversion can be reached in 40 minutes (Agra
et al., 1973 in Prasetyo, 2011). Wheat and corn starch
hydrolysis with sulphuric acid catalyst requires a
temperature of 160 °C. Since the heat of reaction is
almost close to zero and the reaction in the liquid
phase, the temperature and pressure are not much
affect the balance.
c.
Mixing (stirring)
Reaction rate will be faster if reactants can collide with
each other as well as possible, so mixing is needed. for
a batch process, this can be achieved by use stirrer or
shaker (Agra et al., 1973 in Prasetyo, 2011). If the
process is a process flow (continuous), then the mixing
is done by regulating the flow in the reactor in order to
increase turbulence.
d.
Comparison of reagents
If one of the reactants is excessive amount then the
balance may shift to the right as well. Therefore, low
levels of starch suspension may give better results than
high starch levels. If levels of suspense lowered from
40% to 20% or 1%, then the conversion will increase
from 80% to 87 or 99% (Groggins, 1958). At the surface
level, high starch suspense molecules will be difficult
to move.
The five types of hydrolysis, namely:
a.
Hydrolysis in Acid Solution
Dilute or concentrated acid such as HCl, H2SO4 (other
expensive acid) are usually serves as a catalyst. in
dilute acid, commonly, the reaction rate is
proportional to the concentration of H or [H+]. These
properties do not apply to concentrated acid. High
sugar efficiency recovery as well as the potential for
cost reduction, is most significantly the advantage of
the acid hydrolysis process (Matz, 1970 in Retno,
2009).
The weakness of the acid hydrolysis is degradation of
sugars results in the hydrolysis reaction and the
formation of undesired products. Degradation of sugar
and side product will not only reduce the sugar
harvest, but side product also can inhibit the formation
of ethanol in the next fermentation stage.
b.
Bases in the hydrolysis solution
Dilute or concentrated bases used in the hydrolysis
reaction are NaOH and KOH. Result of this process is
not acid but salt. Two main advantages of this method
ISBN 978-602-285-049-6
are the reaction is occur irreversible and its products
more easily to be separated. However, a potential
problem regarding the disposal of waste is the
disadvantage of this process.
c.
Hydrolysis with enzyme as catalyst (Retno et al,
2011)
An α-amylase is one of enzymes produced by
microbes. The advantage of enzymatic hydrolysis is
able to degrade complex carbohydrates into simple
sugars with more results. However, enzymatic
hydrolysis also has some weaknesses such as low
hydrolysis rate and expensive cost.
d.
Pure hydrolysis
Reacted with H2O without catalyst, the reaction is slow
so rarely used in the industry. This process is suitable
for reactive compounds. The reaction can be
accelerated by using H2Ovapour.
e.
Alkali Fusion
Either with or without H2O at high temperatures, e.g.
in solid NaOH (H2O<<). Usage in the industry for a
specific purpose, such as smelting cellulosic materials
such as corn cobs, “grajen” wood performed at high
temperature (± 240 °C) with solid NaOH produces
oxalic acid and acetic acid.
Fermentation
Ethanol fermentation, referred to as alcoholic
fermentation, is a biological process in which sugars
such as glucose, fructose, and sucrose are converted
into cellular energy and also produce ethanol and
carbon dioxide as by-products. This process does not
require oxygen, then the ethanol fermentation is
classified as anaerobic respiration. Fermentation
ethanol is used in the manufacture of alcoholic
beverages, ethanol fuel, and added agent in bread
cooking.
The types of fermentation are:
1.
Alcoholic fermentation
Alcoholic fermentation is a conversion reaction of
glucose to ethanol (ethyl alcohol) and carbon dioxide.
2.
Lactic acid fermentation
Lactic acid fermentation is that respiration occurs in
animals or human cells, when the oxygen requirement
is not fulfilled due to overwork. in the muscle cells,
lactic acid can cause symptoms of cramps and fatigue.
Lactate accumulated as waste products can cause
Green Chemistry Section 2: Physical Chemistry, Eni Budiyati, et al.
P a g e | 163
This Proceedings©Chemistry Department, FSM, Diponegoro University 2015
E-12
Jurnal Penelitian Pertanian Terapan Vol. 18 (1): 52-58
http://www.jurnal.polinela.ac.id/JPPT
DOI: http://dx.doi.org/10.25181/JPPT.V18I1.1043
pISSN 1410-5020
eISSN 2047-1781
Analisis Karakteristik Kimia Tepung Kasava dari Ubikayu Varietas
Klenteng dan Casessart (UJ5)
Analysis of Chemical Characteristic of Casava Flour from Klenteng and Casessart
(UJ5) Varieties
Erliana Novitasari* dan Ratna Wylis Arief
Balai Pengkajian Teknologi Pertanian (BPTP) Lampung
*
Email : [email protected]; [email protected]
ABSTRACT
The technology of cassava flour modification has been researched and developed. Biological
change by using BIMO-CF containing lactic acid bacteria is a practical technology that is
easy to apply in the production of cassava flour. This research was conducted from May
until August 2017 at Agrosains Park Natar with the aim to know the chemical characteristics
of cassava flour from Klenteng and Casessart varieties. Observation parameters included
analysis of moisture content, ash content, fat content, protein content, fiber content, total
carbohydrate content, starch content, HCN content, and white degree at THP Polytechnic
State Laboratory of Lampung. The results showed that the highest yield was produced by
cassava flour from casessart variety with the addition of BIMO-CF were 23.11%. The water
content of cassava flour produced ranged between 8.02-9.19%, by the quality requirements
of SNI. The lowest ash content was cassava flour from casessart variety (1.19%) without the
addition of starter. The addition of starter increased the protein content of cassava flour
both of Klenteng variety (0.47%) and Casessart variety (1.11%), decreasing the fiber content
for Klenteng variety (0.67%) and Casessart variety (0.90%). The amount of fat contained in
cassava flour produced ranged from 0.69 to 0.87%. Carbohydrate content (Klenteng variety
was 88.49%, and Casessart variety was 87,69%) and starch content (Klenteng variety was
85,98%, and Casessart variety was 84,83%), cassava flour with the addition of starter
higher than cassava flour without the addition of starter. All of the cassava flour produced
has HCN levels below the maximum limit (0.0216-0.0293%), while the degree of white (>
80%) has not met the quality requirements of SNI.
Keywords: chemical characteristics, cassava flour, varieties
Disubmit: 24 Desember 2017, Diterima: 20 Januari 2018, Disetujui: 31 Januari 2018
PENDAHULUAN
Kasava atau biasa disebut ubi kayu atau singkong merupakan salah satu komoditas tanaman pangan
non beras unggulan di Provinsi Lampung. Pada tahun 2017 tercatat produksi ubi kayu di Provinsi Lampung
sebesar 7.387.084 ton dari lahan tanam seluas 279.337 hektar dengan produktivitas 26,44 ton/ hektar (Badan
Pusat Statistik, 2018). Ubi kayu mempunyai potensi untuk dimanfaatkan sebagai alternatif sumber pangan
pokok untuk mendukung program ketahanan pangan. Tahun 2016 Indonesia tercatat sebagai rangking empat
negara penghasil ubi kayu di dunia setelah Nigeria, Thailand dan Brazil (FAO, 2017). Tetapi tidak dapat
dipungkiri bahwa Indonesia masih menghadapi masalah besar yaitu ketergantungan terhadap sebagian bahan
pangan impor yaitu gandum.
E-13
Jurnal Penelitian Pertanian Terapan
lain proses fotosintesis pada tanaman tersebut. Kandungan terbesar dalam ubikayu adalah air dan karbohidrat
yang merupakan sumber utama energi (Salvador, Steenkamp, & Mccrindle, 2014).
Tabel 3. Kandungan karbohidrat dan pati
Perlakuan
Karbohidrat (%)
Kadar pati (%)
Klenteng
85,73
84,53
Klenteng + starter
88,49
85,98
Casessart
87,49
74,52
Casessart + starter
87,69
84,83
*
Sumber: BSN (1996) dalam Yulifianti et al., (2012)
Pati merupakan salah satu bentuk dari karbohidrat jenis polisakarida. Alam menyediakan polisakarida
yang banyak ditemukan pada tanaman. Proses fotosintesis menghasilkan karbohidrat yang tersimpan dalm
bentuk pati. Pati atau amilum mempunyai sifat tidak larut dalam air pada suhu kamar dan tidak berasa
maupun berbau. Pati tersusun atas dua macam polimer polisakarida, yaitu amilopektin dan amilosa dalam
perbandingan yang bermacam-macam (Ariani et al., 2017). Pati dengan kandungan amilosa tinggi lebih
mudah larut dalam air karena memiliki banyak gugus hidroksil sehingga sulit membentuk gel dan sulit
mengental. Sedangkan pati dengan kandungan amilopektin tinggi memiliki sifat mengembang lebih baik
dibandingkan amilosa (Kusnandar, 2010 dalam Ariani et al., 2017). Selain itu, pati dengan kandungan
amilosa tinggi bersifat kurang rekat dan kering dibandingkan pati yang memiliki kandungan amilopektin
tinggi yang bersifat rekat dan basah (Hidayat, Ahza, & Sugiyono, 2007). Hasil analisa kadar pati tepung ubi
kayu varietas Klenteng dan Casessart menunjukkan kadar sebesar 74,52-85,98%.
Kadar HCN dan Derajat Putih
Hasil pengujian terhadap kandungan HCN atau asam sianida dan derajat putih tepung kasava disajikan
pada Tabel 4. Analisis HCN dilakukan untuk mengetahui kadar asam sianida pada tepung ubikayu setelah
direndam selama 24 jam. Hasil menunjukkan bahwa tepung ubikayu yang telah melewati tahap perendaman
selama 24 jam hanya mengandung HCN 21,6-29,3 mg/kg. Dalam bentuk umbi segar, kandungan HCN
singkong makan/ tidak pahit seperti Klenteng, Adira 1 dan Malang 1 mempunyai kadar HCN maksimal 40
mg/kg, sedangkan untuk ubikayu pahit seperti Casessart atau UJ 5, UJ 3 (Thailand), Adira 4 mempunya
kadar HCN lebih dari 100 mg/kg (Balitkabi, 2011). Kadar HCN dalam tepung kasava berkurang karena telah
melalui proses perendaman. Hal ini sesuai dengan hasil terdahulu yang menyatakan bahwa turunnya kadar
HCN akibat hidrolisis dinding sel mikroba selama proses fermentasi. Penambahan starter mempercepat
menurunnya tingkat kekerasan umbi dan meningkatkan nilai keasaman media menginaktivasi enzim
linamarase sehingga tidak dapat membentuk HCN (Nkoudou & Essia, 2017).
Derajat putih tepung merupakan parameter yang penting karena mempengaruhi performansi hasil
akhir produk tepung tersebut. Hasil pengujian derajat putih menunjukkan bahwa tepung berkisar antara
74,55-79,75% seperti tersaji pada Tabel 4. Tepung ubikayu varietas Klenteng tanpa penambahan starter
menunjukkan level derajat putih yang tertinggi dan varietas Casessart dengan penambahan starter
menunjukkan tingkat derajat putih paling rendah. Menurut Yulifianti et al. (2012) perendaman dan pencucian
selain bertujuan untuk melunakkan tekstur ubi kayu, juga dapat membersihkan kontaminan yang
menyebabkan warna selain putih. Fermentasi dapat menghilangkan komponen penimbul warna, seperti
pigmen pada umbi yang berwarna kuning dan protein yang mengakibatkan warna kecoklatan.
Hal 56 Volume 18, Nomor 1, 2018
E-14
Scientia Agroalimentaria
ISSN: 2339-4684
Vol. 1 (2013) 19-25
PHYSICOCHEMICAL CHARACTERIZATION OF TWO CASSAVA (Manihot
esculenta Crantz) STARCHES AND FLOURS
CARACTERIZACIÓN FISICOQUIMICA DE DOS ALMIDONES Y HARINAS DE YUCA (Manihot
esculenta Crantz)
Sandoval Aldana, A.1; Fernández Quintero, A.2
Resumen
El almidón y la harina de yuca fueron obtenidos de raíces cultivadas en Colombia en dos condiciones
ambientales específicas. Se evaluaron propiedades fisicoquímicas como tamaño y morfología del grano,
contenido de amilosa, cristalinidad, propiedades térmicas y comportamiento al empastamiento. Las propiedades
del almidón de yuca fueron altamente influenciadas por las condiciones ambientales durante el periodo de
crecimiento de las raíces de yuca. El almidón extraído de las raíces de yuca cultivadas en una zona con
temperatura promedio más alta presentó un tamaño de granulo más pequeño, mayor contenido de amilosa y
mayor temperatura y entalpia de gelatinización, lo que está relacionado con una mayor temperatura de
empastamiento y menor viscosidad. Las harinas de yuca presentaron diferencias con los almidones estudiados
como una menor entalpia de gelatinización medida por calorimetría diferencial de barrido (DSC), mayor
temperatura de empastamiento y menor desarrollo de viscosidad máxima. Este comportamiento posiblemente
esta influenciado por la presencia de otros componentes diferentes al almidón en la raíz de yuca fresca.
Palabras clave: almidón, harina, yuca, DSC, rayos X, empastamiento
Abstract
Starch and flour were produced from cassava roots grown in two specific environmental conditions in Colombia.
The physicochemical properties evaluated were granule size and morphology, amylose content, crystal form,
thermal properties and pasting behavior. The properties of cassava starch were highly influenced by the
environmental conditions during the growth of the roots. Starch extracted from roots cultivated in a warmer zone
showed smaller granule size, higher amylose content and higher temperature and enthalpy of gelatinization. This
starch also showed higher pasting temperature and lower peak viscosity. Cassava flours presented differences
with their corresponding starch such as lower enthalpy of gelatinization measured by DSC, higher pasting
temperature and lower peak viscosity on pasting. It is possible that this behavior is influenced by the presence of
non-starch components from the fresh root.
Keywords: starch, flour, cassava, DSC, X-ray, pasting behavior.
1
2
Profesor, Facultad de Ingeniería Agronómica, Universidad del Tolima; Barrio Santa Helena, A.A. 546, correo: [email protected]
Profesor Titular, Departamento de Ingeniería de Alimentos, Facultad de Ingeniería, Universidad del Valle.
Fecha de recepción: 17-12-2012
Fecha de aprobación: 04-02-2013
E-15
Sandoval-Aldana, A., et al. Scientia Agroalimentaria. Vol. 1 (2013)19-25
which the starch granules are synthesized [21, 7].
Besides, Noda et al. [23] have reported, in studies on
sweet potato and wheat starches, that low values of
gelatinization onset, peak and conclusion temperature
measured by DSC, reflected the presence of abundant
short amylopectin chains.
The values of temperature and enthalpy of
gelatinization determined in this study were higher
23
than the values reported by Asaoka et al. [4] for
Colombian varieties, temperature of gelatinization
50.7-57 oC and enthalpy 7-9 J g-1. The enthalpy of
gelatinization for starch A was in agreement with the
value reported by Charles et al. [1] for Thai cassava
starch and for Indian starch [12]. Higher value of
enthalpy as starch B has been reported by Abera and
Rakshit [24].
Table 2. DSC thermal properties of cassava starches and flours.1
Material
DSC onset (°C)
DSC peak (°C)
60.69
±
0.53
65.44 ± 0.51
Starch A
66.51
±
0.24
72.00 ± 0.44
Starch B
60.99 ± 0.71
66.14 ± 0.33
Flour A
66.01 ± 0.41
71.00 ± 0.22
Flour B
1
The results are means of three experiments and standard deviation.
The results of gelatinization temperature for the flours
were closer to the values determined for their
corresponding starch, this contrasts with the results of
Moorthy et al. [12] and Defloor et al. [25]. They
postulated that the presence of non-starch
components, which competed for the available water,
delayed the gelatinization. Despite the high crude
fiber content for flour B, the temperature of
gelatinization was the same as in the starch. These
differences could be related to crude protein content
as well as environmental conditions. Pereira and
Beleia [10] reported that cassava flours from peeled
roots presented higher protein content which
decreased with the age of the roots. Besides, Defloor
et al. [23] stated that gelatinization temperature of
cassava flour increased as roots were grown in dry
conditions. Root age at harvest, protein content and
moisture stress were not reported by Moorthy et al.
[12]. The enthalpy of gelatinization for flour samples
presented significant differences (P < 0.001) with the
enthalpy of the starch. This behavior was reported
before by Moorthy et al. [12]. Cassava flour
gelatinization enthalpy was in the range of 7-8 J g-1,
these values were lower than those reported for Indian
varieties (9-10 J g-1).
The RVA results are presented in Table 3. Peak
viscosity and final viscosity values of cassava starches
showed significant differences (P<0.001). Starch A
showed a lower pasting temperature and developed
higher viscosity. Differences in pasting behavior
between starches were observed before by FernándezQuintero [5], who stated that starches from plants of
zone B presented higher initial pasting temperature
and exhibited lower viscosities on pasting.
DSC end (°C)
71.36 ± 0.98
79.26 ± 0.33
69.91 ± 0.14
77.22 ± 0.59
Enthalpy ∆ H (J g-1)
13.96 ± 0.06
15.50 ± 0.74
7.75 ± 0.07
8.11 ± 0.64
Table 3. RVA pasting results for cassava starches and
flours.
Material
Peak
viscosity
(m∙Pa∙s)
Trough
viscosity
(m∙Pa∙s)
Final
viscosity
(m∙Pa∙s)
Onset
temperature
(°C)
Starch A
5716
2367
2697
67.85
Starch B
4862
2670
3085
74.35
Flour A
4325
2640
3080
71.25
Flour B
3100
2580
3210
75.95
The size and size distribution of starch granules might
contribute in the pasting behavior and the rheological
response of starches and swelling of granules [26, 27].
Starch from Zone B presented a higher proportion of
small granules than starch from zone A. The
differences in the granule size between the samples
could partially explain their different behavior during
pasting. Starch B also presented a higher value of final
viscosity. Charles et al. [1] and Sriroth et al. [6]
reported that starch with high amylose content
developed high final viscosity and setback on pasting.
Pasting profiles for cassava starches and flours are
plotted in Figure 3 and Figure 4. There were
significant differences (P < 0.001) in the pasting
profiles between starches and their corresponding
flours. Lower peak viscosity values and higher pasting
temperatures were obtained for both flours. This lower
viscosity values could be partly attributed to lower
starch content. It is also possible that the minor
components (protein and fiber) influenced the values
of viscosity on pasting [11, 12].
E-16
24
Sandoval-Aldana, A., et al. Scientia Agroalimentaria. Vol. 1 (2013) 19-25
6000
100
90
80
4500
70
3750
60
3000
50
2250
40
Temperature (ºC)
Viscosity (mPas)
5250
30
1500
Starch
Flour
750
20
10
0
0
0
200
400
600
800
Time (s)
Figure 3. Pasting behavior for cassava starch and flour
A.
Pasting profiles for cassava starches and flours are
plotted in Figure 3 and Figure 4. There were
significant differences (P < 0.001) in the pasting
profiles between starches and their corresponding
flours. Lower peak viscosity values and higher pasting
temperatures were obtained for both flours. This lower
viscosity values could be partly attributed to lower
starch content. It is also possible that the minor
components (protein and fiber) influenced the values
of viscosity on pasting [11, 12].
6000
100
90
80
4500
70
3750
60
3000
50
40
2250
30
1500
750
Starch B
20
Flour B
10
0
Temperature(ºC)
Viscosity (mPas)
5250
0
0
200
400
600
Physicochemical properties of flour were influenced
by chemical composition, which was a consequence
of the procedure for obtaining the flours. The
presence of non-starch components in the flours
decreased the values of enthalpy of gelatinization
and increased pasting temperature but decreased
peak viscosity.
800
Time
Figure 4. Pasting behavior for cassava starch and flour
B.
Conclusions
The physicochemical properties of starches were
highly influenced by the environmental conditions
during the growing period of the plants. Small granule
size, high amylose content, high temperature and
enthalpy of gelatinization were characteristics of
starch extracted from roots cultivated at high
temperatures. These physicochemical properties are
also related to functional properties as high pasting
temperature and low peak viscosity. Therefore, it was
confirmed that there are trends in the behavior of
cassava starch from roots grown in a specific
environmental condition.
Acknowledgements
A. Sandoval-Aldana was funded by COLCIENCIAS.
The authors would like to thank Clayuca – CIAT and
Industrias del Maíz S.A. for supplying the raw
materials.
References
[1] Charles, A.L., Y.-H. Chang, W.-C.Ko, K. Sriroth, and T.-C.
Huang.(2004). Some physical and chemical properties of
starch isolates of cassava genotypes. Starch-Stärke, 56, 413418.
[2] Glicksman, M. (1969). Staches., In M. Glicksman, ed. Gum
technology in the food industry (Pp. 278). New York:
Academic Press.
[3] Asaoka, M., J.M.V. Blanshard, and J.E. Rickard. (1991).
Seasonal effects on the physico-chemical properties of starch
from four cultivars of cassava.Starch-Stärke 43, 455-459.
[4] Asaoka, M., J.M.V. Blanshard, and J.E. Rickard. (1992).
Effect of cultivar and growth season on the gelatinisation
properties of cassava (Manihot esculenta) starch.Journal of
the Science of Food and Agriculture,59, 53-58.
[5] Fernández-Quintero, A. (1996). Effect of processing
procedures and cultivar on the properties of cassava flour and
starch.Ph. D. Thesis, University of Nottingham,
Loughborough.
[6] Sriroth, K., V. Santisopasri, C. Petchalanuwat, K.
Kiurotjanwong, K. Piyachomkwan, and C.G. Oates. (1999).
Cassava starch granule structure-function properties:
influence of time and conditions at harvest on four cultivar of
cassava starch. Carbohydrate Polymers,38, 161-170.
[7] Tester, R.F. (1997). Starch: the polysaccharide fractions, In P.
J. Frazier, P. Richmond, & A. M. Donald, (Eds.), Starch:
structure and functionality (p. 163-171). Royal Society of
Chemistry, Cambridge.
[8] Badrie, N., and W.A. Mellowes. (1991). Effect of extrusion
variables on cassava extrudates.Journal of Food Science, 56,
1334-1337.
[9] Aryee, F.N.A., I. Oduro, W.O. Ellis, and J.J. Afuakwa.
(2005). The physicochemical properties of flour samples
from the roots of 31 varieties of cassava. Food Control.In
press.
[10] Pereira, L.T.P., and A.d.P. Beleia. (2004). Isolamento,
fracionamento e caracterizacao de parees celulares de raizes
de mandioca (Manihot esculenta Crantz). Ciencia y
Tecnología Alimentaría, 24, 59-63.
[11] Niba, L.L., M.M. Bokanga, E.L. Jackson, D.S. Schlimme,
and B.W. Li. (2001). Physicochemical properties and starch
granular characteristics of flour from various Manihot
E-17
ISSN 0101-2061
Original
Ciência e Tecnologia de Alimentos
The effect of acid hydrolysis on the technological functional
properties of pinhão (Araucaria brasiliensis) starch
Efeito da hidrólise ácida nas propriedades funcionais tecnológicas do amido de pinhão (Araucaria brasiliensis)
Roberta Cruz Silveira THYS1*, Andréia Gomes AIRES1,
Ligia Damasceno Ferreira MARCZAK2, Caciano Pelayo Zapata NOREÑA1
Abstract
Technological functional properties of native and acid-thinned pinhão (seeds of Araucária angustifolia, Brazilian pine) starches were evaluated
and compared to those of native and acid-thinned corn starches. The starches were hydrolyzed (3.2 mol.L–1 HCl, 44 °C, 6 hours) and evaluated
before and after the hydrolysis reaction in terms of formation, melting point and thermo-reversibility of gel starches, retrogradation (in a
30-day period and measurements every three days), paste freezing and thawing stability (after six freezing and thawing cycles), swelling
power, and solubility. The results of light transmittance (%) of pastes of native and acid-thinned pinhão starches was higher (lower tendency
to retrogradation) than that obtained for corn starches after similar storage period. Native pinhão starch (NPS) presented lower syneresis
than native corn starch (NCS) when submitted to freeze-thaw cycles. The acid hydrolysis increased the syneresis of the two native varieties
under storage at 5 °C and after freezing and thawing cycles.
The solubility of NPS was lower than that of native corn starch at 25, 50, and 70 °C. However, for the acid-thinned pinhão starch (APS), this
property was significantly higher (p < 0.05) when compared to that of acid-thinned corn starch (ACS). From the results obtained, it can be
said that the acid treatment was efficient in producing a potential fat substitute from pinhão starch variety, but this ability must be further
investigated.
Keywords: unconventional starch source; modified starch; fat substitutes.
Resumo
As propriedades funcionais tecnológicas do amido nativo e modificado (hidrólise ácida) de pinhão (Araucaria angustifólia) foram comparadas
às propriedades do amido nativo e ácido hidrolisado de milho. As espécies de amido foram hidrolisadas (3.2 mol.L–1 HCl, 44 °C, 6 horas)
e avaliadas, antes e após a reação de hidrólise, de acordo com as análises de formação, fusão e termorreversão do gel, retrogradação (em
um período de 30 dias, com medidas a cada 3 dias), estabilidade ao congelamento e descongelamento (após 6 ciclos de congelamento e
descongelamento), poder de inchamento e índice de solubilidade. Os resultados obtidos demonstraram que o amido de pinhão apresenta
menor tendência à retrogradação quando comparado ao amido de milho, tanto para a forma nativa quanto na modificada, após períodos
similares de armazenamento. O amido nativo de pinhão (APN), quando submetido a sucessivos ciclos de congelamento e descongelamento,
apresentou menor sinérese do que o amido de milho nativo (AMN). Nas temperaturas de 25, 50 e 70 °C, a solubilidade do APN foi menor do
que a obtida pelo AMN. Entretanto, para a forma modificada, o amido de pinhão apresentou maior solubilidade (p < 0,05) do que o amido de
milho. Através dos resultados, pode-se afirmar que o tratamento ácido modificado realizado no amido de pinhão foi efetivo para a produção
de um potencial substituto de gordura, propriedade que deve ser testada e analisada em estudos futuros.
Palavras-chave: fonte de amido não convencional; amido modificado; substituto de gordura.
1 Introduction
Brazilian Pine (Araucaria brasiliensis syn. A. angustifolia)
belongs to the Araucariaceae family and is the most economically
important native conifer species in Brazil (ZANDAVALLI;
DILLENBURG; DE SOUZA, 2004). The seed of this tree,
harvested from April to August, is known as pinhão, and it is
most commonly eaten after being cooked and peeled. Pinhão is
also used as raw flour as an ingredient for several dishes, and is
considered a source of starch (~36%), dietary fiber, magnesium
and copper, besides producing a low glycemic index after its
consume (CORDENUNSI et al., 2004). Although nutritional
and technological aspects of pinhão are scarce in the scientific
literature, recent studies suggest that the Araucaria seed is a
potential alternative source of starch extraction for industrial
purposes (CORDENUNSI et al., 2004; BELLO-PEREZ et al.,
2006; STAHL et al., 2007).
Starch is the most commonly thickening and gelling
agent used by the food industry in the development of a large
number of products such as soups, flans, sauces, and readyto-eat food among others. In recent years, there has been an
effort of researchers to find new sources of unconventional
native starch with the necessary properties for the food
industry, such as absence of syneresis, transparency, stability,
Received 22/6/2012
Accepted 16/10/2012 (00T5756)
1
Institute of Food Science and Technology – ICTA, Federal University of Rio Grande do Sul – UFRGS, Av. Bento Gonçalves, 9500, Campus do Vale, CEP 91501-970,
Porto Alegre, RS, Brazil, e-mail: [email protected]
2
Department of Chemical Engineering, Federal University of Rio Grande do Sul – UFRGS, CEP 91501-970, Porto Alegre, RS, Brazil
*Corresponding author
Ciênc. Tecnol. Aliment., Campinas, 33(Supl. 1): 89-94, fev. 2013
89
E-18
Thys et al.
Table 3. Solubility of native and acid-thinned starches from pinhão
and corn.
Temperature
25 °C
50 °C
60 °C
70 °C
NPS
0.31aA ± 0.04
0.12aB ± 0.01
4.02aC ± 0.20
1.45aD ± 0.09
Variety
NCS
APS
0.71bA ± 0.01 7.52cA ± 0.12
1.48bB ± 0.04 7.47cA ± 0.12
2.98bC ± 0.11 8.65cB ± 0.02
2.85bC ± 0.06 9.02cC ± 0.05
ACS
6.87dA ± 0.07
6.93dA ± 0.14
8.11dB ± 0.04
8.19dB ± 0.02
The results are expressed as mean ± standard deviation (n = 3). Means followed by
different lowercase letters in the same row indicate significant differences by Tukey
test (p < 0.05). Means followed by different capital letters in the same column indicate
significant differences by Tukey test (p < 0.05).
harvest time also affect the swelling power (FRANCO et al.,
2002), which could explain the first situation mentioned above.
Man et al. (2012) reported that no significant difference between
native and acid-thinned starch was found under 65 °C, but, at
temperatures higher than 80 °C, the SP gradually decreased.
The solubility (Table 3) of NPS was lower than that of
NCS at 25, 50, and 70 °C, which can be explained by the lower
amylose content of pinhão starch compared to that of corn
starch. Amylose dissociates from the granule, which contributes
to solubility increase (MARCON et al., 2007). Wosiacki and
Cereda (1989) reported a similar pattern for pinhão starch
at temperatures higher than 85 °C. Bello-Pérez et al. (2006)
reported an inverse behavior, with higher solubility values for
pinhão starch, which according to these authors is in agreement
with the lower temperature and enthalpy of gelatinization of
pinhão starch assessed by DSC in their study.
APS and ACS showed higher values of solubility than
the native starches. This occurs because the acid hydrolizes
preferentially the amorphous region of the starch molecule , where
amylose is normally found (ATICHOKUDOMCHAI et al.,
2000), generating a significant reduction in the amylose chain
length in the granule content, and its consequent dissolution
resulting in solubility increase; fact that was evidenced with
increases in temperature in the corn and pinhão species.
In addition, APS had significantly higher (p < 0.05)
solubility than ACS showing a higher susceptibility of pinhão
starch to acid hydrolysis, when compared to that of corn starch.
4 Conclusion
The functional properties of NPS (lower levels of
retrogradation and syneresis and highest solubility when
compared to native corn starch), which is a non-conventional
source of starch, suggest it may have potential use in food
systems. The acid hydrolysis (3.2 mol.L–1 HCl and 44 °C) of
pinhão and corn starches caused gel thermo-reversibility,
lower tendency to retrogradation of starch pastes, and higher
solubility at an economically viable reaction time (6 hours).
Furthermore, the APS showed a melting point (46 °C) close to
that of the conventional fats (37-45 °C), which may indicate that
the pinhão starch could be used as a fat substitute when the gel
is prepared (5%, w/w dry basis, total weight 28 g) by heating at
95 °C for 30 minutes. However, this applicability is limited to
Ciênc. Tecnol. Aliment., Campinas, 33(Supl. 1): 89-94, fev. 2013
frozen or refrigerated food since the acid hydrolysis reduced
the tolerance of both starches to refrigerate storage (5 °C) and
to the freeze-thaw cycles.
Acknowledgements
The authors thank Florencia Cladera-Olivera and Mauricio
Seibel Luce for the critical reading of the manuscript and very
helpful discussions and comments.
References
AGBOOLA, S. O.; AKIMBALA, J. O.; OGUNTIMEIN, G. B.
Physicochemical and functional properties of low DS cassava starch
acetates and citrates. Starch/Starke, v. 43, p. 62-66, 1991. http://
dx.doi.org/10.1002/star.19910430207
ALBRECHT, J. J.; NELSON, A. I.; STAINBERG, M. P. Characteristics
of corn starch and starchs derivatives as affected by freeze storage
and thawing. Food Technology, v. 14, p. 57-60, 1960.
AMAYA-LLANO, S. L. et al. Isolation and partial characterization of
banana starches. Journal of Agricultural and Food Chemistry,
v. 47, p. 854-857, 1999. http://dx.doi.org/10.1021/jf980828t
ATICHOKUDOMCHAI, N. et al. A study of some physicochemical
properties of high-crystalline tapioca starch. Starch/Starke,
v. 53, n. 11, p. 577-581, 2000. http://dx.doi.org/10.1002/1521379X(200111)53:11<577::AID-STAR577>3.0.CO;2-0
BELLO-PÉREZ, L. A. et al. Isolation and Characterization of Starch
from Seeds of Araucaria brasiliensis: A novel Starch for Application
in Food Industry. Starch/Starke, v. 58, p. 283-291, 2006. http://
dx.doi.org/10.1002/star.200500455
BEMILLER, J. N. Starch modification: Challenges and prospects.
Starch/Starke, v. 49, p. 127-131, 1997. http://dx.doi.org/10.1002/
star.19970490402
CORDENUNSI, B. R. et al. Chemical composition and glycemic
index of Brazilian pine (Araucaria angustifolia) seeds. Journal
of Agricultural and Food Chemistry, v. 52, p. 3412-3416, 2004.
PMid:15161207. http://dx.doi.org/10.1021/jf034814l
FLECHE, G. Chemical modification and degradation of starch. New
York: Dekker, 1985. 99 p. PMid:2419317.
FLORES-GOROSQUERA, E. et al. Rendimiento del proceso de
extracción del almidón a partir de frutos de plátano (Musa
paradisiaca): Estudio en planta piloto. Acta Científica Venezolana,
v. 55, n. 1, p. 86-90, 2004. PMid:15916169.
FRANCO, C. M. L. et al. Culturas de Tuberosas amiláceas latino
americanas-Propriedades gerais do amido. São Paulo: Fundação
Cargill, 2002. 221 p.
GIESE, J. Fat, oils and fat replacers. Food Technology, v. 50, n. 4,
p. 77-83, 1996.
HERMANSSON, A. M.; SVEGMARK, K. Developments in the
understanding of starch functionality. Trends in Food Science
and Technology, v. 7, p. 345-53, 1996. http://dx.doi.org/10.1016/
S0924-2244(96)10036-4
HOSENEY, R. C. Principles of cereal science and technology. St.
Paul: American Association of Cereal Chemists, Inc., 1994. p. 52-54.
LAWAL, O. S. Composition physicochemical properties and
retrogradation characteristics of native, oxidized, acetylated
and acid-thinned new cocoyam (Xanthosoma sagittifolium)
starch. Food Chemistry, v. 87, p. 205-218, 2004. http://dx.doi.
org/10.1016/j.foodchem.2003.11.013
93
E-19
International Journal of Biological Macromolecules 80 (2015) 557–565
Contents lists available at ScienceDirect
International Journal of Biological Macromolecules
journal homepage: www.elsevier.com/locate/ijbiomac
Effect of citric acid concentration and hydrolysis time on
physicochemical properties of sweet potato starches
Ayenampudi Surendra Babu a , Ramanathan Parimalavalli a,∗ , Shalini Gaur Rudra b
a
b
Department of Food Science and Nutrition, School of Professional Studies, Periyar University, Salem 636011, Tamil Nadu, India
Department of Food Science and Post Harvest Technology, Indian Agriculture Research Institute, New Delhi 110012, India
a r t i c l e
i n f o
Article history:
Received 29 April 2015
Received in revised form 25 June 2015
Accepted 12 July 2015
Available online 15 July 2015
Keywords:
DSC
Fat replacer
SEM
Sweet potato starch
XRD
a b s t r a c t
Physicochemical properties of citric acid treated sweet potato starches were investigated in the present
study. Sweet potato starch was hydrolyzed using citric acid with different concentrations (1 and 5%) and
time periods (1 and 11 h) at 45 ◦ C and was denoted as citric acid treated starch (CTS1 to CTS4) based
on their experimental conditions. The recovery yield of acid treated starches was above 85%. The CTS4
sample displayed the highest amylose (around 31%) and water holding capacity its melting temperature
was 47.66 ◦ C. The digestibility rate was slightly increased for 78.58% for the CTS3 and CTS4. The gel
strength of acid modified starches ranged from 0.27 kg to 1.11 kg. RVA results of acid thinned starches
confirmed a low viscosity profile. CTS3 starch illustrated lower enthalpy compared to all other modified
starches. All starch samples exhibited a shear-thinning behavior. SEM analysis revealed that the extent of
visible degradation was increased at higher hydrolysis time and acid concentration. The CTS3 satisfied the
criteria required for starch to act as a fat mimetic. Overall results conveyed that the citric acid treatment of
sweet potato starch with 5% acid concentration and 11 h period was an ideal condition for the preparation
of a fat replacer.
© 2015 Elsevier B.V. All rights reserved.
1. Introduction
Today’s dietary concern is the consumption of huge quantity
of fat and sugar. With the mounting incidence of diabetes and
obesity, low calorie foods have acquired the huge esteem. In general, the best suitable approach in terms of fat reduction diets
involves either the use of low-fat foods or fat substitutes or modifications such as trimming of fat from foods [1,2]. Fat Replacers
consist of mixtures of lipid-originated fat substitutes, protein- or
carbohydrate-originated fat mimetic, or their combinations [3].
Carbohydrate-based Replacers incorporate water into a gel type
structure, resulting in a lubricant or flow properties similar to
those of fats in food systems [2]. Even though a variety of fat
replacers have been developed, there are unfortunately no ideal
fat replacers which completely function like conventional fat [4].
Native starch can sometimes be used to replace fat [1]; however starch modified by acid or enzymatic hydrolysis, oxidation,
Abbreviations: NS, native sweet potato starch; CTS, citric acid treated starch; HT,
hydrolysis time; AC, acid concentration; DE, dextrose equivalent; WHC, water holding capacity; PV, peak viscosity; BD, break down; TV, trough viscosity; SB, setback;
FV, final viscosity; Pt, pasting time; PT, pasting temperature; To, onset temperature;
Tp, peak temperature; Tc, final temperatures; H, gelatinization enthalpy.
∗ Corresponding author.
E-mail address: [email protected] (R. Parimalavalli).
dextrinization, cross linking, or mono-substitution is more commonly used to achieve desired functional and sensory properties
[1]. Generally, acid hydrolysis occurs more rapidly in amorphous
regions than in crystalline region and the residue after prolonged
acid hydrolysis consists of acid-resistant crystalline parts of amylopectin [5]. Thys et al. [6] investigated the functional properties
of acid-thinned pinhao starch and it showed low syneresis, high
solubility, thermo reversibility and melting point similar to fat.
They concluded that the acid treatment was efficient in producing
a potential fat substitute from pinhao starch. Amaya-Llano et al. [7]
produced acid hydrolyzed jicama starch and used as a fat substitute
in yoghurt. The addition of hydrolyzed jicama starch (2.03 g/100 g)
as a fat substitute in the preparation of stirred yoghurt had good
functional and sensorial properties. Ma et al. [8] reported that enzymatic hydrolyzed corn starch could be used as fat replacers. The
hydrolyzed starch with fine particles was used to produce low fat
mayonnaise and the result indicated that the 60% fat-reduced mayonnaise with fat replacers had similar sensory quality as compared
with the high fat one.
The following are the criteria for a starch based fat mimetic – (a)
Starch should contain an amylose content of ∼20% [9]. (b) Starch
ought to require a granule size of 2 ␮m or in similar size to liquid
micelle to act as fat mimetic [10]. (c) According to FDA [11] a
starch-based fat mimetic is supposed to be partially or completely
digestible. (d) Starch must possess a DE (dextrose equivalent) of
http://dx.doi.org/10.1016/j.ijbiomac.2015.07.020
0141-8130/© 2015 Elsevier B.V. All rights reserved.
E-20
560
A. Surendra Babu et al. / International Journal of Biological Macromolecules 80 (2015) 557–565
evaluating the effect of citric acid concentration (AC) and hydrolysis time (HT) on the response variables (Table 1). The data of
physiochemical and functional properties of the citric acid treated
starches were six replications. All data obtained were subjected
to one way Analysis of Variance (ANOVA) or student t-test using
SPSS program (Statistical Package for Social Science) version 14.0
(SPSS Inc., Illinois, USA). Comparison of means was performed using
Tukey–Kramer HSD at P < 0.05.
4. Results and discussion
4.1. Physiochemical properties
4.1.1. Yield of isolated and acid treated sweet potato starches
The yield of isolated sweet potato starch was 10.20%. The recovery yield of citric acid modified sweet potato starches was above
85% (Table 2) and it was in the range as reported by Dutta et al.
[28] and Babu et al. [29]. With the increase in acid concentration,
yield was reduced as starches might be hydrolyzed more rapidly at
higher acid concentration.
4.1.2. Analysis of ash, protein, fat and total fiber
The isolated native sweet potato starch had 0.26 ± 0.11% ash,
0.25 ± 0.14% protein, 0.07 ± 0.02% fat and 0.57 ± 0.10 total fiber.
These values were consistent with the earlier report [30]. The isolated starch had minor protein and fat contents.
4.1.3. Dextrose equivalent (DE)
DE value is an indication of extent of acid hydrolysis. The degree
of citric acid hydrolysis of sweet potato starch was not severe
as revealed by dextrose equivalent (DE) value. The DE value of
acid-thinned sweet potato starches (Table 2) was ranged between
1.90 and 2.34% and it showed that the DE value was increased
with increased acid concentration and hydrolysis time. Since CTS4
starch was treated for a greater hydrolysis conditions, it exhibited
a higher DE value of 2.34% compared to their counterparts. Thys,
Aires, Marczak, and Norena [6] reported a DE value of 6.5 for
pinhao starch treated with HCl. Nevertheless DE values obtained
in the present study was much lower as citric acid used for acid
treatment was a weak organic acid, hence the degree of hydrolysis
of these starches seems to be lower. Since the DE value of acid
treated starches were within the range referred by National Starch
Table 1
Hydrolysis conditions.
Treatments
HT (h)
AC (%)
NS
CTS1
CTS2
CTS3
CTS4
–
1
1
11
11
–
1
5
1
5
NS, native starch; CTS1.CTS4, citric acid treated starches; HT, hydrolysis time; AC,
acid concentration.
and Chemical Corporation [12], indicates a potential applicability
of the citric acid thinned sweet potato starch as a fat mimetic.
4.1.4. Apparent amylose
The apparent amylose content of NS was 18.56%, which was on
par with Tsakama, Mwangwela, Manani, and Mahungu [31]. Acid
treated starches found to display a higher fraction of apparent amylose which was significant with NS. The highest apparent amylose
(around 31%) content was noticed for CTS4 sample. This increased
trend was in linear fashion with acid concentration and hydrolysis period. The removal of lipids from the starch samples by acid
may result in higher value for amylose content. Increase in amylose
might also be due to the formation of intramolecular and intermolecular linkages between residues of amylose, which increases
the length of these chains and their capacity to form complexes
with iodine, increasing the apparent amylose values. Another possible reason might be due to the de-polymerization of amylopectin
fractions on continuous acid hydrolysis. High degree of acid hydrolysis led increased apparent amylose content of starch [32]. Starches
with a higher linear fraction (amylose content) are able to bind
strongly and orient water to endow with a sensation comparable
to the rheology of fat in the oral cavity [33] hence CTS4 starch could
mimic the functionality of fat when used as a fat replacer. Vanderveen and Glinsmann [9] suggested that starch should possess a
20% amylose to act as a fat replacer.
4.1.5. Moisture and dry matter
Moisture content and dry matter of NS was 14.11% and 85.89%,
respectively, whereas all acid thinned starches showed low moisture content and high dry matter. Hydrolysis time showed a
noticeable effect on the moisture content. Increase in hydrolysis
time would provide ample time for the starch to react with citric
acid which results in increase in moisture content of starch. This
pattern might be related to the reaction between the OH groups
of glucose units of starch and the functional groups (OH) of citric
acid used in this chemical modification, decreasing the possibility
of reaction between OH of starch chains and the water molecules.
Consequently, the probability of joining of water to this polymer
would be reduced causing decrease in moisture content of modified starch thereby increase in dry matter [34]. A similar trend was
observed by Omojola, Manu, and Thomas [35] during acid hydrolysis of cola starch.
4.1.6. Melting point, clear point and gel thermo-reversibility
Melting point, clear point and thermo-reversibility of native
and acid-thinned sweet potato starches are shown in Table 2. All
the starches illustrated a perfect gel formation when gelatinized
and stored under refrigeration at 4 ◦ C. Melting point of NS was
observed at 69.33 ◦ C whilst the acid treated starches melted at a
temperature lower than the native starch. The CTS4 starch had
shown its melting temperature at 47.66 ◦ C, similar to the melting point of fats, which indicated that it would be used as a
fat substitute. Amylopectin plays a major role in starch granule
crystallinity and the presence of amylose indirectly lowers the
Table 2
Physicochemical properties of native and acid-thinned sweet potato starches.
S. No.
Starch recovery
yield (%)
DE (%)
NS
CTS1
CTS2
CTS3
CTS4
100
92.93
89.84
91.33
85.05
±
±
±
±
±
–
1.90 ±
2.21 ±
2.04 ±
2.34 ±
0.00aA
1.10bB
1.24cB
0.80bB
2.56cC
Apparent
amylose (%)
0.08aA
0.05bA
0.03aA
0.05bB
18.56
24.78
29.59
30.27
31.04
±
±
±
±
±
1.06aA
1.36bB
1.32cB
1.88bC
1.38cC
Moisture (%)
14.11
6.62
11.00
11.30
11.83
±
±
±
±
±
2.17aA
1.45bB
1.00aA
0.60aA
1.04aA
Dry matter (%)
85.89
93.38
89.00
88.70
88.17
±
±
±
±
±
0.80aA
3.07bB
1.00abB
1.47bAB
0.76abB
Melting
point (◦ C)
67.00
56.33
50.33
55.66
47.66
±
±
±
±
±
2.64aA
2.04bB
2.65cB
1.86bB
1.94cC
Clear point
(◦ C)
GTR
In vitro
digestibility (%)
–
68.33 ±
61.00 ±
66.33 ±
58.33 ±
No
Yes
Yes
Yes
Yes
63.27
72.59
70.59
76.22
78.54
0.57aA
1.52bA
1.52aB
2.88bB
±
±
±
±
±
4.27aA
11.67aA
5.78aA
7.18abA
7.40bB
Mean values followed by different letters in the same column indicate significant difference (p < 0.05). Lowercase letters indicate significant difference in hydrolysis times
while uppercase letters indicate significant difference in acid concentrations. DE, dextrose equivalent; GTR, gel thermo reversibility.
E-21
A. Surendra Babu et al. / International Journal of Biological Macromolecules 80 (2015) 557–565
561
Table 3
Crystallinity, granule size and functional properties of native and acid-thinned sweet potato starches.
Samples
Crystallinity (%)
NS
CTS1
CTS2
CTS3
CTS4
35.33
34.26
38.80
40.50
35.55
±
±
±
±
±
2.62aA
1.63aA
1.31aA
0.50bB
0.50aA
Granule size (␮m)
8.61
8.08
8.67
8.00
8.66
±
±
±
±
±
5.32aA
2.77aA
2.39aA
3.01aA
4.12aA
Water holding capacity (%)
34.90
36.21
46.13
38.80
56.15
±
±
±
±
±
Emulsion activity (%)
3.31aA
1.17aA
3.12bB
3.48bB
4.20aA
54.44
66.45
65.71
66.30
68.62
±
±
±
±
±
1.92aA
0.79bB
1.37cbB
1.72cbC
1.53bB
Emulsion stability (%)
41.60
42.89
42.72
41.78
42.99
±
±
±
±
±
1.75aA
2.06aA
1.62aA
1.28aA
4.05aA
Mean values followed by different letters in the same row indicate significant difference (p < 0.05). Lowercase letters indicate significant difference in hydrolysis times while
uppercase letters indicate significant difference in acid concentration.
Table 4
Textural profile of native and acid thinned sweet potato starch.
Samples
Hardness (kg)
NS
CTS1
CTS2
CTS3
CTS4
1.64
1.11
0.56
0.28
0.27
±
±
±
±
±
0.07aA
0.10bB
0.32cB
0.02bC
0.00bB
Adhesiveness (kg/s)
0.05
0.01
0.00
0.08
0.02
±
±
±
±
±
0.01aA
0.00bB
0.00bB
0.01bA
0.00aB
Springiness
0.74
0.77
0.65
0.76
0.82
±
±
±
±
±
Cohesiveness
0.01aAB
0.11aA
0.04aB
0.02aA
0.07aA
0.49
0.71
0.49
0.49
0.61
±
±
±
±
±
0.05aA
0.13aB
0.11aA
0.00aA
0.00bA
Chewiness
0.40
0.39
0.16
0.10
0.13
±
±
±
±
±
0.11aA
0.00aA
0.07bB
0.00bB
0.01bB
Gumminess
0.54
0.63
0.23
0.14
0.16
±
±
±
±
±
0.14aA
0.04aA
0.09bB
0.01bB
0.00bB
Mean values followed by different letters in the same row indicate significant difference (p < 0.05). Lowercase letters indicate significant difference in hydrolysis times while
uppercase letters indicate significant difference in acid concentrations.
melting point of the starch granule [36]. Acid treatment of sweet
potato starch might result in the formation of shorter amylopectin
chains with less stable crystalline structure consequently facilitating a lower melting point and clear point [37]. Thys, Aires, Marczak,
and Norena [6] noticed a melting point of 46 ◦ C for acid treated pinhao starch. All the treated starches had shown a clear point around
60 ◦ C however the clear point was not displayed by native starch
even at 80 ◦ C and it might be above 80 ◦ C. Native starch resisted
the gel thermo-reversibility. Conversely, acid-thinned sweet potato
starches displayed gel thermo-reversibility which implies acid
treatment of starch caused partial hydrolysis of starch chains,
resulting in lower paste viscosity. However, when the paste cools
down, acid-thinned starch chains tend to associate with each other
more easily, forming a thermo-reversible gel [38]. Similar fashion
of gel thermo-reversibility was registered in the previous study [6]
for pinhao and corn starches.
4.1.7. In vitro digestibility
Table 2 displays the in vitro digestibility of NS and CTS which
was measured by glucoamylase. The in vitro digestibility of NS was
about 63.27% and it was in the range with the previous report on
sweet potato starch (28.3–67.2%) [38]. The digestibility rate of the
CTS4 sample was significantly increased up to 78.54%. In view of
the fact that acid hydrolysis preferentially attacks the amorphous
area in the starch granule, the crystallites were decoupled from
the amorphous parts consequently, unlocked amorphous regions
would be more sensitive to the enzyme attack and prone to rapid
hydrolysis on the external glucose residues of amylose or amylopectin. In the report of Shi et al. [39] HylonV starch, normal maize
starch and waxy maize starch samples when subjected to acid treatment resulted in less resistant to ␣-amylase digestion. After acid
hydrolysis of the starches, the amorphous structure of the starches
was hydrolyzed, so that the density of the residual amorphous
structure of the starches decreased. However, as the specific surface area increased, starches were easily reacted with the enzymes
and as a result the hydrolysis rate of starch samples was greater
than native starch. This higher digestibility of citric acid treated
starches would be beneficial for its role as a fat replacer since FDA
[11] recommended that a fat replacer to be partially or completely
digestible.
5. Functional properties
5.1. Water holding capacity (WHC)
WHC of NS was 34.90%. A significant difference was observed
in the WHC among the starches (Table 3). The highest and lowest water holding capacity was detected in CTS4 starch and CTS1
starches respectively. WHC was directly proportional to the acid
concentration and as well as hydrolysis time. High acid concentration probably increased the low molecular weight starch fraction
with hydroxyl groups which may hold water molecules forming
hydrogen bonds consequently increasing the WHC. This high water
holding capacity of citric acid treated starch (CTS4) may find a significant role as a fat replacer.
5.2. Emulsion activity and emulsion stability
Acid thinned starch, CTS4 exhibited a higher emulsion activity
and emulsion stability compared to native starch (Table 3). Starch
(CTS4) with higher amylose found to exhibit superior emulsion
properties. The present study revealed that higher amount of linear amylose fraction would contribute to emulsion activity. The
high amylose starch might function as the interface between oil and
water during which linear amylose chains of starch granules were
more favored in stabilizing the emulsion system than branched
amylopectin chains. The linear amylose fractions could be capable
of film formation that enhances the emulsion capacity and stability of the starch [40]. No significant difference in emulsion stability
was noticed among the starches.
6. Texture analysis
The texture profile analysis of NS and CTS samples is shown
in Table 4. The gel strength of NS was 1.644 kg and acid modified
starches ranged from 0.27 kg to 1.11 kg. The gel formed from NS
was harder than CTS samples due to the degree of long chains in
sweet potato native starch which contributed to its firmer gel. The
lesser gel strength of the acid-thinned sweet potato starch might
be attributed to a higher degree of short chains due to acid hydrolysis [41]. Wang and Wang [41] reported that gel strength (GS) of
0.30, 0.48 and 0.09 kg for acid thinned corn, potato and rice starches
respectively.
E-22
562
A. Surendra Babu et al. / International Journal of Biological Macromolecules 80 (2015) 557–565
Table 5
Pasting properties of native and acid thinned sweet potato starch.
Sample
Peak viscosity (cP)
NS
CTS1
CTS2
CTS3
CTS4
6338.00
6097.00
4812.00
4736.33
4655.33
±
±
±
±
±
340.54 aA
128.31 aA
79.30bB
113.95bB
190.11bB
Trough viscosity (cP)
3288.00
3027.00
1971.66
2248.66
1738.33
±
±
±
±
±
189.59aA
62.69aA
55.94bB
84.31bB
144.36cB
Break down (cP)
3050.00
3070.00
2840.33
2487.66
2917.00
±
±
±
±
±
186.34aA
77.11 aA
83.18aA
34.50aA
53.45 aA
Final viscosity (cP)
4290.66
4087.33
3028.66
3190.66
2683.66
±
±
±
±
±
168.35aA
75.79 aA
83.57 bB
120.35 bB
189.95cB
Set back (cP)
1002.66
1060.33
1057.00
942.00
945.33
±
±
±
±
±
Peak time (min)
24.68abA
48.67aA
29.05 bA
41.60aA
45.65aA
4.00
3.93
3.82
3.91
3.80
±
±
±
±
±
0.07 aA
0.00 aA
0.04bB
0.03aA
0.07aAB
Peak temperature (◦ C)
70.81
71.00
71.51
70.76
70.73
±
±
±
±
±
0.49aA
0.82aA
0.49 aA
0.40aA
0.37aA
Mean values followed by different letters in the same row indicate significant difference (p < 0.05). Lowercase letters indicate significant difference in hydrolysis times while
uppercase letters indicate significant difference in acid concentrations.
A similar significant decrease in the hardness of chick pea starch
gel upon acid treatment was reported by Sodhi, Chang, Midha, and
Kohyama [42]. Springiness represents the ability of a gel to recover
its original shape/height after a deforming force is removed [43]. No
significant change in the springiness was noticed due to hydrolysis
time. Adhesiveness is the ability of the gel sample to become sticky
[44]. It is a surface characteristic which depends on a combined
effect of adhesive and cohesive forces, viscosity, and viscoelasticity of the sample [45]. Adhesiveness of NS and CTS was ranged
between 0.00 g/s and 0.08 g/s. Starch with high amylose content
was observed to have lower adhesiveness [46]. Cohesiveness is how
well a sample withstands a second deformation related to how it
behaved under the first deformation [47]. Cohesiveness indicates
how good the sample retains its structure after the first compression. Cohesiveness of starch samples was ranged from 0.49 to 0.71.
Gumminess is the product of hardness and cohesiveness, a characteristic of semi-solid foods which have a low degree of hardness and
a high degree of cohesiveness [47]. NS displayed a higher chewiness
compared to the CTS samples while CTS1 showed a higher gumminess than NS. The difference in textural properties of all sample
gels was influenced by rigidity in gelatinized starch, amylose content as well as interaction between the dispensed and continuous
phase of the gel, which in turn was dependent on the amylose and
amylopectin structure [48].
7. Pasting properties
Table 5 reveals a significant influence of acid concentration
and reaction time on RVA of the acid thinned sweet potato starch.
RVA results of the acid thinned starches confirmed a low PV
ranging from 4655.33 cP to 6097.00 cP compared to native starch
(6338.00 cP). Results showed that the PV decreased with increase
in acid concentration and reaction time. Similar fashion of change
was reported in the literature [28,49]. CTS1 presented a viscosity
profile higher than their counterparts, although substantially lower
than the native starch. The lower PV of acid modified starches
could be due to considerable breakdown of amorphous regions
and the production of low molecular weight dextrins [50]. TV
and BD values of CTS samples also displayed the same decreasing
trend. The increased degree of amylose recrystallization by acid
thinning might be due to the change in BD [51]. Acid thinned sweet
potato starches displayed a lower FV ranging between 3028.66 and
4087.33 cP against 4290.66 cP for sweet potato native starch. Han,
Campanella, Mix, and Hamaker [52] reported that acid hydrolysis
resulted a considerable lyses of glycoside linkages of the long
amylopectin chains, which apparently caused the fall in FV. SB
is a measure of recrystallization of gelatinized starch. CTS1 and
CTS2 registered a higher SB than NS indicating that these starches
got a higher retrogradation tendency than NS. The low SB of the
rest of the acid-thinned starches was likely due to in sufficient
time for the starch molecules to rearrange themselves during the
stipulated period [53]. Native starch took more time (4 min) to
reach its PV than acid thinned starches. Hydrolysis time and acid
concentration basically did not affect the PT of sweet potato starch
in native form and acid modified form, however with the increase
Table 6
Thermal properties of native and acid-treated sweet potato starch.
Gelatinization temperature (◦ C)
Sample
To
NS
CTS1
CTS2
CTS3
CTS4
42.31
35.81
35.35
35.97
39.44
Tp
±
±
±
±
±
2.12aA
1.61bB
0.83bB
1.00bB
1.50aA
81.25
83.58
81.56
83.75
86.75
H (J/g)
Tc
±
±
±
±
±
0.66 aA
2.50aA
1.77aA
0.03cA
0.25bB
116.12
120.10
119.43
116.77
122.69
±
±
±
±
±
2.01 aA
2.85aA
2.06aAB
2.04aA
2.33bB
12.96
12.74
12.13
12.69
11.95
±
±
±
±
±
0.05aA
0.03aA
0.80aA
1.29aA
1.31aA
To, Tp and Tc stand for onset, peak, and conclusion temperatures respectively. H
(J/g) indicates enthalpy. Mean values followed by different letters in the same row
indicate significant difference (p < 0.05). Lowercase letters indicate significant difference in hydrolysis times while uppercase letters indicate significant difference in
acid concentrations.
in acid concentration and hydrolysis time, mild changes in pasting
parameters were noticed. A similar decrease in pasting profile was
observed upon acid treatment of corn by Singh, Sodhi, and Singh
[50] in acid thinned sorghum starch.
8. Thermal analysis
Thermal properties of starches determined by the DSC are
represented in Table 6. Results showed variations in To, Tp, Tc temperatures and H among NS and CTS samples. NS had higher To
of 42.31 ◦ C while citric acid treated starches showed a decreased
trend. This was in agreement with the result reported for acid modified maize starch which showed a decreased To value [54]. The Tp
and Tc of native starch were 81.25 ◦ C and 116.12 ◦ C respectively,
conversely the acid modified starches displayed a higher Tp and Tc
temperatures. However, this trend was more pronounced in case of
CTS4. This specifies that a higher degree of hydrolysis might occur
in CTS4 at amorphous region, thus resulting in an increase in relative crystallinity and subsequently an increase in the gelatinization
temperature. Similar results were reported for acid modified potato
starch [40] and sweet potato starch [55]. The H of NS was 12.96 J/g,
on the other hand H of acid modified starches was lower than
their counterpart. Enthalpy of the citric acid treated starches ranged
between 11.95 and 12.74 J/g. CTS4 starch showed a lower enthalpy
compared to all other modified starches. The decrease in H was
the result of citrate substitution that altered the chain packing and
generated more amorphous region [56]. H gives an overall measure of crystallinity and is an indicator of the loss of molecular order
within the granule during gelatinization [57]. The increase in citric
acid concentration and treatment time decreased the enthalpy that
might be due to greater loss of ordered structure of starch
9. Rheological analysis
Shear rate versus shear stress plot at 85 ◦ C was well fitted to
the power law model (Eq. (1)) with determination coefficients (R2 )
ranging from 0.97 to 0.99, represented in Table 7. Native and acid
modified starches displayed the values of flow behavior indexes
(n) less than 1 indicating a shear-thinning behavior. NS showed a
E-23
African Journal of Pure and Applied Chemistry Vol. 5(9), pp. 307-315, 9 September, 2011
Available online at http://www.academicjournals.org/AJPAC
ISSN 1996 – 0840 ©2011 Academic Journals
Full Length Research Paper
Effect of acid hydrolysis on the physicochemical
properties of cola starch
Omojola M. O.1*, Manu N.1 and Thomas S. A.2
1
Raw Materials Research and Development Council PMB 232, Garki Abuja, Nigeria.
Sheda Science and Technology Complex, Federal Ministry of Science and Technology, Sheda Abuja, Nigeria.
2
Accepted 22 July, 2011
Cola starch from Cola nitida (rubra) was isolated using 1% (w/v) sodium metabisulphite solution and
was treated with 0.1 and 0.2 M HCl solution differently at 80 and 100°C, pH (6 to 7.9) and reaction time
(30 min to 3 h). The physicochemical and functional properties of the hydrolyzed starch were studied.
The hydrolysis reaction presented important changes in the pasting, thermal transition and morphology
of the native starch. Reaction time, temperature and concentration of the acid were observed to
influence the reactions. The acid modified starch has the following properties; swelling 6.13 to 7.21%
solubility 14.83 to 16.65% and amylose content 17.28 to 21.69%, while the corresponding values for the
native cola starch were swelling 8.85%, solubility 7.48% and amylose 24.76%. The rapid visco analysis
(RVA) of the acid modified starch demonstrated low peak viscosity ranging from 52.71 to 197.22 as
against 314.42 reported for the native starch. Breakdown viscosity and the setback values also
exhibited the same decreasing trend; 30.24 to 73.17 and 10.18 to 34.91 respectively, as against that of
native cola starch that has a breakdown and setback viscosity of 179.25 and 74.42 respectively. The
observed trends are consistent with other modified starches that have found useful applications in
pharmaceutical, food and confectionary industries.
Key words: Cola, native starch, acid modified (thinned) starch, hydrolysis, composition.
INTRODUCTION
Native (unmodified) starches have different functional
properties depending on the crop source and are
considered a primary resource that can be processed into
a range of starch products. The limited application of
native starches is due to low shear resistance, thermal
resistance, thermal decomposition and high tendency
towards retro gradation, high syneresis, extreme
processing conditions such as pH, temperature etc.,
(Cousidine, 1982). The limitations experienced from
native starch may be overcome by various modifications,
Jacobs and Delcour (1998). The basis of starch
modification lies in the improvement of its functional
properties by changing the physical and chemical
properties of such native starch (Ortoefer, 1984).
Starch modification which involves the alteration of the
physical and chemical characteristics of the native starch
can be used to improve its functional characteristic
thereby tailoring it to specific applications (Hermansson
and Svegmark, 1996). It is generally achieved through
derivatization such as etherification, esterification, cross
linking and grafting of starch, acid or enzymatic
hydrolysis, oxidation or physical treatment of starch using
heat or moisture. The modified starches generally show
better paste clarity, better stability, increased resistance
to retro gradation and increased freeze- thaw stability
(Zheng et al., 1999).
Recently, cola starch was isolated from Cola nitida
(rubra spp) and characterized in our laboratory, (Omojola
et al., 2010). Its physicochemical characterization
showed high industrial potentials in the pharmaceutical,
food and confectionary industries. The present study is to
modify the starch through acid hydrolysis, evaluate its
physicochemical properties, compared with that of the
native starch and other acid thinned starches and
suggest possible industrial applications.
MATERIALS AND METHODS
*Corresponding author. E-mail: [email protected].
C. nitida (rubra) were procured directly from the farm source in
E-24
Omojola et al.
309
Plate 1. Photomicrograph of native cola starch.
Plate 2. Photomicrograph of acid thinned cola starch (0.1 M HCl, 100°C 1 h).
morphological alterations. This is similar to the reported
thermal behavior of corn starch modified by acid
treatment (Bennica et al., 2008).
Acid hydrolysis
The results of the acid hydrolysis of the native cola starch
using 0.1 and 0.2 M HCl at 80, 100°C at different heating
times from 30 min to 3 h are as shown in Tables 1 to 4
respectively. The results show that heating temperature,
time and acid concentration affected the extent of
hydrolysis or starch recovery. Any increase in the
aforementioned parameter increases the extent of starch
hydrolysis. This trend is similar to the results obtained in
the acid modification of cassava starch (Ahmed et al.,
2003) on prolonged treatment. Acid will attack both the
amorphous and crystalline regions of the starch granule
E-25
310
Afr. J. Pure. Appl. Chem.
Plate 3. Photomicrograph of acid thinned cola starch (0.2 M HCl, 80°C 1h).
Plate 4. Photomicrograph of acid thinned cola starch (0.2 M HCl, 100°C 1 h).
to obtain water soluble molecules.
Swelling and solubility
The percent swelling and solubility profiles of the native
cola and acid thinned starches are shown in Table 5. It
can be seen that the swelling profile of acid thinned
starch is lower than that of the native starch. This may be
related to the changes in the surface characteristics of
starch granules. At higher temperature, starch appears to
lose its granular structure faster resulting in a low
E-26
Omojola et al.
311
Plate 5. Photomicrograph of acid thinned cola starch (0.1 M HCl, 80°C 3 h).
Plate 6. Photomicrograph of acid thinned cola starch (0.2 M HCl, 100°C 3 h).
swelling capacity (Chang et al., 1995). Acid thinned
starches are more soluble than native starches. The
increase in solubility values may be due to shortening of
the chain lengths of the starch, corresponding to the
weakening of the hydrogen bonds (Osunsami et al.,
1989), or due to the increasing hydroxyl groups (Aiyeleye
E-27
312
Afr. J. Pure. Appl. Chem.
Table 1. Acid hydrolysis of the native cola starch using 0.1 M HCl at 80°C.
Parameter
Extent of hydrolysis (%)
Starch recovery (%)
Final weight of starch (g)
Moisture content (%)
pH
Final colour of starch
30 min
15.00± 0.05
85.00 ± 0.05
8.5
9.14± 0.01
7.2
Off- white
Heating period
1h
2h
21 ± 0.00
24.99± 0.05
79.00± 0.00
75.01± 0.05
7.9
7.5
9.25± 0.00
9.45± 0.01
6.6
6.2
Off- white
Off- white
3h
29.97±0.03
70.03±0.03
7.0
10.32±0.00
6.0
Off- white
Table 2. Acid hydrolysis of the native cola starch using 0.1 M HCl at 100°C.
Parameter
Extent of hydrolysis (%)
Starch recovery (%)
Final weight of starch (g)
Moisture content
pH
Final colour of starch
30 min
16.00± 0.00
84.00± 0.00
8.4
9.25± 0.01
7.5
Off- white
Heating period
1h
2h
20.00±0.05
25.58±0.15
80.00±0.05
74.42±0.15
8.0
7.42
9.34± 0.01
9.66± 0.00
7.5
6.9
Off- white
Off- white
3h
29.98±0.04
70.02±0.04
7.0
9.86± 0.02
6.2
Off- white
Table 3. Acid hydrolysis of the native cola starch using 0.2 M HCl at 80°C.
Parameter
Extent of hydrolysis (%)
Starch recovery (%)
Final weight of starch (g)
Moisture content
pH
Final colour of starch
Heating period
30 min
20.00± 0.01
80.00± 0.01
8.0
9.18± 0.01
7.3
Off- white
1h
25.98± 0.04
74.04± 0.04
7.9
9.23± 0.00
7.3
Off- white
2h
30.00± 0.00
70.00± 0.00
7.5
9.44± 0.02
6.9
Off- white
3h
32.95± 0.15
67.05± 0.15
7.0
9.62± 0.02
6.4
Off- white
Table 4. Acid hydrolysis of the native cola starch using 0.2 M HCl at 100°C.
Parameter
Extent of hydrolysis (%)
Starch recovery (%)
Final weight of starch (g)
Moisture content
pH
Final colour of starch
30 min
21.02± 0.05
78.98± 0.05
7.9
9.19± 0.02
7.4
Off- white
et al., 1983). It has also been reported that the high
solubility of acid modified starch with increasing
temperature may be due to the loss of granular structure
and release of amylose fraction of the starch, as the
amylose molecules are preferentially solubilized and
leached from swollen granules (Stone et al., 1984).
Heating period
1h
2h
25.00± 0.01
30.00± 0.00
75.00± 0.01
70.00± 0.00
7.5
7.0
9.23± 0.01
9.34± 0.02
7.3
6.8
Off- white
Off- white
3h
35.00± 0.00
65.00± 0.00
6.5
9.45± 0.00
6.0
Off- white
Amylose/ amylopectin contents of acid thinned
starch
The percent amylose/ amylopectin contents of acid
thinned starch as presented in Table 6 shows the effect
of reaction time on the amylase content of acid thinned
E-28
Omojola et al.
313
Table 5. Percent swelling power and solubility of acid thinned cola starch.
Starch properties
Native cola starch
0.1 M HCl, 80°C, 1 h
0.1 M HCl, 80°C, 3 h
0.1M HCl, 100°C, 1 h
0.1M HCl, 100°C, 3 h
% Swelling
8.85
7.21±0.02
6.47±0.00
7.05±0.02
6.13±0.01
% Solubility
7.48±0.02
14.83±0.02
15.98±0.00
15.00±0.01
16.65±0.02
Table 6. Percent amylose/amylopectin contents of acid thinned cola starch at different acid concentrations, reaction time and
temperatures.
Acid concentration
0.1 M HCl
0.1 M HCl
0.1 M HCl
0.1 M HCl
0.1 M HCl
0.1 M HCl
0.1 M HCl
0.1 M HCl
0.2 M HCl
0.2 M HCl
0.2 M HCl
0.2 M HCl
0.2 M HCl
0.2 M HCl
0.2 M HCl
0.2 M HCl
Temperature of heating (°C)
80
80
80
80
100
100
100
100
80
80
80
80
100
100
100
100
Heating period
30 min
1h
2h
3h
30 min
1h
2h
3h
30 min
1h
2h
3h
30 min
1h
2h
3h
% Amylose
21.69±0.03
20.18±0.04
20.09±0.00
19.66±0.02
21.56± 0.03
20.15±0.00
20.10±0.00
19.35±0.01
21.46±0.01
20.04±0.00
20.03±0.04
17.82±0.00
20.88±0.02
19.99±0.00
18.14± 0.02
17.28±0.03
% Amylopectin
78.31±0.03
79.82±0.04
79.91±0.00
80.34±0.02
78.44 ±0.03
79.85±0.00
79.90±0.00
80.65±0.01
78.54±0.01
79.96±0.00
79.97±0.04
82.18±0.00
79.12±0.02
80.01±0.00
81.86±0.02
82.72± 0.03
N/B: The percent amylose/ amylopectin of native cola starch = 24.76/ 75.24.
starch. The amylose content of acid modified starch is
lower than the unmodified one. This is in line with earlier
reported work on tapioca and corn starches (Napporn et
al., 2001; Ya-June et al., 2003). The decreasing trend in
the amylose content of the acid thinned starch as the
reaction time increases corresponds to different
concentrations of the HCl used and for the different
heating temperatures.
30.24 to 73.17 as compared to 179.25 for the native one.
The value decreases as the reaction time increases. The
final viscosity showed a reduction from 209.58 for the
native starch to 21.18 to 157.93 for the acid thinned
starch. It also shows a decreasing trend as the reaction
time increases. The setback viscosity which is lower than
that of native starch suggests that such starch may find
application in the food industry.
Pasting properties
Gelatinization properties
Table 7 shows the comparative RVA of the acid thinned
and native cola starches. The peak viscosity of the acid
thinned ranged from 52.71 to 197.32 and is lower than
that of native cola starch of 314.42. The table also shows
that the peak viscosity decreases as the reaction time
increases. Similar trends have earlier been reported for
tapioca starch (Napporn et al., 2001). The low peak
viscosity suggests that it can be used in forming gels in
gums and jellies. The breakdown viscosity ranged from
The data obtained for the DSC thermo gram of the acid
thinned starch is as shown in Table 8. The results
showed variations in the onset, peak and gelatinization
temperatures, of both the acid thinned and native cola
starches.
Native starch has onset temperature (To) as 85.5°C
and a peak temperature (Tp) of 318.1°C, while the 0.1 M
HCI, 80°C, 3 h hydrolyzed cola starch, recorded (TO) of
37.7°C, with a (Tp) of 252.9°C and 0.2 M HCI, 100°C, 1 h
E-29
314
Afr. J. Pure. Appl. Chem.
Table 7. Pasting properties (RVA) of acid thinned cola starch at different acid concentrations, heating periods and temperatures.
Profile of the starch
Native cola starch
0.1 M HCl, 80°C 1 h
0.1 M HCl, 80°C 2 h
0.1 M HCl, 80°C 3 h
0.1 M HCl, 100°C 1 h
0.1M HCl, 100°C 2 h
0.1 M HCl, 100°C 3 h
0.2 M HCl, 80°C 30 min
0.2 M HCl, 80°C 1 h
0.2 M HCl, 80°C 2 h
0.2 M HCl, 80°C 3 h
0.2 M HCl, 100°C 30 min
0.2 M HCl, 100°C 1 h
0.2 M HCl, 100°C 2 h
0.2 M HCl, 100°C 3 h
Peak visc.
Trough
visc.
Breakdown
visc.
Final visc.
Set back
Peak time
314. 42
115.51±0.00
114.16±0.01
60.50±0.00
82.23±0.00
62.84±0.03
61.91±0.02
197.32±0.03
82.31±0.03
79.84±0.02
56.82±0.03
182.83±0.00
85.63±0.03
74.81±0.03
52.71±0.03
135.17
69.08±0.00
69.58±0.03
30.09±0.01
33.91±0.02
16.69±0.02
31.67±0.00
124.16±0.00
19.72±0.00
33.67±0.00
21.40±0.00
116.34±0.00
19.97±0.00
30.11±0.01
21±0.00
179.25
46.42±0.00
44.58±0.04
30.42±0.01
48.33±0.02
46.15±0.04
30.24±0.02
73.17±0.02
62.60±0.02
46.17±0.01
35.41±0.01
65.67±0.00
65.67±0.00
44.70±0.01
31.53±0.04
209.58
96.40±0.02
91.65±0.04
43.51±0.00
48.18±0.03
46.91±0.02
41.33±0.00
157.93±0.02
49.93±0.02
46.78±0.02
34.34±0.02
151.27±0.03
30.32±0.03
23.91±0.00
21.18±0.04
74.42
25.48±0.04
23.93±0.03
13.44±0.00
13.66±0.01
10.67±0.01
10.24±0.03
33.74±0.02
10.18±0.02
12.93±0.02
12.71±0.02
34.91±0.01
10.33±0.01
10.03±0.03
9.71±0.02
4.80
4.27
4.27
4.20
4.20
4.13
4.13
4.27
4.13
4.22
4.27
4.27
4.20
4.13
4.13
Pasting
temp.
74.50
85.60
85.75
85.80
84.65
84.70
84.70
84.88
85.85
85.90
85.90
84.05
84.80
85.80
85.80
Table 8. Gelatinization properties of acid thinned cola starch.
Starch properties
Native starch
0.1 M HCl, 3 h
0.2 M HCl, 1 h
Glass transition
temp. (°C)
301
37.7
42.4
Peak temp. Tp
(°C)
321.1
252.9
226.9
Endset temp. (°C)
H (Tc-To)
340
66.5
66.7
39
28.8
24.3
Pasting temp. (°C)
74
65.80
64.70
syrups, jellies and gum products. They can also be
employed as stabilizers in sausages and dressings.
hydrolyzed cola starch has (TO) of 42.4°C and (Tp) of
226.9°C. The gelatinization temperature of the native cola
starch was recorded as 74.00°C, while that of the acid
treated starch ranged between 64.70 to 65.80°C. The
lower gelatinization properties observed for the acid
thinned starches may be due to the weakening of the
hydrogen bond during acid hydrolysis. The formation of
new chemical group in starch granule and depolymerization of starch granules result in the lowering of
transition temperature.
The second author wishes to thank the management of
the Raw Materials Research and Development Council,
Abuja. Nigeria for the provision of the research grant to
execute this work.
Conclusion
REFERENCES
Acid
hydrolysis
of
cola
starch
affected
its
physicochemical, thermal and morphological properties.
The extent of modification depends on the acid
concentration, reaction time and temperature. Acid
hydrolysis increased starch solubility and lowers its
swelling capacity. It also resulted in lower peak, set back
and breakdown viscosities than was reported for the
native starch. The lower peak viscosity which may be
related to increasing crystallinity suggests that such
starch could be employed as tablet filler in the
pharmaceutical industry. Acid thinned starches may also
be utilized in the candy industry in the manufacture of
Ahmed AS, Igbo UE, Igwe CC (2003). Evaluation of the
physicochemical properties of acid thinned cassava starch. Nigerian
Food J., 23: 85-88.
Aiyeleye FB, Akingbala JO, Oguntimein GD (1983). Chemical factors
affecting acetylation of cassava starch. Starch, 45: 443-445
Bennica C, Demiate IM, Lacerda LG ,Carvalho F ,Lonashiro M,
Schnittzer E (2008); Thermal behavior of corn starch granules
modified by acid treatment. Ecletica Quimica., 23(3): 13-18.
Chang YL, Shao YY, Tseng KH (1995). Gelation mechanism and
rheological properties of rice starch. Cereal Chem., 74(4): 339.
Cousidine DM (1982). Foods and food production encyclopedia. John
Wiley Inc., p. 142.
Hermansson AM, Svegmark K (1996). Developments in the
understanding of starch functionality. Trends Food Sci. Technol., 7:
354-363.
ACKNOWLEDGEMENT
E-30
International Food Research Journal 24(Suppl): 265-273 (December 2017)
Journal homepage: http://www.ifrj.upm.edu.my
Mini review
A review on acid and enzymatic hydrolyses of sago starch
Azmi, A.S., Malek, M.I.A. and *Puad, N.I.M.
Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic
University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia
Article history
Abstract
Received: 17 May 2017
Received in revised form:
10 June 2017
Accepted: 10 July 2017
This paper reviews reported studies on the hydrolysis of starch especially sago via acid and
enzyme. The review begins with overview of sago palm and the starch industry, followed by
process of extracting the starch from sago pith. Physicochemical properties of sago starch
were tabulated for better understanding of hydrolysis process. Factors or process condition
influencing hydrolysis process is discussed based on results from previous researches.
Advantages and disadvantages of each hydrolysis is also discussed. Generally, there are very
few researches dedicated on sago starch as compared to other starches. It can be concluded that,
enzyme hydrolysis gives higher yield at milder process conditions. However, the reaction rate
of enzyme hydrolysis is still low compared to acid hydrolysis.
Keywords
Sago starch
Acid hydrolysis
Enzymatic hydrolysis
Introduction
In Malaysia, sago palm (Metroxylon spp.) is
widely planted especially in Sarawak and Johor. Sago
industry is so well established here in the Eastern
state of Malaysia which lead to their contribution
towards economic revenue with 25,000-40,000
tons of sago products being produced annually
(Singhal et al., 2008). The starch is processed for
direct food consumption, pharmaceutical product
and fermentable sugar for others different products
through bioconversion. One of the processes involved
is hydrolysis. Hence, the objective of this paper is to
review previous studies on sago starch, specifically
starch hydrolysis. This paper focuses on the two
techniques to hydrolyze starch, which are acid and
enzymatic hydrolyses. Both techniques have their
own advantages and disadvantages that need to be
considered before choosing the suitable method for
treating the starch for further applications.
Sago palm
Sago palm (Metroxylon sagu) is a type of plant
native to countries in tropical southeastern Asia such
as Malaysia, Indonesia, Papua New Guinea and
Thailand. Since ancient time, it acts as an important
source of carbohydrate to the native population.
Locally known as ‘rumbia’, Melanau communities
in Sarawak consume starch obtained from sago palm
as their staple food source (Mohamad Naim et al.,
2016).
*Corresponding author.
Email: [email protected]
© All Rights Reserved
Many scientists consider sago palm as the ‘starch
crop of the 21st century’ (Singhal et al., 2008). This
is due to many characteristics that makes it a quite
remarkable plant. Firstly, sago is an extremely
resistant plant that able to survive in swampy, acidic
peat soil (Chew et al., 1999). Furthermore, the palm
is immune to floods, drought, fire and strong winds.
Sago forest also acts as an excellent carbon sink which
helps in mitigating the greenhouse effect and global
warming arising from the release of carbon dioxide
into the atmosphere. Second special characteristic is
that it does not need replanting since the plant itself
continually produce suckers which in turn grow into
adult palm. This consequently eliminates the need for
recurring expensive establishment costs after every
harvest of the adult palm. Thirdly, among starchproducing crops, sago palm gives the highest yield
of starch with potentially up to 25 tons of starch per
hectare per year. In term of per unit area, the yield
could be about 3 to 4 times higher than that of rice,
corn, or wheat, and about 17 times higher than that
of cassava (Karim et al., 2008). In short, in this age
of concern for the environment and economy, sago
is the crop par excellence for sustainable agriculture
and profitability.
Sago starch industry
Sago palm is an important commercial tropical
crop in Malaysia. Sarawak is the state in Malaysia
where the trees are planted in abundance with 67,957
hectares of land (Mohamad Naim et al., 2016)
E-31
Azmi et al./IFRJ 24(Suppl): S265-S273
269
Table 3 Summary of studies on acid hydrolysis of starch
NR = Not Reported
the factors are; type of starch, starch or substrate
concentration and viscosity, enzyme concentration,
temperature, pH, reaction duration, agitation rate,
and starch pretreatment.
Types of starch influence the degree of hydrolysis
and the reducing sugar produced. Uthumporn et al.
(2010) studied on hydrolysis of granular starch at
sub-gelatinization temperature of 35oC for 24 h
using mixture of alpha-amylase and glucoamylase.
They observed that sago has the highest resistance to
enzymatic degradation compared to corn, mung bean
and cassava starches. This is due to the presence of
pores on starch surfaces which are likely to become
center of enzymatic attack. Uthumporn et al. (2010)
study was also consistent with other studies from
O’Brien and Wang (2008), Wang et al. (1996), Zhang
and Oates (1999), Regy and Padmaja (2013).
Substrate concentration and viscosity is related
to one another and therefore they are discussed
together here. Firstly, substrate concentration is the
amount of substrate per total solution while viscosity
is a property of fluid that indicates resistance to
flow. Generally, increasing the concentration of a
dissolved or dispersed substance will lead to increase
in viscosity. Starch is a source for thickening agent
or thickener which functions to increase the viscosity
of a liquid without substantially changing its other
properties. Wee et al. (2011) reported the effect of
high substrate concentration towards the yield of
reducing sugar after hydrolysis using glucoamylase.
It was concluded that as the substrate concentration
keep increasing, yield of reducing sugar will decrease
due to high viscosity of starch solution that resulted
in the poor mixing of samples. Furthermore, Uribe
and Sampedro (2003) stated that solvent viscosity
results in friction against proteins in solution, and
this should result in decreased motion, as well as
inhibiting catalysis.
Enzyme concentration is the amount of enzyme
used per total solvent, and it is an important parameter
to look at. If enzyme concentration is too low,
reaction will take place at a slower rate and resulted
in the low yield. If enzyme concentration is too
high, it can lead to underutilized of the enzyme and
this situation should be avoided since commercial
enzymes are currently expensive. From the same
study as before, Wee et al. (2011) observed that a
higher yield of reducing sugar was obtained when
enzyme concentration increases but further increase
in concentration did not influence the yield. Hence, it
is clear that providing a proper amount of enzyme for
the reaction is very important.
On the other hand, most of the studies used
multiple enzymes which reflect the intended purpose
of the reaction (i.e. liquefaction or saccharification).
Hence, α-amylase and glucoamylase were the
main enzymes involved in most studies (Table 4).
Interestingly, pullulanase, a debranching enzyme,
has been utilized in some studies which serve to
prevent the reverse reaction of glucose condensation
catalyzed by glucoamylase (Findrik et al., 2010).
However, study conducted by Wee et al. (2011)
showed that by using only single enzyme which was
glucoamylase, an approximately 60% of sugar yield
from sago starch can be obtained.
Temperature is one of the crucial factors in the
enzymatic hydrolysis. This is because many enzymes
are adversely affected at the high temperatures and
are completely destroyed at 100°C. Besides, each
enzyme has its own optimum temperature for it to
work properly and become active. The activity of
an enzyme is decreased when the temperature of
E-32
270
Azmi et al./IFRJ 24(Suppl): S265-S273
Table 4 Summary of studies on enzymatic hydrolysis.
the reaction differed from its optimum temperature.
Amenaghawon et al. (2016) conducted a study
of enzymatic hydrolysis towards cocoyam starch
and found that the rate of hydrolysis was faster at
a higher temperature. Reaction at 80°C for 10 min
resulted in 72.06 g/L of reducing sugar while 75.22
g/L of reducing sugar was obtained when reacted at
temperature of 90°C for the same duration. Hence,
this means increasing the temperature of a system
will increase the number of collisions of enzyme and
E-33
Azmi et al./IFRJ 24(Suppl): S265-S273
substrate, thus increasing the rate of reaction.
The pH of a solution can have several effects
towards the structure and activity of enzymes. As
explained by Khanna (2010), the pH can have an
effect of the state of ionization of acidic or basic
amino acids. If the state of ionization of amino acids
in a protein is altered then the ionic bonds that help
to determine the 3D shape of the protein can be
changed. This can lead to altered protein recognition
or an enzyme might become inactive. Furthermore,
changes in pH may not only affect the shape of an
enzyme but it may also change the shape or charge
properties of the substrate so that either the substrate
cannot bind to the active site or it cannot undergo
catalysis. In general, enzyme has its own optimum pH
value and the value is not the same for each enzyme.
Reaction duration and agitation rate are related
to each other. Since enzyme action involves the
collision between the substrate and enzyme, agitation
will result in faster time needed to complete the
reaction. Mussatto et al. (2008) studied on the effect
of agitation speed, enzyme loading and substrate
concentration towards enzymatic hydrolysis of
cellulose. Later, it was found that agitation speed
did not significantly affect glucose yield. From
here, it can be concluded that the amount of glucose
yield does not depend so much on the agitation rate
since substrate concentration is the limiting factor.
However, agitation provides a proper mixing of the
reactants which ultimately shorten the time needed to
complete the reaction.
Sago starch have a low digestibility and they are
resistant to both microbial and enzyme digestions.
Granule size could be one of the factors that
contribute to this phenomenon and hence the need of
pretreatment comes to the fore. Pretreatment such
as annealing process (O’Brien and Wang, 2008),
autoclaving and microwave in water or dilute acid
(Sunarti et al., 2012), or mechanical pretreatment
such as crusher, viz juice mixer, homogenizer
and high speed planetary mill (Kumakura and
Kaetsu, 1983) influence the efficiency of enzymatic
hydrolysis process (Table 4) and plays important
role in preparing the starch for enzyme attack and
degradation.
Outlook
Sago palm is an important carbohydrate source
especially to tropical southeastern Asia. The trunk
is processed through several processes to obtain the
starch. The starch extraction and washing processes
resulted with solid and liquid residues which also
rich of starch for further process. The knowledge of
physicochemical properties of the starch is important
271
to effectively process the starch. In general, sago
starch granule has bigger size and is resistance to
enzyme degradation compared to other types of
starch. Furthermore the presence of pores on the
granule surface of other types of starch is susceptible
to enzyme attack. Thus, pretreatment sometimes is
required prior to hydrolysis process especially when
using enzyme.
Starch hydrolysis can be accomplished using
acid or enzyme. Not many researches are devoted to
sago starch as compared to other starches. Despite
of that, several physical factors have been studied to
maximize the production yield. Acid hydrolysis is a
simple method, easily available and cheap. However,
few drawbacks such as relatively low yield, high
process temperature and formation of undesirable
by­products shifted the option to enzyme. Enzyme is
highly selective and reaction specific produce less
unwanted byproduct, give higher yield to glucose at
milder process which requires less energy. However,
it gives low reaction rate and high sugar monomers
which create difficulty for separation and yet to be
economical production.
Acknowledgment
Sincere thanks to International Islamic University
Malaysia Research Initiative Grant (RIGS16-0890253).
References
Abd-Aziz, S. 2002. Sago starch and its utilisation. Journal
of Bioscience and Bioengineering 94(6): 526-529.
Abdorreza, M., Robal, M., Cheng, L., Tajul, A. and Karim,
A. 2012. Physicochemical, thermal, and rheological
properties of acid-hydrolyzed sago (Metroxylon sagu)
starch. LWT-Food Science and Technology 46(1):
135-141.
Ahmad, F.B., Williams, P.A., Doublier, J.-L., Durand, S. and
Buleon, A. 1999. Physico-chemical characterisation of
sago starch. Carbohydrate Polymers 38(4): 361-370.
Albani, J. R. 2007. Principles and applications of
fluorescence spectroscopy. Oxford, UK: Blackwell.
Amenaghawon, N., Osagie, E. and Ogbeide, S. 2016.
Optimisation of Combined Acid and Enzymatic
Hydrolysis of Cocoyam Starch to Produce Fermentable
Hydrolysate. Pertanika Journal of Science and
Technology 24(1): 123-136.
Awg-Adeni, D., Abd-Aziz, S., Bujang, K. and Hassan, M.
2010. Bioconversion of sago residue into value added
products. African Journal of Biotechnology 9(14):
2016-2021.
Awg-Adeni, D.S., Bujang, K., Hassan, M.A. and AbdAziz, S. 2012. Recovery of glucose from residual
starch of sago hampas for bioethanol production.
BioMed Research International 2013. http://dx.doi.
E-34
Food Rev. Int., 16(3), 369–392 (2000)
Downloaded by [University of Arizona] at 04:17 14 January 2013
ACID-TREATED STARCHES
R. HOOVER
Department of Biochemistry
Memorial University of Newfoundland
St. John’s, Newfoundland
Canada A1B 3X9
ABSTRACT
Acids such as HCl and H2SO4 cause scission of the glucosidic linkages,
thereby altering the structure and properties of the native starch. The
amorphous regions of the starch granule are more susceptible to acid
hydrolysis than the crystalline regions. This review summarizes the current knowledge on: (1) the extent of acid hydrolysis of starches from
different botanical origins; (2) the changes in molar mass, crystallinity,
viscosity, gel rigidity and gelatinization transition temperatures on acid
hydrolysis; (3) the effect of annealing, heat–moisture treatment, high
pressure, and amylose-complexed lipids on the rate and extent of acid
hydrolysis and; (4) the mechanism of acid hydrolysis in an alcoholic
media.
INTRODUCTION
Acid hydrolysis has been used to modify starch granule structure and produce ‘‘soluble starch’’ for many years (1). Nägeli (2) reported the treatment of native potato
starch in water with 15% H2SO4 for 30 days at room temperature. He obtained an
acid-resistant fraction that was readily soluble in hot water. This fraction has come
to be known as Nägeli amylodextrin and has been shown to be a mixture of lowmolecular-weight, linear, and branched dextrins, with an average degree of polymerization (DP) of 25–30. Subsequently, Lintner (3) described an acid modification of
native potato starch in which granules were treated in an aqueous suspension with
7.5% (w/v) HCl for 7 days at room temperature. The product was a high-molecular369
Copyright  2000 by Marcel Dekker, Inc.
www.dekker.com
E-35
ORDER
REPRINTS
Downloaded by [University of Arizona] at 04:17 14 January 2013
370
HOOVER
weight starch, which formed a clear solution in hot water. This is used as an indicator
in iodometric titration and for enzyme analysis. In industry, acid-modified starches
(maize, waxy maize, wheat, and cassava) are prepared by treating a starch slurry
(40%) with dilute HCl or H2SO4 at 25–55°C for various time periods. The conditions
used during acid hydrolysis are influenced by the ratio of the cold to hot paste viscosity and by the required gel texture. When the desired viscosity or fluidity is attained,
the starch slurry is neutralized, and the granules are recovered by washing, centrifugation, and drying.
Industrial uses of acid hydrolyzed starches are as follows: (a) as a premodification
step for the production of cationic and amphoteric starches (4); (b) as a warp sizing
agent to increase yarn strength and abrasion resistance in the weaving operation (4);
(c) for preparation of starch gum candies (4); (d) for manufacture of gypsum board
for dry wall construction (4); and (e) for paper and paperboard manufacture (4).
Recently, Chun et al. (5) have shown that rice amylodextrins prepared by hydrolyzing
rice starch in acidic (4% HCl) alcohol (70%) solutions at 78–80°C was readily solubilized with warm water (50°C). Emulsions prepared by replacing a portion of the
oil (used in the formulation of a mayonnaise-type emulsion) with rice amylodextrin,
exhibited small and uniform droplets and displayed high viscosity and stability. This
suggests that amylodextrins could be used as fat replacers (5).
This article summarizes the current knowledge on the susceptibility of native,
annealed, heat–moisture treated, lipid-complexed, and pressure-treated starches
(from different botanical origin) towards hydrolysis by acid, and on the structure
and properties of the residue left after acid hydrolysis. The last section deals with
the role of alcohols in acid hydrolysis.
MECHANISM OF ACID HYDROLYSIS
In acid hydrolysis, the hydroxonium ion (H3O⫹ ) carries out an electrophilic attack
on the oxygen atom of the α(1 → 4) glycosidic bond (Fig. 1a). In the next step, the
electrons in one of the carbon–oxygen bonds move onto the oxygen atom (Fig. 1b)
to generate an unstable, high-energy carbocation intermediate (Fig. 1c). The carbocation intermediate is a Lewis acid, so it subsequently reacts with water (Fig. 1d), a
Lewis base, leading to regeneration of a hydroxyl group (Fig. 1e).
SOLUBILIZATION PATTERNS OF STARCHES
The solubilization profiles of some cereal, tuber, and legume starches are presented
in Figures 2a and 2b. All starches exhibit a two-stage hydrolysis pattern. A relatively
fast hydrolysis rate during the first 8 days followed by a slower rate between 7 and
12 days has been reported for corn, waxy corn, high amylose corn, wheat, potato,
E-36
ORDER
REPRINTS
371
Downloaded by [University of Arizona] at 04:17 14 January 2013
ACID-TREATED STARCHES
Figure 1.
Mechanism of acid hydrolysis of starch.
oat, rice, waxy rice, smooth pea, lentil, wrinkled pea, adzuki bean, mung bean, and
red kidney bean (6–15). When the hydrolysis data (Fig. 2a) is plotted as log10 (100/
100–x) vs. time (days), the two-stage process is clearly evident (Fig. 2c). The faster
stage corresponds to the hydrolysis of the more amorphous parts of the starch granule. During the second stage, the crystalline material is slowly degraded (6, 16).
Evidence to suggest a preferential attack on amorphous domains within the granule
comes from transmission electron microscopy observations of acid hydrolyzed
E-37
COURSE BOOK OF
CHEMISTRY 2
(BIOCHEMISTRY)
Department of Biochemistry
Benha University, Agriculture College
PRACTICAL
E-38
PRACTICAL BIOCHEMISTRY
Course name
Practical Biochemistry
Teacher in charge
Ahmed Mahmoud Hassan Mohamed
Department/ College
Biochemistry / Agriculture
Contact
Ahmed Mahmoud / [email protected]
Course link at the University
Course overview: In two or three constructive paragraphs mention the importance and
the necessity of this course
Biochemistry can be defined as the science concerned with the chemical basis of life.
The cell is the structural unit of living system, thus biochemistry can also be described as the
science concerned with the chemical constituents of living cells and with the reactions and
processes they undergo. By this definition, biochemistry encompasses large areas of cell
biology, of molecular biology, and of molecular genetics.
Course objective: in two or three paragraphs mention the aims of the course and the
main points students should have learned by the end of the course.
We learn the students the general and specific tests for determine the normal
subjects of biochemistry also the abnormal one. That related with diseases.
E-39
Method:
• Add 2 drops of the α-naphthol solution (5% in ethanol, prepare
fresh) to 2 ml of test solution in a test tube.
• Carefully, pour about 1 ml of conc. H2SO4 down the side of the tube
so as to form two layers.
• Carefully observe any colour change at the junction of the two
liquids.
• Repeat the test, using water instead of the carbohydrate solution.
2. Fehling’s Test:
This forms the reduction test of carbohydrates. Fehling’s
solution contains blue alkaline cupric hydroxide solution, heated with
reducing sugars gets reduced to yellow or red cuprous oxide and is
precipitated. Hence, formation of the yellow or brownish-red colored
precipitate helps in the detection of reducing sugars in the test
solution.
Preparation of Fehling's solution A:
Dissolve 35g of Cu2SO4.7H2O in water and make up to 500ml
Preparation of Fehling's solution B:
Dissolve 120 g of KOH and 173 g of Sod. Pot. Tartarate (Rochelle
salt) in water and make up to 500 ml
Fehling’s reagent: Equal volumes of Fehling A and Feling B are
mixed to form a deep blue solution.
Note: If you do not have sodium potassium tartarate, it can prepared
using tartaric acid as described below.
Method:
• Mix equal volumes of Fehling's solution A and B.
• Add 5 drops of the test solution (glucose, fructose,
and sucrose solution) to the mixed Fehling's
solution and boil.
Results
Glucose solution Orange-brown color is appeared. Fructose
solution Orange-brown color is appeared. Sucrose solution No
change.
Discussion:
Fehling's tests for aldehydes are used extensively in
carbohydrate chemistry. A positive result is indicated by the
formation of a brick red precipitate. Like other aldehydes, aldoses are
easily oxidized to yield carboxylic acids. Cupric ion complexed with
tartrate ion is reduced to cuprous oxide.
The cupric ion (Cu++) is complexed with the tartarate ion. Contact
with an aldehyde group reduces it to a cuprous ion, which the
E-40
precipitated as orange-brown Cu2O.
The sucrose does not react with Fehling's reagent. Sucrose is a
disaccharide of glucose and fructose. Most disaccharides are reducing
sugars, sucrose is a notable exception, for it is a non-reducing sugar.
The anomeric carbon of glucose is involved in the glucose- fructose
bond and hence is not free to form the aldehyde in solution.
On the other hand, glucose, a reducing sugar, reacts with
Fehling's reagent to form an orange to red precipitate.
Fehling's reagent is commonly used for reducing sugars but is
known to be not specific for aldehydes. For example, fructose gives
a positive test with Fehling's solution too, because fructose is
converted to glucose and mannose under alkaline conditions. The
conversion can be explained by the keto-enol tautomerism.
The reduction of Fehling solution using fructose is not only to
be attributed to the fact that the ketose is isomerized into an aldose.
The treatment of fructose with alkali - e.g. Fehling solution - causes
even decompostion of the carbon chain. More products with
reducing capability are formed.
Note:
Fehling's test takes advantage
of the ready reactivity of
aldehydes by using the weak oxidizing agent cupric ion (Cu2+) in
alkaline solution. In addition to the copper ion, Fehling's solution
contains tartrate ion as a complexing agent to keep the copper ion in
solution. Without the tartrate ions, cupric hydroxide would precipitate
from the basic solution. The tartrate ion is unable to complex
cuprous ion Cu+, so the reduction of Cu2+ to Cu+ by reducing
sugars results in the formation of an orange to red precipitate of
Cu2O. Copper-tartrate-complex
CuSO4 + NaOH
Cu(OH)2 + Na2SO4
Cu(OH)2 + HO-CH-COONa
O-CH-COONa + 2H2O
HO-CH-COOK
Cu
O-CH-COOK
R-CHO + Cu++
Cu+
+ OH-
2OH- + Cu++ + HO-CH-COONa
HO-CH-COOK
R-COOH + Cu+
CuOH W.∆B. Cu2O
Red ppt
E-41
LEMBAR ASISTENSI
DIPERIKSA
KETERANGAN
NO
TANGGAL
1.
8-03-2021
P0 oleh asisten
2.
11-03-2021
P1 oleh asisten
3.
12-03-2021
P2 oleh asisten
4.
14-03-2021
ACC oleh asisten
TANDA TANGAN
Download