Bab 2 Hukum Newton Tentang Gravitasi Standar Kompetensi: Menganalisis gejala alam dan keterangannya dalam cakupan mekanika benda titik. Kompetensi Dasar: Menganalisis keteraturan gejala dalam tata surya berdasarkan hukum-hukum Newton. A. Hukum Gravitasi Universal Newton “Setiap dua benda di dunia ini mengalami gaya tarikmenarik yang besarnya berbanding lurus dengan massa masing-masing benda dan berbanding terbalik dengan kuadrat jarak antara keduanya” Secara matematis ditulis, m1m2 F G 2 r Keterangan: F = gaya tarik-menarik dua benda (N) G = konstanta gravitasi universal m = massa benda (kg) Nilai konstanta G ditemukan oleh Sir Henry Cavendish (1731–1810), melalui percobaan dengan neraca Cavendish. Dengan mengukur gaya antara dua massa serta massa masing-masing bola dengan teliti, Cavendish mendapatkan nilai G sebesar: G = 6,67 × 10–11 Nm2/kg2 B. Percepatan Gravitasi Percepatan gravitasi g, percepatan gerak suatu benda akibat pengaruh gaya gravitasi. Besarnya gaya gravitasi bumi pada benda dirumuskan dengan, g G M r2 Keterangan: g = percepatan gravitasi bumi (m/s2) G = konstanta gravitasi universal M = massa benda (kg) r = jarak benda terhadap pusat bumi (m) Variasi g Terhadap Ketinggian pada Garis Lintang 45º C. Medan Gravitasi Medan gravitasi merupakan ruangan di sekitar benda bermassa yang masih dipengaruhi oleh gaya gravitasi benda tersebut. Kuat medan gravitasi di P dinyatakan dengan, m g G 2 r Keterangan: g G m r = percepatan gravitasi bumi (m/s2) = konstanta gravitasi universal = massa benda (kg) = jarak titik dari benda (m) D. Penerapan Hukum Gravitasi Newton 1. Gerak Peredaran Planet Besar gaya gravitasi matahari yang dialami planet menurut Newton adalah F G Mm d2 Keterangan: F G M m d = gaya gravitasi matahari yang dialami planet = konstanta gravitasi universal = massa matahari (kg) = massa planet (kg) = jarak antara planet dengan matahari (m) Planet bergerak mengitari matahari pada jarak d dari matahari dengan kecepatan linier v dan periode putaran T, gaya sentripetal planet tersebut, T 2 4 2 3 GM d atau T2 k 3 d Keterangan: T = periode revolusi planet (tahun) d = jarak antara planet dengan matahari (km) k = konstanta Data Jarak Rata-Rata dari Matahari (R) dan Periode (T) Planet 2. Gerak Peredaran Satelit Jika massa satelit m, bergerak mengitari bumi dengan laju linier v, pada jarak R dari pusat bumi maka gaya sentripetal pada satelit sebesar: mv 2 Fs r Laju linier yang diperlukan agar satelit dapat beredar mengelilingi bumi v GM r