Logika LOGIKA Standar Kompetensi Lulusan (SKL) Uraian

advertisement
Logika
LOGIKA
Standar Kompetensi Lulusan (SKL)
Memahami pernyataan dalam matematika dan
ingkarannya, menentukan nilai kebenaran
pernyataan
majemuk,
serta
mampu
menggunakan prinsip logika matematika dalam
pemecahan masalah
Uraian
Logika
 Nilai kebenaran pernyataan
majemuk
 Ingkaran suatu pernyataan
 Penarikan kesimpulan
A. Pernyataan, Kalimat Terbuka, Ingkaran

Pernyataan
pernyataan adalah kalimat tertutup yang mempunyai nilai benar saja atau
salah saja, tetapi tidak sekaligus benar dan salah.
Example:
3 x 4 = 12 (pernyataan tertutup yang benar)
3 + 4 = 12 (pernyataan tertutup yang salah)

Kalimat terbuka
Kalimat terbuka
merupakan pernyataan yang kebenarannya belum pasti
(belum bisa ditentukan nilai benar atau salahnya) .
Example:
Ada daun yang berwarna hijau
Gula putih rasanya manis

Ingkaran (negasi)
Ingkaran atau negasi suatu pernyataan adalah pernyataan yang menyangkal
pernyataan yang diberikan. Ingkaran suatu pernyataan dapat dibentuk
dengan menambah “Tidak benar bahwa ...” di depan pernyataan yang
diingkar. Ingkaran pernyataan dinotasikan dengan ~ p.
Example:
p : Tembakau yang mengandung nikotin.
~ p : Tidak benar bahwa tembakau mengandung nikotin.
Tabel kebenaran dari ingkaran
p
B
S
1|S u k s e s
UN
~p
S
B
Matematika/MA
Nurul
Huda/
By
Triyanti
Mandasari
Logika
B. Pernyataan Majemuk

Konjungsi
Pernyataan p dengan q dapat digabung dengan kata hubung logika “dan”
sehingga membentuk pernyataan majemuk “p dan q” yang disebut konjungsi.
Konjungsi “p dan q” dilambangkan dengan “𝑝 ∧ q”
Tabel kebenaran konjungsi
P
B
B
S
S

q
B
S
B
S
𝑝 ∧ q
Ingat:
B
S
S
S
𝑝 ∧ qbenar, apabila keduaduanya benar.
Disjungsi
Pernyataan p dengan q dapat digabung dengan kata hubung logika “atau”
sehingga membentuk pernyataan majemuk “p atau q” yang disebut disjungsi.
Disjungsi p atau q dilambangkan dengan “𝑝 ∨ q”
Tabel kebenaran disjungsi
P
B
B
S
S

q
B
S
B
S
𝑝 ∨ q
Ingat:
B
B
B
S
𝑝 ∨ q bernilai salah, apabila
kedua-duanya salah.
Implikasi
Pernyataan p dengan q dapat digabung menjadi satu pernyataan majemuk
menggunakan implikasi menjadi “𝑝 ⟶ 𝑞” (dibaca jika p maka q).
Tabel kebenaran implikasi
P
B
B
S
S

q
B
S
B
S
𝑝 ⟶ q
B
S
B
B
Ingat:
𝑝 ⟶ q bernilai salah, jika p
benar dan q salah.
Biimplikasi
Pernyataan p dengan q dapat dibentuk pernyataan baru (𝑝 ⟶ 𝑞) ∧ (𝑞 ⟶ 𝑝).
Pernyataan baru ini disebut implikasi dua arah atau biimplikasi atau
bikondisional. Biimplikasi pernyataan p dan q dinotasikan dengan “𝑝 ⇔ 𝑞”.
2|S u k s e s
UN
Matematika/MA
Nurul
Huda/
By
Triyanti
Mandasari
Logika
𝑝 ⇔ 𝑞 dibaca
p jika dan hanya jika
p ekuivalen dengan q
p syarat cukup dan perlu untuk q
Tabel kebenaran biimplikasi
P
B
B
S
S
q
B
S
B
S
𝑝 ⟶ q
B
S
S
B
Ingat:
𝑝 ⇔ q ≡ (𝑝 ⟶ 𝑞) ∧ (𝑞 ⟶ 𝑝)
C. Ingkaran dari Pernyataan Majemuk

Ingkaran / negasi dari konjungsi
~(𝑝 ∧ 𝑞) ≡ ~𝑝 ∨ ~𝑞

Ingkaran / negasi dari disjungsi
~(𝑝 ∨ 𝑞) ≡ ~𝑝 ∧ ~𝑞

Ingkaran / negasi dari implikasi
~(𝑝 ⟶ 𝑞) ≡ 𝑝 ∧ ~𝑞

Ingkaran / negasi dari biimplikasi
~(𝑝 ⇔ 𝑞) ≡ (𝑝 ∧ ~𝑞) ∨ (𝑞 ∧ ~𝑝)
~(𝑝 ⇔ 𝑞) ≡ 𝑝 ⇔ ~𝑞
~(𝑝 ⇔ 𝑞) ≡ ~𝑝 ⇔ 𝑞
D. Pernyataan Berkuantor dan Ingkarannya
Pernyataan berkuantor ditandai dengan kata “ada” yang dilambangkan dengan
“∃” dan kata “semua” atau “untuk setiap” yang dilambangkan dengan “∀”.
Example:
Ingkaran dari “semua bus kota bersih” adalah “tidak semua bus kota bersih”.
E. Konvers, Invers, dan Kontraposisi
Dari sebuah implikasi dapat diturunkan pernyataan yang disebut konvers, invers
dan kontraposisi dari implikasi tersebut.
Jika diketahui implikasi 𝑝 ⟶ 𝑞 maka:
Konversnya adalah 𝑞 ⟶ 𝑝
𝑝 ⟶ 𝑞 ≡ ~𝑞 ⟶ ~𝑝
Inversnya adalah ~𝑝 ⟶ ~𝑞
𝑝 ⟶ 𝑞 ≡ ~𝑝 ⟶ ~𝑞
Kontraposisi adalah ~𝑞 ⟶ ~𝑝
3|S u k s e s
UN
Matematika/MA
Catatan:
Nurul
Huda/
By
Triyanti
Mandasari
Logika
F. Penarikan Kesimpulan
Di dalam logika matematika ada beberapa penarikan kesimpulan yang sah
diantaranya:



Modus Ponens
Premis 1
:𝑝⟶𝑞
Premis 2
:𝑝
Konklusi
:𝑞
Modus Tolens
Premis 1
:𝑝⟶𝑞
Premis 2
: ~𝑞
Konklusi
: ~𝑝
Silogisme
Premis 1
:𝑝⟶𝑞
Premis 2
:𝑞 ⟶𝑟
Konklusi
:𝑝⟶𝑟
KAJI SOAL UN
1. Diketahui pernyataan :
1. Jika hari panas, maka Ani memakai topi.
2. Ani tidak memakai topi atau ia memakai payung.
3. Ani tidak memakai payung.
Kesimpulan yang sah adalah... (UN 2007 P12)
a. Hari panas.
b. Hari tidak panas.
c. Ani memakai topi.
d. Hari panas dan Ani memakai topi.
e. Hari tidak panas dan Ani memakai topi.
2. Ingkaran dari pernyataan “Beberapa bilangan prima adalah bilangan genap”
adalah.... (UN 2008 P12)
a. Semua bilangan prima adalah bilangan genap.
b. Semua bilangan prima bukan bilangan genap.
c. Beberapa bilangan prima bukan bilangan genap.
d. Beberpa bilangan genap bukan bilangan prima.
e. Beberapa bilangan genap adalah bilangan prima.
4|S u k s e s
UN
Matematika/MA
Nurul
Huda/
By
Triyanti
Mandasari
Logika
3. Diketahui premis-premis
(1) Jika Badu rajin belajar dan patuh pada orang tua, maka Ayah membelikan
bola basket.
(2) Ayah tidak membelikan bola basket.
Kesimpulan yang sah adalah.... (UN 2008 P12)
a. Badu rajin belajar dan Badu patuh pada orang tua.
b. Badu tidak rajin belajar dan Badu tidak patuh pada orang tua.
c. Badu tidak rajin belajar atau Badu tidak patuh pada orang tua.
d. Badu tidak rajin belajar dan Badu patuh pada orang tua.
e. Badu rajin belajar atau Badu tidak patuh pada orang tua.
4. Perhatikan premis-premis berikut!
1. Jika saya giat belajar maka saya bisa meraih juara.
2. Jika saya bisa meraih juara maka saya boleh ikut bertanding.
Ingkaran dari kesimpulan kedua premis di atas adalah... (UN 2009 P12)
a. Saya giat belajar dan saya tidak boleh ikut bertanding.
b. Saya giat belajar atau saya tidak boleh ikut bertanding.
c. Saya giat belajar maka saya bisa meraih juara.
d. Saya giat belajar dan saya boleh ikut bertanding.
e. Saya ikut bertanding maka saya giat belajar.
5. Diketahui premis-premis berikut! (UN 2010 P04)
1. Jika sebuah segitiga siku-siku, maka salah satu sudutnya 90°
2. Jika salah satu sudut segitiga 90°, maka berlaku theorema Phytagoras.
Ingkaran dari kesimpulan yang sah pada premis-premis di atas adalah....
a. Jika sebuah segitiga siku-siku, maka berlaku theorema Phytagoras
b. Jika sebuah segitiga bukan siku-siku, maka berlaku theorema Phytagoras
c. Sebuah segitiga siku-siku atau tidak berlaku theorema Phytagoras
d. Sebuah segitiga siku-siku dan tidak berlaku theorema Phytagoras
e. Sebuah segitiga siku-siku dan berlaku theorema Phytagoras
6. Penarikan kesimpulan yang sah dari argumentasi berikut : (UN 2006)
Jika Siti sakit maka dia pergi ke dokter
Jika Siti pergi ke dokter maka dia diberi obat.
a. Siti tidak sakit atau diberi obat
d. Siti sakit atau diberi obat
b. Siti tidak sakit atau tidak diberi obat
e. Siti sakit dan diberi obat
c. Siti tidak sakit dan tidak diberi obat
5|S u k s e s
UN
Matematika/MA
Nurul
Huda/
By
Triyanti
Mandasari
Logika
7. Invers dari pernyataan p → ( p Λ q )....... (UN 2005)
a. (~p Λ ~q ) → ~p
d. (~p V ~q ) → ~p
b. ~p → (~p Λ ~q )
e. ~p → (~p Λ q )
c. ~p → (~p V ~q )
8. Diketahui premis-premis (UN 2011))
(1) Jika hari hujan, maka ibu memakai payung
(2) Ibu tidak memakai payung
Penarikan kesimpulan yang sah dari premis-premis tersebut adalah….
a. Hari tidak hujan
d. Hari hujan dan Ibu memakai payung
b. Hari hujan
e. Hari tidak hujan dan Ibu memakai payung
c. Ibu memakai payung
9. Perhatikan premis-premis berikut ini!
1. Jika Adi murid rajin, maka Adi murid pandai
2. Jika Adi murid pandai, maka ia lulus ujian
Ingkaran dari kesimpulan di atas adalah.... (UN 2010)
a. Jika Adi murid rajin, maka ia tidak lulus ujian
b. Adi murid rajin dan ia tidak lulus ujian
c. Adi bukan murid rajin atau ia lulus ujian
d. Jika Adi bukan murid rajin, maka ia tidak lulus ujian
e. Jika Adi murid rajin, maka ia lulus ujia
10. Diberikan premis sebagai berikut :
Premis 1 : Jika harga BBM naik, maka harga bahan pokok naik.
Premis 2 : Jika harga bahan pokok naik maka semua orang tidak senang.
Ingkaran dari kesimpulan di atas adalah:
a. Harga BBM tidak naik.
b. Jika harga bahan pokok naik, maka ada orang tidak senang.
c. Harga bahan pokok naik atau ada orang tidak senang.
d. Jika semua orang tidak senang, maka harga BBM naik.
e. Harga BBM naik dan ada orang
11. Kontraposisi dari pernyataan majemuk p → ( p V ~q ) adalah …. (UN 2001)
a. ( p V ~q ) → ~p
d. (~p Λ q ) → ~p
b. ( p V ~q ) → p
e. (~p V q ) → ~p
c. ( p Λ ~q ) → ~p
6|S u k s e s
UN
Matematika/MA
Nurul
Huda/
By
Triyanti
Mandasari
Logika
12. Diketahui premis-premis berikut:
Premis I : Jika hari ini hujan maka saya tidak pergi
Premis II : Jika saya tidak pergi maka saya nonton sepak bola
Kesimpulan yang sah dari penarikan kedua premis tersebut adalah ….
a. Jika hujan maka saya tidak jadi nonton sepak bola
b. Jika hari ini hujan maka saya nonton sepak bola
c. Hari hujan dan saya nonton sepak bola
d. Saya tidak nonton sepak bola atau hari tidak hujan
e. Hari tidak hujan, saya tidak pergi tetapi saya nonton sepak bola
13. Negasi dari pernyataan “Jika ada ujian sekolah maka semua siswa belajar
dengan rajin.” adalah ….
a. Ada ujian sekolah dan semua siswa tidak belajar dengan rajin
b. Ada ujian sekolah dan beberapa siswa tidak belajar dengan rajin
c. Ada ujian sekolah dan ada siswa yang belajar dengan rajin
d. Tidak ada ujian sekolah dan semua siswa belajar dengan rajin
e. Tidak ada ujian sekolah dan beberapa siswa tidak belajar dengan rajin
14. Diketahui premis-premis sebagai berikut :
Premis 1 : Jika hari ini hujan deras, maka Bona tidak ke luar rumah.
Premis 2 : Bona keluar rumah.
Kesimpulan yang sah dari premis-premis tersebut adalah ... (UN 2011/202 PA63)
a. Hari ini hujan deras
b. Hari ini hujan tidak deras.
c. Hari ini hujan tidak deras atau Bona tidak keluar rumah.
d. Hari ini tidak hujan dan Bona tidak keluar rumah.
e. Hari ini hujan deras atau Bona tidak keluar rumah.
15. Ditentukan premis – premis :
1. Jika Badu rajin bekerja maka ia disayang ibu.
2. Jika Badu disayang ibu maka ia disayang nenek
3. Badu tidak disayang nenek
Kesimpulan yang sah dari ketiga premis diatas adalah …. (UN 2003)
a. Badu rajin bekerja
d. Badu tidak rajin bekerja
b. Badu disayang ibu
e. Badu disayang nenek
c. Badu rajin bekerja tetapi tidak disayang ibu
7|S u k s e s
UN
Matematika/MA
Nurul
Huda/
By
Triyanti
Mandasari
Logika
16. Ingkaran pernyataan “Jika semua anggota keluarga pergi, maka semua pintu
rumah dikunci rapat” adalah …. (UN 2011/2012 PA63)
a. Jika ada anggota keluarga yang tidak pergi maka ada pintu rumah yang tidak
dikunci rapat.
b. Jika ada pintu rumah yang tidak dikunci rapat maka ada anggota keluarga
yang tidak pergi.
c. Jika semua pintu rumah ditutup rapat maka semua anggota keluarga pergi.
d. Semua anggota keluarga pergi dan ada pintu rumah yang tidak dikunci rapat.
e. Semua pintu rumah tidak dikunci rapat dan ada anggota keluarga yang tidak
pergi.
17. Diketahui pernyataan :
1. Jika hari panas, maka Ani memakai topi
2. Ani tidak memakai topi atau ia memakai paying
3. Ani tidak memakai payung
Kesimpulan yang sah adalah …. (UN 2007)
a. Hari panas
d. Hari panas dan Ani memakai topi
b. Hari tidak panas
e. Hari tidak panas dan Ani memakai topi
c. Ani memakai topi
18. Diketahui premis berikut :
1. Jika Budi rajin belajar maka ia menjadi pandai.
2. Jika Budi menjadi pandai maka ia lulus ujian.
3. Budi tidak lulus ujian.
Kesimpulan yang sah adalah …. (UN 2005)
a. Budi menjadi pandai
d. Budi rajin belajar
b. Budi lulus ujian
e. Budi tidak pandai
c. Budi tidak rajin belajar
19. Penarikan kesimpulan dengan menggunakan modus tolens didasarkan atas
suatu pernyataan majemuk yang selalu berbentuk tautologi untuk setiap kasus.
Pernyataan yang dimaksud adalah …. (UN 2002)
a. ( p → q ) Λ p → q
b. ( p → q ) Λ ~q → ~p
c. ( p → q ) Λ p → ( p Λ q )
d. ( p → q ) Λ ( q → r ) → ( p → r )
e. ( p → q ) Λ ( p → r ) → ~ ( q → r )
8|S u k s e s
UN
Matematika/MA
Nurul
Huda/
By
Triyanti
Mandasari
Logika
20. Ingkaran dari pernyataan “ Beberapa bilangan prima adalah bilangan genap “
adalah …. (UN 2008)
a. Semua bilangan prima adalah bilangan genap
b. Semua bilangan prima bukan bilangan genap
c. Beberapa bilangan prima bukan bilangan genap
d. Beberapa bilangan genap bukan bilangan prima
e. Beberapa bilangan genap adalah bilangan prima
21. Kalimat berikut ini yang bukan merupakan pernyataan adalah …..
a. Keracunan dapat terjadi dari udang
b. Kapang merupakan micro organisme
c. Kebanyakan alkohol membahayakan jiwa
d. Jelaskan fungsi pembersih yang baik
e. Diare termasuk jenis penyakit menular
22. Ingkaran
(negasi)
dari
pernyataan
”
Semua
siswa
SMK
harus
melaksanakanPSG” :
a. Semua siswa SMK tidak harus melaksanakan PSG
b. Beberapa siswa SMK harus melaksanakan PSG
c. Tidak semua siswa SMK harus melaksanakan PSG
d. Ada siswa SMK yang tidak harus melaksanakan PSG
e. Ada siswa SMK yang harus melaksanakan PSG
23. Ingkaran dari pernyataan “Ada siswa yang berprestasi dan semua guru
mengucapkan selamat” adalah …………..
a. Semua siswa berprestasi dan ada guru yang tidak mengucapkan selamat
b. Ada siswa yang berprestasi dan semua guru tidak mengucapkan selamat
c. Semua siswa berprestasi atau ada guru yang mengucapkan selamat
d. Semua siswa tidak berprestasi atau ada guru yang tidak mengucapkan
selamat
e. Ada siswa yang tidak berprestasi dan semua guru tidak mengucapkan
selamat
24. Negasi dari pernyataan ” Jika upah buruh naik, maka harga barang naik” adalah!
a. Jika upah buruh tidak naik, maka harga barang naik
b. Jika harga barang naik, maka upah buruh naik
c. Upah buruh naik dan harga barang tidak naik
d. Upah buruh naik dan harga barang naik
e. Harga barang naik jika dan hanya jika upah buruh naik
9|S u k s e s
UN
Matematika/MA
Nurul
Huda/
By
Triyanti
Mandasari
Logika
25. Invers dari pernyataan “Jika petani menanam padi maka harga beras turun”
a. Jika petani menanam padi maka harga beras tidak turun
b. Jika petani tidak menanam padi maka harga beras turun
c. Jika harga beras turun maka petani menanam padi
d. Jika harga beras tidak turun maka petani tidak menanam padi
e. Jika petani tidak menanam padi maka harga beras tidak turun
26. Kontraposisi dari pernyataan “Jika petani tidak menanam padi maka harga beras
naik” adalah …..
a. Jika petani menanam padi maka harga beras turun”
b. Jika petani tidak menanam padi maka harga beras tidak naik”
c. Jika harga beras naik maka petani tidak menanam padi
d. Jika harga beras tidak naik maka petani menanam padi
e. Jika petani menanam padi maka harga beras tidak naik”
27. Konvers dari pernyataan: ” Jika saya sakit maka saya tidak masuk sekolah”
adalah ….
a. Jika saya sakit maka saya tidak masuk sekolah
b. Jika saya tidak sakit maka saya masuk sekolah
c. Jika saya tidak masuk sekolah maka saya sakit
d. Jika saya tidak masuk sekolah maka saya tidak sakit
e. Jika saya tidak sakit maka saya tidak masuk sekolah
DAFTAR PUSTAKA
 http://matematika-15.blogspot.com/2012/02/logika-matematika.html
 http://matematikastudycenter.com/bank-soal-un-mtk-sma/25-bank-soal-unmatematika-sma-logika
 http://matematikatips.blogspot.com/2012/11/soal-soal-logika-matematikadan.html
 http://mtksmam.blogspot.com/2012/05/pembahasan-soal-un-2012-logika.html
 http://abuindri.wordpress.com/2012/01/08/soal-logika-matematika-1/
 http://dzaitun.wordpress.com/2008/01/22/soal-un-logika-matematika/
10 | S u k s e s
UN
Matematika/MA
Nurul
Huda/
By
Triyanti
Mandasari
Download