BAB I PENDAHULUAN 1.1 Latar Belakang Pembangunan pertanian di Indonesia saat ini dan selanjutnya harus dilakukan dengan penerapan teknologi baru seperti bioteknologi dan penggunaan zat pengatur tumbuh. Masalahnya sekarang , mampukah kita menyeleksi teknologi baru ini yang sesuai dengan keadaan Indonesia dalam rangka menunjang pembangunan pertanian yang tangguh dan berkelanjutan. Konsep zat pengatur tumbuh diawali dengan konsep hormon tanaman. Hormon tanaman adalah senyawa-senyawa organik tanaman yang dalam konsentrasi yang rendah mempengaruhi proses-proses fisiologis. Proses-proses fisiologis ini terutama tentang proses pertumbuhan, differensiasi dan perkembangan tanaman. Proses-proses lain seperti pengenalan tanaman, pembukaan stomata, translokasi dan serapan hara dipengaruhi oleh hormon tanaman. Hormon tanaman kadang-kadang juga disebut fitohormon, tetapi istilah ini lebih jarang digunakan. Istilah hormon ini berasal dari bahasa Gerika yang berarti pembawa pesan kimiawi (Chemical messenger) yang mula-mula dipergunakan pada fisiologi hewan. Dengan berkembangnya pengetahuan biokimia dan dengan majunya industri kimia maka ditemukan banyak senyawa-senya-wa yang mempunyai pengaruh fisiologis yang serupa dengan hormon tanaman. Senyawa-senyawa sintetik ini pada umumnya dikenal dengan nama zat pengatur tumbuh tanaman (ZPT = Plant Growth Regulator). Tentang senyawa hormon tanaman dan zat pengatur tumbuh, Moore (2) mencirikannya sebagai berikut : 1. Fitohormon atau hormon tanaman ada-lah senyawa organik bukan nutrisi yang aktif dalam jumlah kecil (< 1mM) yang disintesis pada bagian tertentu, pada umumnya ditranslokasikan kebagian lain tanaman dimana senyawa tersebut, menghasilkan suatu tanggapan secara biokimia, fisiologis dan morfologis. 2. Zat Pengatur Tumbuh adalah senyawa organik bukan nutrisi yang dalam konsentrasi rendah (< 1 mM) mendorong, menghambat atau secara kualitatif mengubah pertumbuhan dan perkembangan tanaman. 1 3. Inhibitor adalah senyawa organik yang menghambat pertumbuhan secara umum dan tidak ada selang konsentrasi yang dapat mendorong pertumbuhan. Pertumbuhan, perkembangan, dan pergerakan tumbuhan dikendalikan beberapa golongan zat yang secara umum dikenal sebagai hormon tumbuhan atau fitohormon. Penggunaan istilah "hormon" sendiri menggunakan analogi fungsi hormon pada hewan; dan, sebagaimana pada hewan, hormon juga dihasilkan dalam jumlah yang sangat sedikit di dalam sel. Beberapa ahli berkeberatan dengan istilah ini karena fungsi beberapa hormon tertentu tumbuhan (hormon endogen, dihasilkan sendiri oleh individu yang bersangkutan) dapat diganti dengan pemberian zat-zat tertentu dari luar, misalnya dengan penyemprotan (hormon eksogen, diberikan dari luar sistem individu). Mereka lebih suka menggunakan istilah zat pengatur tumbuh(bahasa Inggris plant growth regulator). Hormon tumbuhan merupakan bagian dari proses regulasi genetik dan berfungsi sebagai prekursor. Rangsangan lingkungan memicu terbentuknya hormon tumbuhan. Bila konsentrasi hormon telah mencapai tingkat tertentu, sejumlah gen yang semula tidak aktif akan mulai ekspresi. Dari sudut pandang evolusi, hormon tumbuhan merupakan bagian dari proses adaptasi dan pertahanan diri tumbuh-tumbuhan untuk mempertahankan kelangsungan hidup jenisnya. Retardan. Cathey (1975) mendefinisikan retar dan sebagai suatu senyawa organik yang menghambat perpanjangan batang, meningkatkan warna hijau daun, dan secara tidak langsung mem-pengaruhi pembungaan tanpa menyebabkan pertumbuhan yang abnormal. Sinyal kimia interseluler untuk pertama kali ditemukan pada tumbuhan. Konsentrasi yang sangat rendah dari senyawa kimia tertentu yang diproduksi oleh tanaman dapat memacu atau menghambat pertumbuhan atau diferensiasi pada berbagai macam sel-sel tumbuhan dan dapat mengendalikan perkembangan bagian-bagian yang berbeda pada tumbuhan. Dengan menganalogikan senyawa kimia yang terdapat pada hewan yang disekresi oleh kelenjar ke aliran darah yang dapat mempengaruhi perkembangan bagian-bagian yang berbeda pada tubuh, sinyal kimia pada tumbuhan disebut hormon pertumbuhan. Namun, beberapa ilmuwan memberikan definisi yang lebih terperinci terhadap istilah hormon yaitu senyawa kimia yang disekresi oleh suatu organ atau jaringan yang dapat mempengaruhi organ atau jaringan lain dengan cara khusus. Berbeda dengan yang diproduksi oleh hewan senyawa kimia pada tumbuhan sering mempengaruhi sel-sel yang juga penghasil senyawa tersebut disamping mempengaruhi sel lainnya, sehingga senyawa-senyawa tersebut disebut dengan zat pengatur tumbuh untuk membedakannya dengan hormon yang diangkut secara sistemik atau sinyal jarak jauh. 2 1.1.1 Lima tipe utama ZPT Ahli biologi tumbuhan telah mengidentifikasi 5 tipe utama ZPT yaitu auksin, sitokinin,giberelin, asam absisat dan etilen. Tiap kelompok ZPT dapat menghasilkan beberapa pengaruh yaitu kelima kelompok ZPT mempengaruhi pertumbuhan, namun hanya 4 dari 5 kelompok ZPT tersebut yang mempengaruhi perkembangan tumbuhan yaitu dalam hal diferensiasi sel.Seperti halnya hewan, tumbuhan memproduksi ZPT dalam jumlah yang sangat sedikit, akan tetapi jumlah yang sedikit ini mampu mempengaruhi sel target. ZPT menstimulasi pertumbuhan dengan memberi isyarat kepada sel target untuk membelah atau memanjang, beberapa ZPT menghambat pertumbuhan dengan cara menghambat pembelahan atau pemanjangan sel. Sebagian besar molekul ZPT dapat mempengaruhi metabolisme dan perkembangan sel-sel tumbuhan. ZPT melakukan ini dengan cara mempengaruhi lintasan sinyal tranduksi pada sel target. Pada tumbuhan seperti halnya pada hewan, lintasan ini menyebabkan respon selular seperti mengekspresikan suatu gen, menghambat atau mengaktivasi enzim, atau mengubah membran.Pengaruh dari suatu ZPT bergantung pada spesies tumbuhan, situs aksi ZPT pada tumbuhan, tahap perkembangan tumbuhan dan konsentrasi ZPT. Satu ZPT tidak bekerja sendiri dalam mempengaruhi pertumbuhan dan perkembangan tumbuhan, pada umumnya keseimbangan konsentrasi dari beberapa ZPT-lah yang akan mengontrol pertumbuhan dan perkembangan tumbuhan. ZPT FUNGSINYA TEMPAT DIHASILKANDAN LOKASINYA PADA TUMBUHAN Auksin Sitokinin Mempengaruhi pertambahan panjang batang, Meristem apikal tunas pertumbuhan, diferensiasi dan percabangan ujung, daun akar; perkembangan buah; dominansi apikal; muda, embrio dalam fototropisme dan geotropisme. biji. Mempengaruhi pertumbuhan dan diferensiasi Pada akar, embrio akar; mendorong pembelahan sel dan dan buah, berpindah dari akar pertumbuhan Giberelin secara umum, mendorong ke organ perkecambahan; dan menunda penuaan. lain. Mendorong perkembangan biji, perkembangan Meristem apikal tunas 3 kuncup, pemanjangan batang dan pertumbuhan ujung dan akar; daun; mendorong pembungaan dan daun muda; embrio. perkembangan buah; mempengaruhi pertumbuhan dan diferensiasi akar. Asam Menghambat pertumbuhan; merangsang Daun; batang, akar, absisat penutupan stomata pada waktu kekurangan air, buah berwarna (ABA) memper-tahankan dormansi. hijau. Etilen Mendorong pematangan; memberikan pengaruh Buah yang matang, yang berlawanan dengan beberapa pengaruh buku pada batang, auksin; mendorong atau menghambat daun yang sudah pertumbuhan dan? perkembangan akar, daun, menua. batang dan bunga. Pada umumnya, hormon mengontrol pertumbuhan dan perkembangan tumbuhan, dengan mempengaruhi : pembelahan sel, perpanjangan sel, dan differensiasi sel. Beberapa hormon, juga menengahi respon fisiologis berjangka pendek dari tumbuhan terhadap stimulus lingkungan. Setiap hormon, mempunyai efek ganda; tergantung pada : tempat kegiatannya, konsentrasinya, dan stadia perkembangan tumbuhannya.Hormon tumbuhan, diproduksi dalam konsentrasi yang sangat rendah; tetapi sejumlah kecil hormon dapat membuat efek yang sangat besar terhadap pertumbuhan dan perkembangan organ suatu tumbuhan. Hal ini secara tidak langsung menyatakan bahwa, sinyal hormonal hendaknya diperjelas melalui beberapa cara. Suatu hormon, dapat berperan dengan mengubah ekspresi gen, dengan mempengaruhi aktivitas enzim yang ada, atau dengan mengubah sifat membran. Beberapa peranan ini, dapat mengalihkan metabolisme dan pekembangan sel yang tanggap terhadap sejumlah kecil molekul hormon. Lintasan transduksi sinyal, memperjelas sinyal hormonal dan meneruskannya ke respon sel spesifik.Respon terhadap hormon, biasanya tidak begitu tergantung pada jumlah absolut hormon tersebut, akan tetapi tergantung pada konsentrasi relatifnya dibandingkan dengan hormon lainnya. Keseimbangan hormon, dapat mengontrol pertumbuhan dan perkembangan tumbuhan daripada peran hormon secara mandiri. Interaksi ini akan menjadi muncul dalam penyelidikan tentang fungsi hormon. 4 1.2 RUMUSAN MASALAH 1. Jelaskan apa yang dimaksud dengan ethilen! 2. Apa manfaat etilen bagi tumbuhan ? 3. Jelaskan peranan etilen dan aplikasi hormon Etilen sebagai ZPT ? 1.3 TUJUAN 1. Menjelaskan pengertian ethilen. 2. Menjelaskan manfaat etilen bagi tumbuhan. 3. Menjelaskan peranan dan aplikasi hormon Etilen sebagai ZPT. 5 BAB II PEMBAHASAN 2.1 Pengertian Ethilen Ethylene adalah hormon tumbuh yang secara umum berlainan dengan Auxin, Gibberellin, dan Cytokinin. Dalam keadaan normal ethylene akan berbentuk gas dan struktur kimianya sangat sederhana sekali. Di alam ethilene akan berperan apabila terjadi perubahan secara fisiologis pada suatu tanaman. hormon ini akan berperan pada proses pematangan buah dalam fase climacteric. Penelitian terhadap ethylene, pertama kali dilakukan oleh Neljubow (1901) dan Kriedermann (1975), hasilnya menunjukan gas ethylene dapat membuat perubahan pada akar tanaman. Hasil penelitian Zimmerman et al (1931) menunjukan bahwa ethylene dapat mendukung terjadinya abscission pada daun, namun menurut Rodriquez (1932), zat tersebut dapat mendukung proses pembungaan pada tanaman nanas. Penelitian lain telah membuktikan tentang adanya kerja sama antara auxin dan ethylene dalam pembengkakan (swelling) dan perakaran dengan cara mengaplikasikan auxin pada jaringan setelah ethylene berperan. Hasil penelitian menunjukan bahwa kehadiran auxin dapat menstimulasi produksi ethylene. 1. Struktur kimia dan Biosintesis ethylene Struktur kimia ethylene sangat sederhana yaitu terdiri dari 2 atom karbon dan 4 atom hidrogen seperti gambar di bawah ini : RUMUS ETILEN 6 Biosintesis ethylene terjadi di dalam jaringan tanaman yaitu terjadi perubahan dari asam amino methionine atas bantuan cahaya dan FMN (Flavin Mono Nucleotide) menjadi Methionel. Senyawa tersebut mengalami perubahan atas bantuan cahaya dan FMN menjadi ethykene, methyl disulphide, formic acid. Etilen adalah senyawa hidrokarbon tidak jenuh (C2H4) yang pada suhu kamar berbentuk gas. Senyawa ini dapat menyebabkan terjadinya perubahan-perubahan penting dalam proses pertumbuhan dan pematangan hasil-hasil pertanian. Selain itu, etilen merupakan : Dalam keadaan normal, etilen akan berbentuk gas dan struktur kimianya sangat sederhana sekali. Di alam etilen akan berperan apabila terjadi perubahan secara fisiologis pada suatu tanaman. Hormon ini akan berperan dalam proses pematangan buah dalam fase klimaterik. Mempengaruhi perombakan klorofil Mulai aktif dari 0,1 ppm (ambang batas/threshold) Dihasilkan jaringan tanaman hidup pada saat tertentu Merupakan homon (dihasilkan tanaman, bersifat mobil, senyawa organik) proses pematangan Produksi etilen oleh berbagai organisme sering mudah dilacak dengan kromatografi gas, sebab molekulnya dapat diserap dari jaringan dalam keadaan hampa udara dan juga karena kromatrografi gas sangat peka.Hanya beberapa jenis bakteri yang dilaporkan menghasilkan etilen, dan belum diketahui adanya ganggang yang mensintesis etilen, lagipula etilen biasanya berpengaruh kecil pada pertumbuhan organisme tersebut. Tapi beberapa spesies cendawan menghasilkan senyawa tersebut, termasuk beberapa cendawan tanah membantu mendorong perkecambahan biji, mengendalikan pertumbuhan kecambah, memperlambat serangan penyakit akibat organisme tanah.(Salisbury,1995: 78) 7 serta Pada banyak macam buah, etilen hanya sedikit dihasilkan sampai tepat sebelum terjadi klimaterik respirasi, yang mengisyaratkan dimulainya pemasakan, yaitu ketika kandungan gas ini di ruang udara antar sel meningkat tajam, dari jumlah hampir tak terlacak sampai sekitar 0.1- 1 mikron liter per liter.Konsentrasi umumnya memacu pemasakan buah berdaging dan tak berdaging, yang menunjukkan kenaikan klimaterik respirasinya yaitu jika buah-buahan tersebut cukup berkembang untuk dapat menerima gas etilen( Ttucker dan Grierson dalam Salisbury , 1995: 78) 2.1.1 Hubungan etilen dalam pematangan buah Pematangan adalah permulaan proses kelayuan ,organisasi sel terganggu, dimana enzim bercampur, sehingga terjadi hidrolisa, yaitu pemecahan klorofil, pati, pektin dan tanin, membentuk: etilen, pigmen, flavor, energi dan polipeptida. Yang mempengaruhi aktifitas etilen yaitu: 1. Suhu. Suhu tinggi (>350C) tidak terjadi pembentukan etilen. Suhu optimum pembentukan etilen (tomat,apel) 320C, sedangkan untuk buah-buahan yang lain lebih rendah. 2. Luka mekanis dan infeksi. Buah pecah, memar, dimakan dan jadi sarang ulat 3. Sinar radioaktif 4. Adanya O2 dan CO2. Bila O2 diturunkan dan CO2 dinaikkan maka proses pematangan terhambat. Dan bila keadaan anaerob tidak terjadi pembentukan etilen 5. Interaksi dengan hormon auxin. Apabila konsentrasi auxin meningkat maka etilen juga akan meningkat 6. Tingkat kematangan Etilen dapat mempercepat terjadinya klimaterik: Alpukat yang disimpan pada udara biasa akan matang setelah 11 hari Bila etilen tersedia 10 ppm selama 24 jam, maka buah akan matang pada hari keenam. 8 2.1.2 Sumber Etilen di Lingkungan Berupa polutan udara selama penganan pascapanen, pembakaran, jenis lampu penerang, asap rokok, dan bahan karet yang terekspos pada panas atau sinar UV dan tanaman terinfeksi virus. Proses sintesis protein terjadi pada proses pematangan seacra alami atau hormonal, dimana protein disintesis secepat dalam proses pematangan. Pematangan buah dan sintesis protein terhambat oleh siklohexamin pada permulaan fase klimatoris setelah siklohexamin hilang, maka sintesis etilen tidak mengalami hambatan. Sintesis ribonukleat juga diperlukan dalam proses pematangan. Etilen akan mempertinggi sintesis RNA pada buah mangga yang hijau. Etilen dapat juga terbentuk karena adanya aktivitas auksin dan etilen mampu menghilangkan aktivitas auksin karena etilen dapat merusak polaritas sel transport, pada kondisi anearobpembentukan etilen terhambat, selain suhu O2 juga berpengaruh pada pembentukan etilen. Laju pembentukan etilen semakin menurun pada suhu di atas 30 0 C dan berhenti pada suhu 40 0 C, sehingga pada penyimpanan buah secara masal dengan kondisi anaerob akan merangsang pembentukan etilen oleh buah tersebut. Etilen yang diproduksi oleh setiap buah memberi efek komulatif dan merangsang buah lain untuk matang lebih cepat. Buah berdasarkan kandungan amilumnya, dibedakan menjadi buah klimaterik dan buah nonklimaterik. Buah klimaterik adalah buah yang banyak mengandung amilum, sepertipisang, mangga, apel dan alpokat yang dapat dipacu kematangannya dengan etilen. Etilenendogen yang dihasilkan oleh buah yang telah matang dengan sendirinya dapat memacu pematangan pada sekumpulan buah yang diperam. Buah nonklimaterik adalah buah yang kandungan amilumnya sedikit, seperti jeruk, anggur, semangka dan nanas. Pemberian etilen pada jenis buah ini dapat memacu laju respirasi, tetapi tidak dapat memacu produksi etilen endogen dan pematangan buah. Perubahan fisiologi yang terjadi sealam proses pematangan adalah terjadinya proses respirasi kliamterik, diduga dalam proses pematangan oleh etilen mempengaruhi respirasi klimaterik melalui dua cara, yaitu: 9 1. Etilen mempengaruhi permeabilitas membran, sehingga permeabilitas sel menjadi besar, hal tersebut mengakibatkan proses pelunakan sehingga metabolisme respirasi dipercepat. 2. Selama klimaterik, kandungan protein meningkat dan diduga etilen lebih merangsang sintesis protein pada saat itu. Protein yang terbentuk akan terlihat dalam proses pematangan dan proses klimaterik mengalami peningkatan enzim-enzim respirasi. Buah-buahan mempunyai arti penting sebagi sumber vitamine, mineral, dan zatzat lain dalam menunjang kecukupan gizi. Buah-buahan dapat kita makan baik pada keadaan mentah maupun setelah mencapai kematangannya. Sebagian besar buah yang dimakan adalah buah yang telah mencapai tingkat kematangannya. Untuk meningkatkan hasil buah yang masak baik secara kualias maupun kuantitasnya dapat diusahakan dengan substansi tertentu antara lain dengan zat pengatur pertumbuhan Ethylene. Dengan mengetahui peranan ethylene dalam pematangan buah kita dapat menentukan penggunaannya dalam industri pematangan buah atau bahkan mencegah produksi dan aktifitas ethyelen dalam usaha penyimpanan buah-buahan. Ethylene mula-mula diketahui dalam buah yang matang oleh para pengangkut buah tropica selama pengapalan dari Yamaika ke Eropa pada tahun 1934, pada pisang masak lanjut mengeluarkan gas yang juga dapat memacu pematangan buah yang belum masak. Sejak saat itu Ethylene (CH2=CH2) dipergunakan sebagai sarana pematangan buah dalam industri. Ethylene adalah suatu gas yang dapat digolongkan sebagai zat pengatur pertumbuhan (phytohormon) yang aktif dalam pematangan. Dapat disebut sebagai hormon karena telah memenuhi persyaratan sebagai hormon, yaitu dihasilkan oleh tanaman, besifat mobil dalam jaringan tanaman dan merupakan senyawa organik. Seperti hormon lainnya ethylene berpengaruh pula dalam proses pertumbuhan dan perkembangan tanaman antara lain mematahkan dormansi umbi kentang, menginduksi pelepasan daun atau leaf abscission, menginduksi pembungaan nenas. Denny dan Miller (1935) menemukan bahwa ethylene dalam buah, bunga, biji, daun dan akar.Proses pematangan buah sering dihubungkan dengan rangkaian perubahan yang dapat dilihat meliputi warna, aroma, konsistensi dan flavour (rasa dan bau). Perpaduan sifat-sifat tersebut akan menyokong kemungkinan buah-buahan enak dimakan. Proses pematangan buah didahului dengan klimakterik (pada buah klimakterik). Klimakterik dapat didefinisikan sebagai suatu periode mendadak yang unik bagi buah dimana selama proses terjadi serangkaian perubahan biologis yang diawali dengan proses 10 sintesis ethylene. Meningkatnya respirasi dipengaruhi oleh jumlah ethylene yang dihasilkan, meningkatnya sintesis protein dan RNA. Proses klimakterik pada Apel diperkirakan karena adanya perubahan permeabilitas selnya yang menyebabkan enzym dan susbrat yang dalam keadaan normal terpisah, akan bergabung dan bereaksi satu dengan lainnya. Perubahan warna dapat terjadi baik oleh proses-proses perombakan maupun proses sintetik, atau keduanya. Pada jeruk manis perubahan warna ni disebabkan oleh karena perombakan khlorofil dan pembentukan zat warna karotenoid. Sedangkan pada pisang warna kuning terjadi karena hilangnya khlorofil tanpa adanya atau sedikit pembentukan zat karotenoid. Sisntesis likopen dan perombakan khlorofil merupakan ciri perubahan warna pada buah tomat. Menjadi lunaknya buah disebabkan oleh perombakan propektin yang tidak larut menjadi pektin yang larut, atau hidrolisis zat pati (seperti buah waluh) atau lemak (pada adpokat). Perubahan komponen-komponen buah ini diatur oleh enzym-enzym antara lain enzym hidroltik, poligalakturokinase, metil asetate, selullose. Flavour adalah suatu yang halus dan rumit yang ditangkap indera yang merupakan kombinasi rasa (manis, asam, sepet), bau (zat-zat atsiri) dan terasanya padalidah. Pematangan biasanya meningkatkan jumlah gula-gula sederhana yang memberi rasa manis, penurunan asam-asam organik dan senyawa-senyawa fenolik yang mengurangi rasa sepet dan masam, dan kenaikan zat-zat atsiri yang memberi flavour khas pada buah. Proses pematangan juga diatur oleh hormon antara lain AUXIN, sithokinine, gibberellin, asam-asam absisat dan ethylene.Auxin berperanan dalam pembentukan ethylene, tetapi auxin juga menghambat pematangan buah. Sithokinine dapat menghilangkan perombakan protein, gibberellin menghambat perombakan khlorofil dan menunda penimbunan karotenoid-karotenoid. Asam absisat menginduksi enzym penyusun/pembentuk karotenoid, dan ethylene dapat mempercepat pematangan. 2.2 Manfaat Etilen Etilen sering dimanfaatkan oleh para distributor dan importir buah. Buah dikemas dalam bentuk belum masak saat diangkut pedagang buah. Setelah sampai untuk diperdagangkan, buah tersebut diberikan etilen (diperam) sehingga cepat masak. 11 Dalam pematangan buah, etilen bekerja dengan cara memecahkan klorofil pada buah muda, sehingga buah hanya memiliki xantofil dan karoten. Dengan demikian, warna buah menjadi jingga atau merah. Pada aplikasi lain, etilen digunakan sebagai obat bius (anestesi) Fungsi lain etilen secara khusus adalah Mengakhiri masa dormansi Merangsang pertumbuhan akar dan batang Pembentukan akar adventif Merangsang absisi buah dan daun Merangsang induksi bunga Bromiliad Induksi sel kelamin betina pada bunga Merangsang pemekaran bunga 2.2.1 Biosintesis dan Metabolisme Etilen diproduksi oleh tumbuhan tingkat tinggi dari asam amino metionin yang esensial pada seluruh jaringan tumbuhan. Produksi etilen bergantung pada tipe jaringan, spesies tumbuhan, dan tingkatan perkembangan[9]. Etilen dibentuk dari metionin melalui 3 proses[10]: ATP merupakan komponen penting dalam sintesis etilen. ATP dan air akan membuat metionin kehilangan 3 gugus fosfat. Asam 1-aminosiklopropana-1-karboksilat sintase(ACC-sintase) kemudian memfasilitasi produksi ACC dan SAM (S-adenosil metionin). Oksigen dibutuhkan untuk mengoksidasi ACC dan memproduksi etilen. Reaksi ini dikatalisasi menggunakan enzim pembentuk etilen. Dewasa ini dilakukan penelitian yang berfokus pada efek pematangan buah. ACC sintase pada tomat menjadi enzim yang dimanipulasi melalui bioteknologi untuk memperlambat pematangan buah sehingga rasa tetap terjaga. 12 2.3 Peranan etilen 2.3.1 Peranan Ethylene Dalam Fisiologi Tanaman Di dalam proses fisiologis, ethylene mempunyai peranan penting. Wereing dan Phillips (1970) telah mengelompokan pengaruh ethylene dalam fisiologi tanaman sbb: a. mendukung respirasi climacteric dan pematangan buah b. mendukung epinasti c. menghambat perpanjangan batang (elengation growth) dan akar pada beberapa species tanaman walaupun ethylene ini dapat menstimulasi perpanjangan batang, coleoptyle dan mesocotyle pada tanaman tertentu, misalnya Colletriche dan padi. d. Menstimulasi perkecambahan e. Menstimulasi pertumbuhan secara isodiametrical lebih besar dibandingkan dengan pertumbuhan secara longitudinal f. Mendukung terbentuknya bulu-bulu akar g. Mendukung terjadinya abscission pada daun h. Mendukung proses pembungaan pada nanas. i. Mendukung adanya flower fading dalam persarian anggrek j. Menghambat transportasi auxin secara basipetal dan lateral k. Mekanisme timbal balik secara teratur dengan adanya auxin yaitu konsentrasi auxin yang tinggi menyebabkan terbentuknya ethylene. Tetapi kehadiran ethylene menyebabkan rendahnya konsentrasi auxin di dalam jaringan. Hubungannya dengan konsentrasi auxin, hormon tumbuh ini menentukan pembentukan protein yang diperlukan dalam aktifitas pertumbuhan, sedangkan rendahnya konsentrasi auxin, akan mendukung protein yang akan mengkatalisasi sintesis ethylene dan precursor. 2.3.2 Peranan Ethylene Dalam Proses Pematangan Buah Harsen (1967) dalam Dilley (1969) telah mempelajari hubungan antara ethylene dengan tingkat kematangan pada buah pear. Ia mengemukakan bahwa pematangan ini menjadi suatu sequential dalam proses kesinambungan kehidupan buah. Menurut konsep tsb, ethylene berpebgaruh terhadap beberapa yang mengontrol pola normal dari proses pematangan. 13 Menurut Frenkel et al (1968), sintesa protein diperlukan pada tingkat pematangan yang normal. Protein disintesa secepatnya dalam proses pematangan. Dari hasil eksperimen terhadap buah pear, memperlihatkan bahwa pematangan buah dan sintesa protein terhambat sebagai akibat perlakuan cycloheximide pada permulaan fase climacteric. Setelah cycloheximide hilang, ternyata sintesis ethylene tidak mengalami hambatan. Di dalam proses pematangan, ribonucleic acid synthesis pun diperlukan. Dalam eksperimen menggunakan buah pear, buah tersebut ditreated, dengan actinomysin D pada tingkat pre climacteric. Dari hasil eksperimen ini diperoleh petunjuk bahwa actinomysin D menghambat terbentuknya DNA yang bergantung pada RNA sintesis. Imascshi et al (1968) mengemukakan bahwa ethylele mendukung peningkatan aktivitas metabolisme dalam jaringan akar ubi jalar. Ethylene yang berkonsentrasi 0,1 ppm, menstimulasi perkembangan peroxidase dan phenyl alanine ammonialyase. Penelitian lain mengemukakan bahwa perlakuan ethylene pada kecambah kapas menstimulasi aktivitas peroksida dan IAA oksida. Gambar buah pisang dan kedondong dengan perlakuan pemberian etilen yang berbeda Daging buah pisang yang matang dengan konsentrasi karbit 100 gram 14 Pisang dan kedondong yang matang dengan konsentrasi karbit 100 gram Daging buah pisang yang matang dengan konsentrasi karbit 200 gram 15 Pisang dan kedondong yang matang dengan konsentrasi karbit 200 gram Daging buah pisang yang matang dengan konsentrasi karbit 300 gram 16 Pisang dan kedondong yang matang dengan konsentrasi karbit 300 gram Deskripsi morfologi dan rasa pada buah pisang dan kedondong yang masak dengan perlakuan etilen yang berbeda Perlakuan karbit 100 gram Perlakuan karbit 200 Perlakuan karbit 300 gram a. Pisang gram a. Pisang Warna kulit pisang menjadikuning a. Pisang Kulit pisang lebih kuning Warna kulit Tekstur daging empuk dibanding Rasa tidak dengan kulit menjadi terlalu manis namun pisang yang hitam ada dikarbit 100 pisang campuran rasa agak kecut b. Kedondong Warna pisang gram Tekstur daging Rasa pisangnya menjadi lebih manis lembek dibanding pisang 17 Rasa permukaan yang dikarbit 100 pisangnya hijau gram paling kekuningan Tekstur Tekstur masih agak padat daging manis dan pisang lebih empuk terlalu dibanding manis perlakuan pertama b. Kedondong b. Kedondong Warna Warna permukaa permukaa n n seluruhnya kuning kehijauan menjadi Tekstur agak kuning Tekstur empuk sangat empuk 2.3.3 Pengaruh yang merugikan dari Etilen terhadap komoditi yang mudah rusak. Pengaruh etilen yang tidak dikehendaki Pengaruh penting etilen dalam meningkatkan deteriorasi komoditi yang mudah rusak meliputi: a. Mempercepat senensen dan menghilangkan warna hijau pada buah seperti mentimun dan sayuran daun b. Mempercepat pemasakan buah selama penanganan dan penyimpanan c. “Russet spoting” pada selada d. Pembentukan rasa pahit pada wortel e. Pertunasan kentang f. Gugurnya daun (kol bunga, kubis, tanaman hias) g. Pengerasan pada asparagus 18 h. Mempersingkat masa simpan dan mengurangi kualitas bunga i. Gangguan fisiologis pada tanaman umbi lapis yang berbunga j. Pengurangan masa simpan buah dan sayuran 2.3.4. Ethylene Sebagai Hormon Pematangan Pemasakan Mangga (Sumber : MGA PRUTAS) Ethylene sebagi hormon akan mempercepat terjadinya klimakterik. Biale (1960) telah membuktikan bahwa pada buah adpokat yang disimpan di udara biasa akan matang setelah 11 hari, tetapi apabila disimpan dalam udara dengan kandungan ethylene 10 ppm selama 24 jam buah adpokat tersebut akan matang dalam waktu 6 hari. Aplikasi C2H2 (Ethylene) pada buah-buahan klimakterik, makin besar konsentrasi C2H2 sampai tingkat kritis makin cepat stimulasi respirasinya. Ethylene tersebut bekerja paling efektif pada waktu tahap klimakerik, sedangkan penggunaan C2H2 pada tahap post klimakerik tidak merubah laju respirasi. Pada buah-buahan non klimakterik respon terhadap penambahan ethylene baik pada buah pra panen maupun pasca panen, karena produksi ethylene pada buah non klimakterik hanya sedikit. Dari penelitian Burg dan Burg (1962), juga dapat diketahui bahwa ethylene merangsang pemasakan klimakerik. Sedangkan menurut Winarno (1979) dikatakan bahwa uah-buahan non klimakterik akan mengalami klimakterik setelah ditambahkan ethylene dalam jumlah yang besar. Sebagai contoh buah non klimakterik untuk percobaannya adalah jeruk. Di samping itu pada buah-buahan non klimakterik apabila ditambahkan ethylene beberapa kali akan terjadi klimakterik yang berulang-ulang. 19 Penelitian Mattoo dan Modi (1969) telah menunjukkan bahwa C2H2 meningkatkan kegiatan enzym-enzym katalase, peroksidase, dan amylase dalam irisanirisan mangga sebelum puncak kemasakannya. Serta selama pemacuan juga diketemukan zat-zat serupa protein yang menghambat pemasakan, dalam irisan-irisan itu dapat hilang dalam waktu 45 jam. Perlakuan dengan C2H2 mengakibatkan irisan-irisan menjadi lunak dan tejadi perubahan warna yang menarik dari putih ke kuning, yang memberi petunjuk timbulnya gejala-gejala kematangan yang khas. 2.3.5 Ethylene Pada Absisi Daun Kehilangan daun pada setiap musim gugur merupakan suatu adaptasi untuk menjaga agar tumbuhan yang berganti daun, selama musim dingin tetap hidup ketika akar tidak bisa mengabsorpsi air dari tanah yang membeku. Sebelum daun itu mengalami absisi, beberapa elemen essensial diselamatkan dari daun yang mati, dan disimpan di dalam sel parenkhim batang. Nutrisi ini dipakai lagi untuk pertumbuhan daun pada musim semi berikutnya. Warna daun pada musim gugur, merupakan suatu kombinasi dari warna pigmen merah yang baru dibuat selama musim gugur, dan warna karotenoid yang berwarna kuning dan orange, yang sudah ada di dalam daun, tetapi kelihatannya berubah karena terurainya klorofil yang berwarna hijau tua pada musim gugur. Ketika daun pada musim gugur rontok, maka titik tempat terlepasnya daun merupakan suatu lapisan absisi yang berlokasi dekat dengan pangkal tangkai daun. Sel parenkhim berukuran kecil dari lapisan ini mempunyai dinding sel yang sangat tipis, dan tidak mengandung sel serat di sekeliling jaringan pembuluhnya. Lapisan absisi selanjutnya melemah, ketika enzimnya menghidrolisis polisakarida di dalam dinding sel. Akhirnya dengan bantuan angin, terjadi suatu pemisahan di dalam lapisan absisi. Sebelum daun itu jatuh, selapisan gabus membentuk suatu berkas pelindung di samping lapisan absisi dalam ranting tersebut untuk mencegah patogen yang akan menyerbu bagian tumbuhan yang ditinggalkannya. (Sumber : Campbell dan Reece, 2002 : 816) 2.3.6 Ethylene dan Permeablitas Membran Ethylene adalah senyawa yang larut di dalam lemak sedangkan memban dari sel terdiri dari senyawa lemak. Oleh karena itu ethylene dapat larut dan menembus ke dalam membran mitochondria. Apabila mitochondria pada fase pra klimakterik diekraksi kemdian 20 ditambah ethylene, ternyata terjadi pengembangan volume yang akan meningkatkan permeablitas sel sehingga bahan-bahan dari luar mitochondria akan dapat masuk. Dengan perubahan-perubahan permeabilitas sel akan memungkinkan interaksi yang lebih besar antara substrat buah dengan enzym-enzym pematangan. 2.3.7 Ethylene dan Aktiitas ATP-ase Ethylene mempunai peranan dalam merangsang aktiitas ATP-ase dalam penyediaan energi yang dibutuhkan dalam metabolisme. ATP-ase adalah suatu enzym yang diperlukan dalam pembuatan enegi dari ATP yang ada dalam buah. Adapun reaksinya adalah sebagai berikut: ATP ----------------------- -------------------------- ATP-ase 2.3.8 Ethylene sebagai “Genetic Derepression” Pada reaksi biolgis ada dua faktor yang mengontrol jalannya reaksi. Yang pertama adalah “Gene repression” yang menghambat jalannya reaksi yang berantai untuk dapat berlangsung terus. Yang kedua adalah “Gene Derepression” yaitu faktor yang dapat menghilangkan hambatan tersebut sehingga reaksi dapat berlangsun. Selain itu ethylene mempengaruhi proses-proses yang tejadi dalam tanaman termasuk dalam buah, melalui perubahan pada RNA dan hasilya adalah perubahan dalam sintesis protein yang diatur RNA sehingga pola-pola enzym-enzymnya mengalami perubahan pula. 2.3.9 Interaksi Ethylene dengan Auxin Di dalam tanaman ethylene mengadakan interaksi dengan hormon auxin. Apabila konsentrasi auxin meningkat maka produksi ethylen pun akan meningkat pula. Peranan auxin dalam pematangan buah hanya membantu merangsang pembentukan ethylene, tetapi apabila konsentrasinya ethylene cukup tinggi dapat mengakibatkan terhambatnya sintesis dan aktifitas auxin. 2.3.10 Produksi dan Aktifitas Ethylene Pembentukan ethylene dalam jaringan-jaringan tanaman dapat dirangsang oleh adanya kerusakan-kerusakan mekanis dan infeksi. Oleh karena itu adanya kerusakan mekanis pada buah-buahan yang baik di pohon maupun setelah dipanen akan dapat mempercepat 21 pematangannya. Penggunaan sinar-sinar radioaktif dapat merangsang produksi ethylene. Pada buah Peach yang disinari dengan sinar gama 600 krad ternyata dapat mempercepat pembentukan ethylene apabila dibeika pada saat pra klimakterik, tetapi penggunaan sinar radioaktif tersebut pada saat klimakterik dapat menghambat produksi ethylene. Produksi ethylene juga dipengaruhi oleh faktor suhu dan oksigen. Suhu renah maupun suhu tinggi dapat menekan produk si ethylene. Pada kadar oksigen di bawah sekitar 2 % tidak terbentuk ethylene, karena oksigen sangat diperlukan. Oleh karena itu suhu rendah dan oksigen renah dipergunakan dalam praktek penyimpanan buahbuahan, karena akan dapat memperpanjang daya simpan dari buah-buahan tersebut.Aktifitas ethylene dalam pematangan buah akan menurun dengan turunnya suhu, misalnya pada Apel yang disimpan pada suhu 30 C, penggunaan ethylene dengan konsentrasi tinggi tidak memberikan pengaruh yang jelas baik pada proses pematangan maupun pernafasan. Pada suhu optimal untuk produksi dan aktifitas ethylene pada bah tomat dan apel adalah 320 C, untuk buah-buahan yang lain suhunya lebih rendah. 2.4 Aplikasi Zpt Pada Bidang Pertanian Seperti yang telah dibahas dimuka, ZPT sintetik sangat banyak digunakan pada pertanian modern. Tanpa ZPT sintetik untuk mengendalikan gulma, atau untuk mengendalikan pertumbuhan dan pengawetan buah-buahan, maka produksi bahan makanan akan berkurang sehingga harganya akan menjadi mahal.Disamping itu, muncul keprihatinan bahwa penggunaan senyawa sintetik secara berlebihan pada produksi pangan akan menimbulkan masalah lingkungan dan kesehatan serius. Sebagai conto dioksin, senyawa kimia sampingan dari sintesa 2, 4-D yang digunakan sebagai herbisida selektif untuk membasmi gulma berdaun lebar dari tumbuhan dikotil. Walaupun 2, 4-D tidak beracun terhadap mamalia, namun dioksin dapat menyebabkan cacat lahir, penyakit hati, dan leukimia pada hewan percobaan.Sekarang ini, bagaimanapun juga, produksi bahan pangan secara organik menjadi relatif lebih mahal. Persoalan penggunaan senyawa kimia sintetik pada bidang pertanian melibatkan aspek ekonomi dan etika. Haruskah kita teruskan memproduksi pangan yang murah dan berlimpah dengan zat kimia sintetik dan masa bodoh terhadap masalah yang mungkin muncul, atau haruskah kita melakukan budidaya tanaman tanpa zat kimia sintetik berbahaya tetapi dengan menerima kenyataan bahwa harga bahan pangan akan lebih mahal. 22 Pada metode kultur jaringan penggunaan auksin dan sitokinin sudah banyak digunakan. Menurut Gunawan (1987) bahwa jika konsentrasi auksin lebih besar daripada sitokinin maka kalus akan tumbuh, dan bila konsentrasi sitokinin lebih besar dibandingkan auksin maka tunas akan tumbuh. Hasil penelitian yang dilakukan oleh Sudarmaji (2000) mengenai penentuan konsentrasi yang tepat pada pertumbuhan kalus kapas menunjukkan bahwa pemebrian BAP dengan konsentrasi 2 mg/l pada kalus dari kapas varietas Coker 500 menghasilkan pertumbuhan yang lebih cepat dan kuantitas kalus yang paling baik. BAP pada konsentrasi 3 mg/l menghasilkan bobot akhir kalus paling tinggi (1,65 g). Penelitian selanjutnya yang dilakukan oleh Pudji Rahardjo dan Gatut-Suprijadji ( 2001) mengenai Pengaruh Panjang Sayatan dan Konsentrasi NAA Terhadap Perakaran Setek Daun Bermata Tunas Kopi Robusta menunjukkan bahwa panjang sayatan 3 cm dan 4 cm menyebabkan persentase setek berakar mencapai 90%, jumlah akar rata-rata 1,9-2,0, panjang akar mencapai 8,7-9,6 cm, panjang tunas 1,3-2,4 cm dan berat kering tunas 14,15-14,94 mg. Pemberian zat tumbuh NAA dengan konsentrasi 1.000 ppm, 1.500 ppm, dan 2.000 ppm tidak mampu meningkatkan persentase setek berakar, jumlah akar, panjang akar, dan panjang tunas. Pembentukan umbi mikro kentang dipengaruhi oleh adanya keseimbangan antara hormon perangsang dan penghambat yang terdapat dalam tanaman tersebut. Auksin dan giberelin secara umum diketahui sebagai hormon penghambat pembentukan umbi, sedangkan untuk mempelajari proses pengumbian in vitro dapat digunakan sitokinin dan zat pengatur tumbuh yang termasuk dalam kelompok inhibitor atau retardan. Sitokinin yang tinggi dapat diberikan secara eksogen, sedangkan untuk merendahkan giberelin endogen dapat diberikan retardan yang akan menghambat biosintesis giberelin. Hasill penelitian yang dilakukan oleh Samanhudi dkk (2002) menunjukkan bahwa pemberian paclobutrazol 0,2 ppm dapat meningkatkan jumlah umbi mikro yang terbentuk. Dengan adanya penambahan paklobutrazol 0,2 ppm, persentase tanaman yang membentuk umbi 30% lebih banyak dari pada tanaman yang tidak diberi paklobutrazol. Penambahan paklobutrazol 0,2 ppm juga memberikan jumlah umbi dan berat basah yang lebih tinggi berturut-turut sebesar 24% dan 30% dibanding planlet yang tidak Diperlakukan. Adanya peningkatan persentase planlet yang membentuk umbi, terbentuknya jumlah umbi dan berat basah sesuai dengan penelitian-penelitian yang pernah dilakukan sebelumnya (Balamani and Pooviah, 1985; Harvey et.al., 1991; Simko, 1993). Hal ini tampaknya disebabkan karena pengaruh dari paklobutrazol yang merupakan suatu zat perlambat biosintesa gibberellin sehingga kandungan GA-nya menjadi rendah dan 23 mendorong terbentuknya umbi. Hal ini juga dikemukakan oleh Gunawan (1995) akan meningkat bila ke dalam media ditambahkan zat penghambat tumbuh seperti ancymidol atau paklobutrazol. Dari penelitian ini diperoleh suatu gambaran hubungan antara konsentrasi paklobutrazol dengan jumlah umbi yang terbentuk yang menunjukkan bahwa peningkatan paklobutrazol sampai konsentrasi sekitar 0,4 ppm akan meningkatkan jumlah umbi yang terbentuk dan setelah itu adanya peningkatan konsentrasi akan mengakibatkan jumlah umbi yang terbentuk menurun. Penelitian mengenai Pengaruh Vernalisasi, Giberelin, dan Auxin terhadap Pembungaan dan Hasil Biji Bawang Merah yang dilakukan oleh Nani Sumarni dan Etty Sumiati (2001) menunjukkan bahwa hasil biji TSS (True Shallot Seed) atau hasil biji bawang merah tertinggi diperoleh dengan perlakuan vernalisasi dan aplikasi 200 ppm GA3 + 50 ppm NAA, yaitu sebesar 17,92 kg/ha. Namun, perlakuan vernalisasi dan aplikasi 100 ppm GA3 juga memberikan hasil biji TSS yang cukup tinggi dan lebih efisien dari segi penggunaan zat pengatur tumbuhnya, yaitu sebesar 13,42 kg/ha (efisiensi lahan 80%). Hasil penelitian ini dapat dijadikan acuan dalam meningkatkan produksi biji bawang merah. 24 BAB III PENUTUP 3.1 Kesimpulan Dari pembahasan di atas dapat disimpulkan: a) Etilen adalah suatu gas yang dapat digolongkan sebagai zat pengatur pertumbuhan (phytohormon) yang aktif dalam pematangan. Dapat disebut sebagai hormon karena telah memenuhi persyaratan sebagai hormon, yaitu dihasilkan oleh tanaman, besifat mobil dalam jaringan tanaman dan merupakan senyawa organik. b) Peranan Etilen: mendukung respirasi climacteric dan pematangan buah mendukung epinasti menghambat perpanjangan batang (elengation growth) dan akar pada beberapa species tanaman walaupun ethylene ini dapat menstimulasi perpanjangan batang, coleoptyle dan mesocotyle pada tanaman tertentu, misalnya Colletriche dan padi. Menstimulasi perkecambahan Menstimulasi pertumbuhan secara isodiametrical lebih besar dibandingkan dengan pertumbuhan secara longitudinal Mendukung terbentuknya bulu-bulu akar Mendukung terjadinya abscission pada daun Mendukung proses pembungaan pada nanas. Mendukung adanya flower fading dalam persarian anggrek Menghambat transportasi auxin secara basipetal dan lateral 3.2 Saran Saran yang kelompok kami tujukan adalah untuk: a) Pembaca Setelah pembaca membaca makalah yang berjudul Etilen (definisi, manfaat dan peranannya dalam kehidupan sehari- hari) diharapkan dapat menambah khasanah pengetahuan pembaca.Sehingga dapat mengaplikasikannya dalam kehidupan sehari-hari. 25 b) Pengelola pemuliaan tanaman/hobbies tanaman Dengan adanya makalah tersebut diharapkan para pengelola tanaman maupun hobbies tanaman untuk meningkatkan kualitas tanaman yang telah dikelolanya lebih utamanya dari aspek hasil tanaman yang berupa buah. Dengan mengetahui teknik pemulian hasil tanaman yang lebih berkualitas sehingga dapat mendatangkan passive income pengelola tanaman dan hobbies tanaman. 26 yang lebih meningkat bagi para DAFTAR PUSTAKA Salisbury, Frank B dkk Alih Bahasa Dr. Diah R Lukma dkk.1995. Fisiologi Tumbuhan Jilid 3.Bandung: ITB http://wordbiology.wordpress.com/2009/01/20/pemasakan-buah/ http://perkebunankaret.blogspot.com/2010/05/faktor-yang-mempengaruhi-efektivitas.html http://sugihsantosa.atspace.com/artikel/zpt.html http://blog.uad.ac.id/ninikmulyaningsih/files/2011/12/Hormon-tumbuhan1.pdf http://maretbio01cs.weebly.com/uploads/4/6/2/8/4628764/02_bab1.pdf 27