1. Luas daerah parkir 1.760 m2. Luas rata-rata untuk mobil kecil 4 m2 dan mobil besar 20 m2. Daya tampung maksimum hanya 200 kendaraan. Biaya parkir mobil kecil Rp 1.000,00/jam dan mobil besar Rp 2.000,00/jam. Jika dalam satu jam terisi penuh dan tidak ada kendaraan pergi dan datang, maka hasil maksimum tempat parkir itu adalah.... A. Rp 176.000,00 B. Rp 200.000,00 C. Rp 260.000,00 D. Rp 300.000,00 E. Rp 340.000,00 ANSWER: C 2. Daerah yang diarsir pada gambar ialah himpunan penyelesaian suatu sistem pertidaksamaan linear. Nilai maksimum dari f (x, y) = 7x + 6y adalah.... A . 88 B. 94 C. 102 D. 106 E. 196 ANSWER: D 3. Suatu perusahaan meubel memerlukan 18 unsur A dan 24 unsur B per hari. Untuk membuat barang jenis I dibutuhkan 1 unsur A dan 2 unsur B, sedangkan untuk membuat barang jenis II dibutuhkan 3 unsur A dan 2 unsur B. Jika barang jenis I dijual seharga Rp 250.000,00 per unit dan barang jenis II dijual seharga Rp 400.000,00 per unit, maka agar penjualannya mencapai maksimum, berapa banyak masing-masing barang harus dibuat? A. 6 jenis I B. 12 jenis II C. 6 jenis I dan 6 jenis II D. 3 jenis I dan 9 jenis II E. 9 jenis I dan 3 jenis II ANSWER: E 4. Seorang pedagang sepeda ingin membeli 25 sepeda untuk persediaan. Ia ingin membeli sepeda gunung dengan harga Rp1.500.000,00 per buah dan sepeda balap dengan harga Rp2.000.000,00 per buah. Ia merencanakan tidak akan mengeluarkan uang lebih dari Rp42.000.000,00. Jika keuntungan sebuah sepeda gunung Rp500.000,00 dan sebuah sepeda balap Rp600.000,00, maka keuntungan maksimum yang diterima pedagang adalah… A. Rp13.400.000,00 B. Rp12.600.000,00 C. Rp12.500.000,00 D. Rp10.400.000,00 E. Rp8.400.000,00 ANSWER: A 5. Seorang pedagang gorengan menjual pisang goreng dan bakwan. Harga pembelian untuk satu pisang goreng Rp1.000,00 dan satu bakwan Rp400,00. Modalnya hanya Rp250.000,00 dan muatan gerobak tidak melebihi 400 biji. Jika pisang goreng dijual Rp1.300,00/biji dan bakwan Rp600,00/biji, keuntungan maksimum yang diperoleh pedagang adalah… A. Rp102.000,00 B. Rp96.000,00 C. Rp95.000,00 D. Rp92.000,00 E. Rp86.000,00 ANSWER: C 6. Nilai minimum dari f(x,y) = 4x + 5y yang memenuhi pertidaksamaan 2x + y ≥ 7, x + y ≥ 5, x ≥ 0, dan y ≥ 0 adalah… A. 14 B. 20 C. 23 D. 25 E. 35 ANSWER: B 6. Nilai maksimum f(x, y) = 5x + 4y yang memenuhi pertidaksamaan x + y ≤ 8, x + 2y ≤ 12, x ≥ 0, dan y ≥ 0 adalah ... a. 24 b. 32 c. 36 d. 40 e. 60 ANSWER: D 7. Nilai minimum fungsi obyektif f(x, y) = 3x + 2y dari daerah yang diarsir pada gambar adalah ... a. 4 b. 6 c. 7 d. 8 e. 9 ANSWER: C 8. Daerah yang merupakan himpunan penyelesaian dari pertidaksamaan 2x + 3y ≤ 12, 4x + y ≥ 10, x ≥ 0, y ≥ 0 adalah ... a. I b. II c. III d. IV e. I dan III ANSWER: C 9. Seorang tukang jahit akan membuat pakaian model A dan model B. Model A memerlukan 1 m kain polos dan 1,5 m kain bergaris. Model B memerlukan 2 m kain polos dan 0,5 m kain bergaris. Persediaan kain polos 20 m dan bergaris 10 m. Banyaknya total pakaian jadi akan maksimal jika banyaknya model A dan model B masing-masing... a. 7 dan 8 b. 8 dan 6 c. 6 dan 4 d. 5 dan 9 e. 4 dan 8 ANSWER: E 10. Daerah mana yang diarsir di bawah ini adalah daerah penyelesaian suatu sistem pertidaksamaan. Nilai maksimum fungsi objektif (3x + 5y) pada daerah penyelesaian tersebut ... a. 30 b. 26 c. 24 d. 21 e. 18 ANSWER: E 11. . Nilai maksimum dari z = -3x + 2y yang memenuhi syarat 3x + y ≤ 9, 5x + 4y ≥ 20, x ≥ 0 adalah ... a. 10 b. 14 c. 18 d. 20 e. 24 ANSWER: C 12. Dalam sistem pertidaksamaan: 2y ≥ x : y ≤ 2x; 2y + x ≤ 20; x + y ≥ 9. Nilai maksimum untuk 3y – x dicapai di titik ... a. P b. Q c. R d. S e. T ANSWER: C 13. Nilai minimum dari -2x + 4y + 6 untuk x dan y yang memenuhi 2x + y – 20 ≤ 0, 2x – y + 10 ≥ 0, x + y – 5 ≤ 0, x – 2y – 5 ≤ 0, x ≥ 0 dan y ≥ 0 adalah ... a. -14 b. -11 c. -9 d. -6 e. -4 ANSWER: E 14. Nilai minimum f(x, y) = 3 + 4x – 5y untuk x dan y yang memenuhi –x + y ≤ 1, x + 2y ≥ 5 dan 2x + y ≤ 10 adalah ... a. -19 b. -6 c. -5 d. -3 e. 23 ANSWER: C 15. Fungsi F = 10x + 15y dengan syarat x ≥ 0, y ≥ 0, x ≤ 800, y ≤ 600, dan x + y ≤ 1000 mempunyai nilai maksimum ... a. 9.000 b. 11.000 c. 13.000 d. 15.000 e. 16.000 ANSWER: C 16. Seorang peternak ikan hias memiliki 20 kolam untuk memelihara ikan koi dan ikan koki. Setiap kolam dapat menampung ikan koki saja sebanyak 24 ekor, atau ikan koi saja sebanyak 36 ekor. Jumlah ikan yang direncanakan akan dipelihara tidak lebih dari 600 ekor. Jika banyak kolam berisi ikan koki adalah x, dan banyak kolam berisi ikan koi y, maka model matematikanya adalah ... a. x + y ≥ 20; 3x + 2y ≤ 50; x ≥ 0; y ≥ 0 b. x + y ≥ 20; 2x + 3y ≤ 50; x ≥ 0; y ≥ 0 c. x + y ≤ 20; 2x + 3y ≤ 50; x ≥ 0; y ≥ 0 d. x + y ≤ 20; 2x + 3y ≥ 50; x ≥ 0; y ≥ 0 e. x + y ≤ 20; 3x + 2y ≥ 50; x ≥ 0; y ≥ 0 ANSWER: C 17. Sebuah angkutan umum paling banyak dapat memuat 50 penumpang. Tarif untuk seorang pelajar dan mahasiswa berturut-turut adalah Rp1.500,- dan Rp2.500,-. Penghasilan yang diperoleh tidak kurang dari Rp75.000,-. Misal banyak penumpang pelajar dan mahasiswa masing-masing x dan y. Model matematika yang sesuai untuk permasalahan tersebut adalah ... a. x + y ≤ 50; 3x + 5y ≥ 150; x ≥ 0; y ≥ 0 b. x + y ≤ 50; 3x + 5y ≤ 150; x ≥ 0; y ≥ 0 c. x + y ≤ 50; 5x + 3y ≥ 150; x ≥ 0; y ≥ 0 d. x + y ≥ 50; 5x + 3y ≤ 150; x ≥ 0; y ≥ 0 e. x + y ≥ 50; 3x + 5y ≤ 150; x ≥ 0; y ≥ 0 ANSWER: A 18. Seorang ibu mempunyai 4 kg tepung terigu dan 2,4 kg mentega, ingin membuat donat dan roti untuk dijual. Satu donat membutuhkan 80gr terigu dan 40gr mentega, dan satu roti membutuhkan 50gr terigu dan 60 gr mentega. Jika ia harus membuat paling sedikit 10 buah donat maka model matematika yang sesuai adalah ... a. 8x + 5y ≥ 400; 2x + 3y ≥ 120; x ≥ 10; y ≥ 0 b. 8x + 5y ≤ 400; 2x + 3y ≤ 120; x ≥ 10; y ≥ 0 c. 8x + 5y ≥ 400; 2x + 3y ≥ 12; x ≥ 0; y ≥ 0 d. 5x + 8y ≥ 400; 3x + 2y ≥ 12; x ≥ 0; y ≥ 0 e. 5x + 8y ≥ 400; 3x + 2y ≤ 12; x ≥ 10; y ≥ 0 ANSWER: B 19. Nilai minimal dari z = 3x + 6y yang memenuhi syarat; 4x + y ≥ 20, x + y ≤ 20, x + y ≥ 10, x ≥ 0, dan y ≥ 0 adalah ... a. 50 b. 40 c. 30 d. 20 e. 10 ANSWER: C 20. Disebuah kantin, Ani dan kawan-kawan memayar tidak lebih dari Rp35.000 untuk 4 mangkok bakso dan 6 gelas es yang dipesannya, sedang Adi dan kawan-kawan membayar tidak lebih dari Rp50.000,- untuk 8 mangkok bakso dan 4 gelas es. Jika kita memesan 5 mangkok bakso dan 3 gelas es, maka maksimum yang harus kita bayar adalah ... a. Rp27.500,b. Rp30.000,c. Rp32.500,d. Rp35.000,e. Rp37.500,ANSWER: C 21. Nilai maksimum dari 20x + 8 untuk x dan y yang memenuhi x + y ≥ 20, 2x + y ≤ 48, 0 ≤ x ≤ 20, dan 0 ≤ y ≤ 48 adalah ... a. 408 b. 456 c. 464 d. 480 e. 488 ANSWER: A 22. Perhatikan gambar! Nilai maksimum f(x, y) = 60x + 30y untuk (x, y) pada daerah yang diarsir adalah ... a. 200 b. 180 c. 120 d. 110 e. 80 ANSWER: B 23. Seseorang diharuskan minum dua jenis tablet setiap hari. Jenis I mengandung 5 unit vitamin A dan 3 unit vitamin B, sedangkan jenis II mengandung 10 unit vitamin A dan 1 unit vitamin B. Dalam satu hari anak tersebut memerlukan 25 unitvitamin A dan 5 unit vitamin B. Jika harga tablet I Rp4.000,- perbiji dan tablet II Rp8.000,- perbiji, pengeluaran minimum untuk pembelian tablet perhari adalah ... a. Rp12.000,b. Rp14.000,- c. Rp16.000,d. Rp18.000,e. Rp20.000,ANSWER: E 24. Tempat parkir seluas 600 m2 hanya mampu menampung bus dan mobil sebanyak 58 buah. Tiap mobil memerlukan tempat 6 m2 dan bus 24 m2. Biaya parkir tiap mobil Rp5.000,- dan bus Rp7.000,-. Jika tempat parkir penuh, hasil dari biaya parkir paling banyak adalah ... a. Rp197.500,b. Rp220.000,c. Rp290.000,d. Rp325.000,e. Rp500.000,ANSWER: D 25.Luas daerah parkir 360 m2. Luas rata-rata sebuah mobil 6 m2 dan luas rata-rata bus 24 m2. Daerah parkir tersebut dapat memuat paling banyak 30 kendaraan roda 4 (mobil dan bus). Jika tarif parkir mobil Rp2.000,- dan bus Rp5.000,- maka pendapatan terbesar yang dapat diperoleh adalah ... a. Rp40.000,b. Rp50.000,c. Rp60.000,d. Rp75.000,e. Rp90.000,ANSWER: E 26. Disebuah kantin, Ani dan kawan-kawan membayar tidak lebih dari Rp35.000,- untuk 4 mangkok bakso dan 6 gelas es yang dipesannya, sedang Adi dan kawan-kawan membayar tidak lebih dari Rp50.000,- untuk 8 mangkok bakso dan 4 gelas es. Jika kita memesan 5 mangkok bakso dan 3 gelas es maka maksimum yang harus kita bayar ... a. Rp27.500,b. Rp30.000,c. Rp32.500,d. Rp35.000,e. Rp37.500,ANSWER: C 27. Nilai minimum dari -2x + 4y + 6 untuk x dan y yang memenuhi 2x + y – 20 ≤ 0, 2x – y + 10 ≤ 0, x + y – 5 ≥ 0, x ≥ 0, y ≥ 0 adalah ... a. 46 b. 51 c. 61 d. 86 e. 90 ANSWER: A 28. Perhatikan gambar! Daerah yang diarsir pada gambar merupakan himpunan penyelesaian suatu sistem pertidaksamaan linear. Nilai maksimum dari f(x, y) = 7x + 6y adalah = ... a. 88 b. 94 c. 102 d. 106 e. 196 ANSWER: C 29. Tanah seluas 10.000 m2 akan dibangun rumah tipe A dan tipe B. Untuk rumah tipe A diperlukan 100 m2 dan tipe B diperlukan 75 m2. Jumlah rumah yang dibangun paling banyak 125 unit. Keuntungan rumah tipe A adalah Rp6.000.000,-/ unit dan tipe B adalah Rp4.000.000,-/ unit. Keuntungan maksimum yang dapat diperoleh dari penjualan rumah tersebut adalah ... a. Rp550.000.000,- b. Rp600.000.000,c. Rp700.000.000,d. Rp800.000.000,e. Rp900.000.000,ANSWER: B 30. Nilai minimum dari z = 2x + 3y dengan syarat x + y ≥ 4, 5y – x ≤ 20, y ≥ x, y ≥ 0, x ≥ 0 adalah ... a. 5 b. 10 c. 0 d. 1 e. 2 ANSWER: B