39 DAFTAR PUSTAKA Ames, B.N.(1989), Endogenous DNA damage as related to cancer and aging. Mutat.res., 214, 41-46 Anderson, S., Bankier, A. T., Barrel, B. G., de Bruijn, M. H., Coulson,A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., Staden, R., dan Young, I. G. (1981), Sequence and Organization of the Human Mitochondrial Genome, Nature, 290 (5806), 457-467 Andrews, R.M., Kubacka, I., Chinnery, P.F., Lightowlers, R.N., Turnbull, D.M. and Howell, N. (1999), Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA, Nature genetics, 23, 147 Barnes, M.W. (1994), PCR amplification of up to 35-kb DNA with high fidelity and high yield from λ bacteriophage templates, proc. Natl. Acad.Sci. USA, 91, 2216-2220 Clayton, D.A. (1991), Nuclear gadgets in mitochondrial DNA replication and transcription. Trends Biochem.,16, 107 Cheng, S., Fockler, C.,Barnes, M.W., and Higuchi, R. (1994), Effective amplification of long target from cloned inserts and human genomic DNA, Proc. Natl.Acad.Sci.USA, 91, 5695-5699 Cheng, S., Kolmodulin, L.A. (1997), XL PCR amplification of long targets from genomic DNA, Methods in Molecular Biology : PCR Cloning Protocols, edited by Bruce A. White, 67, Humana Press, Totowa, New Jersey, 1729 Cooper, G.M. (2000), Nuclear gadgets in mitochondrial DNA replication and transcription, Trends. Biochem, 16, 107 DNASTAR (1997), Lasergene : Sofware for windows, User’s guide. DNASTAR Inc. Gill, P. (2001), Biological evidence (including hair), 13th interpol Forensic Sciece Symposium, Lyon, France Guo, Guang Xue., Guo, Qiao-Nan. (2006), Mutations in the mitochondrial DNA D-Loop region occur frequently in human osteosarcoma. Cancer Letters, 239, 151–155 40 Grzybowski, T., (2000), Extremely High Levels of Human Mitochondrial DNA Heteroplasmy in Single Hair Roots, Electrophoresis, 2f, 548-553 Horaiet, S., Hayasaka, K., Kondo, R., Tsugane, K., and Takahata, N. (1995), Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs, Proc. Natl.Acad. Sci. Usa. 92, 532-536 Holland, M.M. (1997), Automated DNA sequence Analysis ; sequencing mitochondrial DNA. Congress of forensic Science and Human Identify. Innsbruch, Austria. Ivanov, P.L., Wadhams, M.J., Roby, R.K., Holland, M.M., Weedn, W.V., Parsons, T.J.(1996), Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia georgij Romanov establishes the authencity of the remains of Tsar Nicholas II. Nat. Gen., 12, 417-420 Innis, M.A., Gelfand, D.H. (1990), Optimation of PCRs, PCR protocols : A guide to Methods and Aplications, Academic Press, Inc., california, 3-12 DeLong Frost., Peart. (2003), DNA isolation from a dried blood sample, PCR amplification, and population analysis: Making the most of commercially vailable kits, Biochem. Mol. Biol. Educ. 31, 418–421 Liu San,C., Ko Yon,L., Lim Seong, P., Kao Huei,S., Wei,Huei,Y. (2001), Biomarkers of DNA Damage in Patients with end-stage renal disease : mitochondrial DNA mutation in Hair Follicles, Nephrol Dial Transplant, 16, 561-565 Karp, G. (1999), Cell and Molecular Biology : Concept and Experiments, 2nd edition, John Wiley & Sons, Inc., New York, Chichester, Weinheim, Brisbane, Toronto, Singapore, 182-191 Knight, B. (1991), Simpson’s forensic medicine. 10th ed. Edward Arnold, London. Melbourne. Aucland, 46-56 Malik, S., Sudoyo, H., Pramoonjago, P., Suryadi, H., Sukarna, T., Njunting, M., Sahiratmadja, E., Marzuki, S. (2002), Nuclear Mitochondrial Interplay in the Modulation of the Homopolymeric Tract Length Heteroplasmy in the Control (D-loop) Region of the Mitochondrial DNA, Hum Genet, 110 , 402-411 Marzuki, S., Noer, A.S., Letrit, P., Thyagarajan, D.,Kapsa, R., Utthanaphol, P., Byrne, E. (1991), Normal variants of human mitochondrial DNA and translation products; the building of a reference database, Hum.Genet., 88, 139-145 41 Melton, T., Nelson, K. (2001), Forensic mtDNA analysis: Two years of commercial casework experience in the United States, Croation Medical Journal, 42, 298-303 Moore, J.M., Isenberg, A.R. (1999), Mitochondrial DNA analysis of the FBI laboratory, Forensic Science Communicaion, 1,2 Moraes, C.T., Kenyon, L., Keshav, K.S. (1999), Mechanisms of human mitochondrial DNA maintenance : The determining role of primary sequence and length over fungtion, Mol. Biol. Cell, 10, 3345-3356 Noer, A. S., Martasih, F., Mulyani, S., Muktiningsih, Wirahadikusumah, M. (1994), Analisis Varian Urutan Nukleotida D-loop mtDNA Manusia dari Berbagai Daerah di Indonesia, Proseeding Seminar Bersama UKM-ITB, I, 201-214 Newton, C.R., and Graham, A. (1997), PCR, 2nd edition, BIOS Scientific Publisher Limited, UK Rahmadi, B. (2007), Metoda analisis 917 pasang basa daerah D-loop DNA Mitokondria manusia. Skripsi. Institut Teknologi Bandung. Robertson, M. (1996), Sequencing difficult template, Biomolecular techniques, University of Utah Robin, E.D., Wong, R. (1988), J. Cell. Phys. 136 : 507-513 Sambrook, J., Fritsch, E.F. Manitias, T. (1989), Molecular cloning : A laboratory manual, Vol. 1,2,3. Cold Spring Harbor Laboratory Press new York Trifunovic, A. (2006): Mitochondrial DNA and ageing. Biochimica et Biophysica Acta. 1757, 611–617 Tully, L. A., Steighner, R. J., Parsons, T. J., Holland, M. M., Prenger, V. L., Marino, M. A. (1999), A High Incidence of Mitochondrial DNA Heteroplasmy in Hypervariable I in Normal Human Tissues: Implications for Forensic Casework, 16, 561-565 Wallace, D. C. (1997), Review: Mitochondrial DNA in Aging and Disease, Scientific American, 22-29 Wei, Y. H., (1992), Mitochondrial DNA alterations as ageing-associated molecular events, Mutat. Res., 275, 145-155 42 Watson, J.D, Hopkins, N.H., Roberts. J.W., Steith, J.A., Weiner, A.M. (1987), Molecular biology of the gene, The Benjamin/Cummings Publishing Company Inc.California Wilson, M.R., Dizinno, J.A., Polanskey, D., Replogle, J., Budowle, B. (1995), Sequensing for Forensic Casework Analysis, International Journal of Legal Medicine, 108 (2), 68-74 Wilson, M.R., Polansky, D., Repogle, J., Dizinno, J.A., Budowle, B. (1997), A family exhibiting heteroplasmy in the human mitochondrial DNA control region reveals both somatic mosaicism and pronounced segregation of mitotypes, Hum Genet., 100, 167-171 44 Lampiran 1 : Hasil sekuensing dalam bentuk elektroforegram A. Individu umur 10 tahun B. Individu umur 20 tahun 45 C. Individu umur 30 tahun 46 D. Individu umur 40 tahun 47 48 49 E. Individu umur 80 tahun 50 51 52 Lampiran 2 : Urutan nukleotida 12 sampel dari lima individu yang berbeda umur Sampel Darah 10 Rambut 20 Darah Rambut 30 Darah Epitel Rambut Posisi Urutan nukleotida nukleotida 53 Darah Epitel 40 Rambut Darah 80 Rambut 54 Lampiran 3: Elektroforegram sampel yang menunjukkan mutasi pada 12 sampel A. Individu umur 10 tahun B. Individu umur 20 tahun 55 C. Individu umur 30 tahun 56 D. Individu umur 40 tahun 57 58 59 E. Individu umur 80 tahun 60 61 62 Lampiran 4 : Fungsi lokasi pada DNA mitokondria manusia Posisi (nt) 1 57-372 110-441 213-235 233-260 276-303 299-31 317-321 346-363 371-379 384-391 392-445 418-445 52-550 545-567 577-647 645-645 648-1601 1602-1670 1671-3229 3206-3229 3229-3256 3230-3304 3305-3306 3307-4262 4263-4331 4329-400 4401-4401 4402-4469 4470-5511 5512-576 5577-5576 5587-5655 5656-5656 5657-5729 5721-5798 5761-5826 5826-5891 5892-5903 5904-7445 7445-7516 7517-7517 Singkatan 2 HVSII OH CSB1 CSB2 CSB3 PL PH1 F PH2 12s V 16s L ND1 I Q M ND2 W A N OL C Y COI S Deskripsi 3 Hypervariable segment 2 H-strand origin Conserved sequence block I mtTF1 binding site mtTF1 binding site Conserved sequence block II Replication primer Conserved sequence block III Mt4 H-strand control element Mt3 H-strand control element L-strand promoter mtTF1 binding site mtTF1 binding site Major-H-strand promoter tRNA Phenylalanine Minor-H-strand promoter 12s rRNA tRNA Valine 16s rRNA 5S-like sequence Transkription terminator tRNA Leucine 1 Non-coding nucleotides NADH dehydogenase 1 tRNA Isoleucine tRNA Glutamine Non-coding nucleotides tRNA Methionine NADH dehydogenase 2 Trna Trytophan Non-coding nucleotides tRNA Alanine Non-coding nucleotides tRNA Asparagine L-strand origin tRNA Cysteine tRNA Tyrosine Non-coding nucleotides Cytochrome c oxidase I tRNA Serine Non-coding nucleotides 63 1 2 3 tRNA Aspartic acid Cytochrome c oxidase II Non-coding nucleotides tRNA Lysine Non-coding nucleotides ATP synthase 8 ATP synthase 6 Cytochrome c oxidase III tRNA Glycine NADH dehydrogenase 3 tRNA Arginine NADH dehydrogenase 4L NADH dehydrogenase 4 tRNA histidine tRNA Serine 2 tRNA Lysine 2 NADH dehydrogenase 5 NADH dehydrogenase 6 tRNA Glutamic acid Non-coding nucleotides Cytochrame b tRNA Threonine Membrane attachment site Non-coding nucleotides tRNA praline Displacement loop(see note below) Hypervaiable segment 1 7s DNA Termination sequence Control element L-strand control element 7518-7585 D 7586-8269 COII 8270-8294 8295-8364 K 8365-8365 8366-8572 ATPase8 8527-9207 ATPase6 9207-9990 COII 9991-10058 G 10059-10404 ND3 10405-10469 R 10470-10766 ND4L 10760-12137 ND4 12138-12206 H 12207-12265 S 12266-12336 L 12337-14148 ND5 14149-14673 ND6 14674-14742 E 14743-14746 1474715887 CytB 15888-15953 T 15925-499 15954-15954 15955-16023 P 16024-576 D-Loop 16024-16383 HVSI 16106-191 7S 16175-16172 TAS 16194-16208 mt5 16499-16506 mt3 Sumber : MITOMAP (http://www.mitomap.org) Catatan : - “D-Loop” merujuk pada daerah yang tidak mengode ( non-coding region) antara prolin and phenylalanin (np 16024-576) - Posisi nukleotida (np) ditentukan berdasarkan urutan nukleotida DNA. Posisi nukleotida (np) merujuk pada nomor nukleotida berdasarkan urutan CRS yang digunakan sebagai standar - Posisi promoter untai L-teridentifikasi pada nukleotida 407, 392-435. - Posisi promoter untai H-teridentifikasi pada nukleotida 559-561 - Posisi replikasi untai L teridentifikasi pada nukleotida 5721-5781, 5761, 5799.