TUGAS SISTEM PENGENDALIAN MODERN DESIGN SERVO AND STABILITY RANGE Disusun oleh : Kartini 02311640000041 DEPARTEMEN TEKNIK FISIKA INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2019 Plant yang digunakan adalah vehicle suspension (1/4 vehicle) Sistem memliki persamaan seperti berikut : αΊ= Ax + Bu Y= Cx Dengan matriks A, B, dan C untuk plant tersebut adalah : 0 0 0 1 −25.31 −0,14 A = [−4252500 0 ] −47.76 1 46.55 0 −1832 0 1551.7 0 0 6.517 B= [ ] −46.55 −1551.7 C = [0 0 1 0] DESIGN SERVO Menggunakan n = 4, sehingga sinyal kontrol u sebagai berikut : u = - (k2x2 + k3x3 + k4x4 ) + k1 ( r- x1) = - Kx + k1 r dengan : K = [π1 π2 π3 π4 ] State feedback matriks K didapat dari matlab : K = [−5.9461π₯104 −30.375 −3.529 −0.0214] Unit-Step Response dari desain sistem : 0 0 0 1 −25.31 −0,14 A-BK =[−4252500 0 ]−47.76 1 46.55 0 −1832 0 1551.7 0 0 [ 6.517 ] [−5.9461π₯104 −30.375 −3.529 −0.0214] −46.55 −1551.7 0 1 0 0 −37691,69 197,95 −2,309 −0,000126 =[ ] −2767869,9 −1413,97 −169,05 0,0009 −92264312,2 −47133,5 −7308,53 −33,3 Persamaan State : αΊ = [A – BK]x + Bk1r αΊ1 π1 0 1 0 0 0 αΊ2 −37691,69 197,95 −2,309 −0,000126 π2 6.517 [ ]= [ ] [ ]+ [ ]k r αΊ3 −2767869,9 −1413,97 −169,05 0,0009 π3 −46.55 1 π4 αΊ4 −92264312,2 −47133,5 −7308,53 −33,3 −1551.7 αΊ1 π1 0 1 0 0 0 αΊ2 −37691,69 197,95 −2,309 −0,000126 π2 −0.0388 [ ]= [ ] [ ]+ [ ]r αΊ3 −2767869,9 −1413,97 0.2768 −169,05 0,0009 π3 π4 αΊ4 −92264312,2 −47133,5 −7308,53 −33,3 9.2266 Persamaan output : y = [0 π1 π2 0 1 0] [π ] 3 π4 u(∞)= -Kx(∞) + k1 r(∞) = - Kx(∞) + k1 r Grafik unit-step response Sehingga : u(∞) = -[−5.9461π₯104 = -[−5.9461π₯104 π₯1 (∞) π₯2 (∞) + −5.9461π₯104 π −30.375 −3.529 −0.0214] π₯3 (∞) [ π₯4 (∞) ] π 0 −30.375 −3.529 −0.0214] [0] + −5.9461π₯104 π = 0 0 Pada saat steady state, sinyal kontrol u menjadi 0 STABILITY RANGE State Equation system : 0 0 0 1 −25.31 −0,14 −4252500 0 A=[ ] −47.76 1 46.55 0 −1832 0 1551.7 0 Liapunov Function : V(x) = xT Px Untuk menganalisa stabilitas, digunakan matriks Q, positive-semidefinitereal symmetric : 0 Q = [0 0 0 0 0 0 0 0 0 0 0 0 0] 0 1 P didedifinisikan sebagai : AT P + PA = - Q π11 π12 π13 π14 −4252500 46.55 1551.7 π π π π 0 0 0 ] [π 21 π22 π23 π24 ]+ 0 −25.31 31 32 33 34 −47.76 −1832 π41 π42 π43 π44 0 −0,14 1 0 π11 π12 π13 π14 0 0 0 1 0 π21 π22 π23 π24 −4252500 0 −25.31 −0,14 [π ] = [0 π32 π33 π34 ] [ 46.55 0 31 0 −47.76 1 π41 π42 π43 π44 0 −1832 0 1551.7 0 0 1 [ 0 0 0 0 0 0] 0 0 0 0 0 −1 −4252500π21 + 46.55π31 + 1551.7π41 + (−4252500π12 + 46.55π13 + 1551.7π14 ) = 0 −4252500π21 + 46.55π31 + 1551.7π41= - (−4252500π12 + 46.55π13 + 1551.7π14) π21 = −π12 π31 = −π13 π41 = −π14 π11 − 4252500π22 + 46.55π23 + 1551.7π24 = 0 −25.31π21 − 47.76 π31 − 1832π41 − 4252500π32 + 46.55π33 + 1551.7π34 = 0 −0,14 π21 + −4252500π42 + 46.55π43 + 1551.7π44 = 0 −4252500π22 + 46.55π32 + 1551.7π42 + π11 = 0 π23 = π32 π24 = π42 π12 + π21 = 0 −25.31π22 − 47.76 π32 − 1832π42 + π31 = 0 −0,14 π22 + π23 + π41 = 0 π11 π21 P = [π 31 π41 π12 π22 π32 π42 π13 π23 π33 π43 π14 π24 π34 ] π44 Untuk P masing-masing > 0 maka sistem adalah stabil