manajemen resiko bahaya dan kesehatan

advertisement
MANAJEMEN EKOSISTEM
1
• Ekosistem
• Ekologi
• Managemen Ekosistem
2
Terminologi:
• Biosfir:
– Permukaan bumi
– Terdiri atas banyak ekosistem
• Ecosystem
– Sistem yang terdiri atas komponen abiotik
dan biotik (produsen, konsumen, dan
pengurai), keduanya saling tergantung
– Ukuran ekosistem bisa besar atau kecil
3
• Komponen abiotik (non-living
components) di lingkungan
– Air, angin, atmosfir (udara, angin), sinar
matahari, Nutrients di tanah dan air,
Heat (temperatur), Tanaman yang sudah
mati (humus), etc.
• Biotic factors (Living organisms)– All the living organisms that inhabit an
environment.
– Plants, Animals, Insects,
Microorganisms , etc.
4
• Produsen (mostly plants)
– Tanaman hijau
• Consumers
– Herbivores and carnivores
– Missing links in food chain kill all above
• Decomposers
– Fungi, bacteria, insect
5
• Population
– One species live in one place at one time
• Community
– All populations (diff. species) that live in a
particular area.
6
• Habitat
– Physical location of community
- The place a plant or animal lives
• Organism
– Simplest level of organization
7
EKOLOGI
Origin of the word…”ecology”
• Greek origin
• OIKOS = household
• LOGOS = study of…
• Study of the “house/environment” in which
we live.
8
• Ecology is study of interactions between biotic
and abiotic components
• Ecology views each locale as an integrated
whole of interdependent parts that function
as a unit.
• Ecology is an integrated and dynamic study of
the environment.
9
• Ekologi merupakan kajian tentang interaksiinteraksi yang terjadi diantara organisme dan
lingkungannya:
Biotik  Abiotik
• Kajian ini menerangkan bagaimana organisme
hidup saling mempengaruhi dan mempengaruhi
tempat (lingkungan) dimana mereka hidup
10
• All organisms depend on others directly or
indirectly for food, shelter, reproduction, or
protection.
11
• Abiotic factors- the nonliving parts of an
organism’s environment.
• Abiotic factors affect an organism’s life.
12
13
Ecosystems
• All life is connected
• Food chain is a web in
reality
• Broken links may
destroy the web or
force reorganization
14
Elemental Cycles
• Nitrogen cycle
– Atmospheric N2 fixated by plants and bacteria to
make NH3 and other compounds
– Bacteria convert NH3 into NO2 and NO3 which
plants use to make amino acids
– Amino acids eaten by animals end up in waste
products to decompose
– Some bacteria remove NO2 from soil to go back to
N2 in the air
15
16
17
18
Carbon Cycle Diagram
Carbon in Atmosphere
Decomposers
break down dead
things, releasing
carbon to
atmosphere and
soil
Fossil fuels are
burned; carbon
is returned to
atmosphere
Carbon slowly
released from
these substances
returns to
atmosphere
Plants use
carbon to make
food
Plants and
animals die
Bodies not
decomposed —
after many
years, become
part of oil or coal
deposits
Animals eat
plants and
take in carbon
19
The Carbon Cycle
20
Human Impact on Carbon Cycle:
• Fossil fuels release carbon stores very slowly
• Burning anything releases more carbon into
atmosphere — especially fossil fuels
• Increased carbon dioxide in atmosphere
increases global warming
• Fewer plants mean less CO2 removed from
atmosphere
21
What We Need to Do To Reduce
Carbon Emission
• Burn less, especially fossil fuels
• Promote plant life, especially trees
22
Pengendalian Pupulasi
• Pertumbuhan Eksponential
– Mother & Father have multiple children (2 or
more) increases population exponentially
– Lifespan affects population but not exponentially
23
Kapasitas Tampung (Carrying Capacity)
•
•
•
•
•
Oxygen supply (more water organism issue)
Food Supply
Disease
Predators (not much for humans)
Limited available space
24
Impact on Environment
•
•
•
•
CO2 emissions related to overall population
CO2 is greenhouse gas
Water usage (part of food supply)
Waste products (rate of decomposition)
25
• Ekosistem memberi paradigma terbaik untuk
mengintegrasikan komponen-komponen
biotik (makluk hidup) dan abiotik (lingkungan),
untuk menyelesaikan masalah riil
 Adaptable System
• Tugas pengelolaan lingkungan:
– Stabilitas struktur dan fungsi lingkungan
– Juga kaitannya dengan aspek sosial, ekonomi, dan
cultural (interaksi manusia dan lingkungannya)
26
Klasifikasi Sistem: Berdasarkan fungsinya
• Isolated System
– Tidak terjadi import dan ekspor material dan energi
• Closed System
– Terjadi import dan ekspor material, tetapi tidak energi
• Open System
– Batas-batasnya memungkinkan terjadinya pertukaran
(impor dan ekspor) material dan energi
– Kebanyakan ekosistem bumi termasuk dalam kategori
sistem ini
27
Klasifikasi Sistem:
Berdasarkan Intervensi Manusia
• Natural System
– Unaffected by human interference
• Modified System
– Affected to some extent by human interference
• Controlled System
– Fully affected by human interference, by accident or by
design
– Manusia berperan utama dalam sistem tersebut (misalnya
sistem pertanian)
28
Hubungan Antar Komponen Ekosistem
29
• Ukuran fisik ekosistem dapat sangat kecil s/d
sangat besar
• Ekosistem biasanya dianalisis oleh system
analyst
• Ide manajemen lingkungan adaptif
mengadopsi Pendekatan Ekosistem
30
Pendekatan Studi Ekosistem
a. Conventional approach
b. Abstraction of the
system into a model
leading to
interpretation of
mathematical
conclusions
31
• Ecosistem dapat mengalami gangguan
 Ekosistem perlu diawasi dan dilindungi dari ancaman
• Ekosistem dapat mengalami perubahan, baik
secara alami maupun antropologis (pengaruh
manusia)  Perubahan dapat terjadi secara tiba-tiba, atau
bersifat gradual
• Pengelola Lingkungan tidak dapat mengelola
ekosistem itu sendiri, melainkan mengelola
interaksi dengan manusia dengan lingkungan
32
Konsep Manajemen Ekosistem
Konsep Ekosistem:
• Suatu kesatuan yang terintegrasi
• Melihat sistem secara holistik bagaimana
komponen-komponen yang terlibat saling
berinteraksi dan berkerja secara bersamasama
• Dapat diterapkan pada berbagai kasus,
misalnya urban ekosistem, agroekosistem, dan
sistem industri
33
• Pengelolaaan Lingkungan agak sama dengan
Pengelolaan Pabrik, yaitu:
To improve dan sustain output, dan
to reduce costs
• Konsep Ekosistem menekankan pada aspek
keberkelanjutan, dengan tujuan menjaga
integritas ekosistem, dan jika mungkin,
menghasilkan pangan atau komoditi lainnya
34
• Pendekatan Ekosistem membantu dalam
mendefinisikan skala spasial dan temporal
pengelolaan
• Analisis Ekosistem:
– Ekosistem dapat dianalisis menggunakan teori
sistem
 Teori sistem membuat situasi yang kompleks dan
dinamis menjadi lebih dapat dimengerti dan
diprediksi
35
• Teori sistem berasumsi:
Measureable Causes produce Measureable
Effects
• Ada kecenderungan peningkatan usaha untuk
mengkombinasikan model ekologis dengan
dengan aspek ekonomis
36
Contoh Manajemen Ekosistem
• Pengelolaan Daerah Pesisir
• Pengelolaan DAS (Watershed, Catchment
Area)
• Pengelolaan Agroekosistem
• Pengelolaan Urban Ecosystem
37
Pengelolaan Daerah Pesisir
• Berbagai aktivitas manusia berkonsentrasi di
pesisir, kondisi pesisir dipengaruhi oleh
berbagai fakror  Perlu pengelolaan
lingkungan, terutama pesisir yang rawan
banjir, erosi, abrasi, eksploitasi mangrove
• Global warming  Permukaan air laut
meningkat  Pengelolaan pesisir menjadi
lebih penting
38
Pengelolaan DAS (Watershed, Catchment Area)
• DAS merupakan unit biogeofisik, biasanya
dapat ditentukan batas-batasnya dengan baik,
dimana agroekosistem, aktivitas manusia, dan
sumberdaya air saling berinteraksi (saling
mempengaruhi)
39
• Peneliti tertarik untuk mengetahui bagaimana
perubahan penggunaan lahan (land use)
berpengaruh pada hidrologi
• Effek (Vegetasi, tanah)  Output (aliran air:
kualitas & kuantitas)
• Penegelolaan DAS dapat dilakukan dengan
model Manajemen Participatory
40
Pengelolaan Agroekosistem
• Agroekosistem adalah ekosistem yang
dimodifikasi oleh manusia untuk
menghasilkan pangan atau produk lainnya
• Sifat Agroekosistem:
– Produktivitas
– Stabilitas
– Sustainibilitas
– Equalibilitas
41
• Produktivitas: Output, yield, perolehan atau nit income
from a valued product per unit of resource input. Contoh: kg
padi / ha, kalori/ha
• Stabilitas: Stabilitas terhadap perubahan, misalnya
terhadap fluktuasi iklim
• Sustainibilitas: Kapasitas sistem agroekosistem dalam
mempertahankan produktivitas terhadap perubahan
lingkungan dan degradasi akibat eksploitas
• Equalibilitas: Pemerataan distribusi
42
 Tujuan Pengegelolaan agar keempat aspeks
tersebut optimum
Kadang terjadi kontradiksi:
• Produktivitas ↑  sustainability 
• Produktivitas  sustainability↑
Ilmu pengatahuan perlu diaplikasikan
• Tujuan pengelolaan agroekosistem lebih
sering pada aspek sosioekonomi, dari pada
aspek ekologis
43
Pengelolaan Urban Ecosystem
• Pendekatan ekosistem dapat diterapkan pada
kasus urban untuk mengidentifikasi strategi
guna mereduksi, menfasilitasi pengelolaan
limbah, kegiatan pertanian dengan
penyediaan lapangan pekerjan
44
Applied Ecology
45
Diversity
• Depends on:
- number of species and abundance of each species in
an ecosystem
• Growth of population depends on:
- Abiotic factors
- Biotic factors
Index of Diversity:
d = N(N-1)/Σn(n-1)
d: index of diversity
N: total number of organisms of all species in area
n: total number of organisms of each species in area
46
Impact of Humans
• Manusia memiliki potensi besar “acaman”
bagi hewan, tanaman, dan lingkungan
• Pengaruh manusia begitu besar karena:
- Teknologi mengubah dunia bergitu cepat
- Jumlah populasi manusia meningkat pesat
- Menggunakan sumberdaya alam dan
menghasilkan limbah
47
Human Population Growth
• Manusia mampu beradaptasi untuk survive di hampir
semua habitat dan iklim
• Populasi manusia meningkat tajam dan mengancam
lingkungan
• The population will eventually be limited by these factors:
- food and water supply
- disease and pollution
- over-crowding
- sudden changes in climate
48
Pollution
• Atmospheric Pollution: Caused by combustion,
exhaust fumes, livestock, waste dumps
• Effects:
- smoke, which damages air quality
- carbon dioxide and Methane, which cause climate
change
- sulphur dioxide and nitrogen dioxide, which mix
with rainwater to form acid rain
- carbon monoxide, which is poisonous to humans
and animals
49
• Water Pollution: Caused by deposition of
substances into seas, lakes, rivers
• Effects:
- sewage and oil, which destroy habitats and
kill animals
- fertilisers and pesticides, which damage
ecosystems
50
Ecological Niche
• Describes how organisms in an ecosystem
interact
• What it does that affects or contributes to its
surroundings
• Includes: habitat, relationships and nutrition
51
Examples of Relationships (Interactions) Between Species
Interaction
Examples:
Herbivory
A primary consumer feeds on a producer
.........................................
Predation
A consumer feeds on another consumer
.........................................
Mutualism
2 species live together with each
providing benefit to the other via the
relationship
Parasitism
A parasite lives on or within a host and
obtains food from it. The parasite
benefits, the host is always harmed
Competition
2 species compete for the same resource
if there is not enough to support both
.........................................
.........................................
.........................................
52
Agroecosystems
• Definition: formed by interactions between biotic
(plants, microbes etc.) and abiotic (temp. humidity etc.)
factors in a defined area, an agroecostystem influences
the distribution and population of living organisms
• Differs from natural ecosystems:
- maintenance at an early successional state
- monoculture
- crops planted in rows
- simplification of biodiversity
- intensive tillage (untuk menghasilkan pangan)
- use of organisms and artificially selected crops
53
• Merujuk pada kajian fenomena ekologis di lahan pertanian,
seperti hubungan antara predator dan mangsa
• Membutuhkan input untuk mempertahankan
kesetimbangan, penggunaan pestisida mengganggu
kesetimbangan dengan terbunuhnya organisme
• Maintenance keeps pest populations at manageable levels:
- ecosystems are ever changing systems
- ecosystems follow food webs
- All elements of an agroecosystem are closely linked.
Disturbance to one has effects on others
54
•
Humans have a huge impact on the planet. This
includes intensive farming, selective breeding
and pesticides/fertilisers
• Impacts of Monoculture:
1. Genetic diversity is reduced, crops susceptible to
disease
2. Fertilisers pollute groundwater
3. Pesticides pollute groundwater
4. Species diversity is reduced
5. Countryside less attractive
•
Crop rotation: breaks pests’ life cycles, improves
soil texture and can increase soil nitrogen
55
•
Inorganic fertilisers are most common but
affect the environment
• Benefits of organic fertilisers to ecosystem:
1. Compounds decompose slowly and prevent
leaching
2. They are cheap
3. Can be disposed of on fields and not only in
landfill sites
4. Improves soil structure and improves drainage
and aeration
56
• Intensive farming can damage the environment.
e.g.
57
• Pesticides can harm larger organisms.
e.g.
58
• Fishing:
Unsustainability: the using up of resources
faster than they are produced so that they
will not continue in the future
e.g. North Sea Cod are over-fished so are
reproducing slower than are being caught.
Effect  population is heavily declining
59
• Forestry:
Humans burn wood or clear land for farming
 deforestation:
1) destroys habitats
2) causes soil erosion  barren land and
flooding
3) causes pollution from combustion
4) increased levels of carbon dioxide as loss of
photosynthesis
60
Aquatic biomes cover about 75% of the earth’s
surface
- Wetlands
- Lakes
- Rivers, streams
- Intertidal zones
- Oceanic pelagic biome
- Coral reefs
- Benthos
61
Industrial Ecology
Lecture 13
62
Overview
•
•
•
•
•
Terminology
Design for the Environment
Natural Systems as Models
Directions in Industrial Ecology
Examples
63
Some Terminologies
• Ecology: the study of the earth’s life support
systems, of the interdependence of all beings
on Earth (Odum, E.)
• Metabolism: sum of the processes sustaining
the organism: production of new cellular
materials (anabolism) and degradation of
other materials to produce energy
(catabolism) (Ray)
64
• Industrial Ecology: Aplikasi teori ekologi untuk
sistem industri (Rejeski); melihat dunia industri
sebagai suatu sistem alami, menggabungkan
ekosistem lokal dengan biosfir (Lowe)
• Industrial Metabolism: Aliran material dan
enegi melalui sistem industri dan interaksi aliran
tersebut dengan siklus biogeokimia (Erkman)
• Industrial Symbiosis: Suatu sistem industri
dimana waste dari proses sebagai sumberdaya
(resources) bagi proses lainnya
65
More Terminology
• Eco-Efficiency: Integrasi efisiensi ekonomis (financial
return, profit, productivity, customer perception) dan
efesiensi lingkungan (energy, emissions, environmental
impacts.
• Ecofactory: Desain teknologi sistem produksi
terintergrasi (integrated design of production systems),
mencakup DFE (Design for Environment) pada tingkat
produk dan proses – dengan teknologi disassembling,
reuse and materials recycling (Agency for Industrial
Science and Technology, Japan)
66
More Terminology
• Design for the Environment: Memperhatikan
semua potensi implikasi pada lingkungan dari
suatu produk: energy and materials used in the
product; its manufacture and packaging;
transportation; consumer use, reuse, and
recycling; and disposal.
• DfX
• Design for Recycling
• Design for Disassembly
• Design for Remanufacturing
67
Resource & energy flows
Linear model
unlimited
resources
ecosystem
unlimited waste
68
Resource & energy flows
Semi-cyclical model
limited resources
and energy
limited
ecosystem
waste
69
Resource & energy flows
Cyclical model
energy
ecosystem
Source: Graedel, T.E., “On the concept of industrial ecology”,
Annual Review of Energy and Environment, no. 21, 1996, 70p. 77.
Natural Systems
• Function as an integrated whole
• Minimize waste: Tanaman atau hewan hidup
atau yang sudah mati dan limbahnya adalah
“food” bagi something
• Decomposers (microbes and other organisms)
consume waste and are eaten by other
creatures (makluk lain) in the food chain
71
• Toksin tidak disimpan atau ditransfer dalam
jumlah banyak (borongan) tetapi disintesis
dan digunakan sejumlah yang diperlukan oleh
spesies secara individu
• Materials are continually circulated and
transformed in elegant ways.
• Nature runs largely off solar energy
• Nature is dynamic and information driven,
identity of ecosystem players is defined in
process terms
72
The Industrial Ecology Paradigm
• Bumi adalah sistem ekologis tertutup: the
scale and design of development is
inconsistent with long-term ecological
survival
• Human society and natural systems have
co-evolved
– Alam memiliki nilai intrinsik,
ditampakkan melalui aktivitas ekonomi
– Moral dan etika tindakan ekonomi harus
memperdulikan lingkungan
73
• “Ecologize Economy”, an economy based on
service, not goods, or quantity, of life
• Moral/ethical transformation to instill
environmental concerns
• Technological realism, precautionary principle
for uncertainty
74
• Industry mimics nature (Industri meniru alam)
– Waste from one organism is food for
another
– Everything is connected by cyclic processes
– Living off nature’s interest
• Shift in thinking
– Past: Remediation
– Present: Treatment, storage, and disposal
– Future: Industrial metabolism and the
industrial ecosystem
75
• Management of the nature-industry interface
• Ultimate goal: bringing the industrial system
as close as possible to being a closed-loop
system with near complete recycling of
materials.
• Is zero waste achievable, considering
thermodynamics, or is zero environmental
impact a more feasible target?
76
Framework for Industrial Ecology
1. Improve metabolic pathways of industrial
processes and systems
2. Create loop-closing industrial systems
3. Dematerialize industrial output
4. Systematize patterns of energy use
5. Balance industrial system input and output to
ecosystem activity
6. Align policy to conform with long-term
industrial system evolution
7. Create new action-coordinating structures,
communicative linkages, and information
77
Industrial Metabolism
• A “Big Picture” analytic tool developed by
Robert Ayres
• Examination of the total pattern of material
and energy flows form initial extraction of
resources to final disposal of wastes
• Factors in the real value of nonrenewable
resources and environmental pollution, gives
value to externalities
78
• Can be used for regions (the Rhine basin),
specific industries (aluminum) or specific
materials (heavy metals)
• Suggests some measures of sustainability:
ratios of potential to actual recycled materials,
virgin to recycled materials, materials
productivity
79
Problem
On average, only 6% of resources taken from
the environment end as products.
Other 94% is waste.
Is it really waste?
Or is it a by-product that can be used elsewhere?
Source: Lowe, Warren, Moran, 1999.
80
Industrial Symbiosis
• Most commonly understood meaning of
industrial ecology
• Waste materials and energy serving as inputs
or resources for other industrial processes
• Also referred to as “By-product synergy,”
“green twinning,” “zero-waste/zeroemissions,” “cradle-to-cradle eco-efficient
manufacturing”
• Evolving into the concept of an Eco-Industrial
Park where co-locating
81
Conventional Waste Management
Brewery waste dumped into oceans to destroy
coral reefs
Brewery
Mushroom Growing
Muck dumped on fields
Waste piles up
Chicken Raising
Methane vented
Methane Gas Production
Fish Ponds
Muck cleaned out
82
Industrial Ecology
Brewery waste fertilizes mushrooms
Brewery
Mushroom Growing
Mushroom residue feeds chickens
Chicken Raising
Chicken waste is composted
Solids become fish food
Methane Gas Production
Fish Ponds
Nutrients used in
gardens
Hydroponic Gardening
83
Back to Industrial Ecology
• The name “industrial ecology”- why?
– Models of non-human biological systems
and their interactions with nature are
instructive for industrial systems that we
design and operate
– The biological model is clever, a closed-loop
materials system
– Recent better understanding of the
materials and energy flows of biological
systems
84
• Questions:
– How do you apply the biological principles of
resilience (kegembiraan), limiting factors, other
rules?
– What about the low efficiency of natural systems
(<5%)?
• Bottom Line:
– Lessen (Kurangi) (dramatically the impacts of our
industrial system)
– Management of the industry-natural systems
interface, match input-output of the manmade
world to the constraints of the biosphere
85
Implementing Industrial Ecology
• Technical Basis
–
–
–
–
Choose material
Design the product
Recover the material
Monitor the Situation
• Institutional Barriers and Incentives
–
–
–
–
Market and informational barriers
Business and Financial barriers
Regulatory barriers
Legal Barriers
• Regional Strategies
– Ecoparks, Eco-Factories
86
Candidates for Lessening Impacts
• Zero Emissions Systems
– Orderly progression from Type I (high
throughput mass and energy, no resource
recovery) to Type III (closed loop)
– Eliminate ‘leaks’
• Material Substitution
– More durable, less waste, more recyclable
87
• Dematerialization
– Theory of Dematerialization: the more
affluent a society becomes, the mass of
materials required diminishes over time
– Must result in less waste to be effective
• Functionality Economy
– What is the function? Do we need
automobiles? Waste from telephone
disposal (old phones were leased and
returned!)
88
Design for the Environment (DFE)
• Considers all potential implications of a product
–
–
–
–
Energy & materials
Manufacture & packaging
Transportation
Consumer use, reuse or recycling, and disposal
• A holistic design process
• Example: automobile bodies (Iron, plastics, &
aluminum)
89
• Tradeoffs: virgin vs. recycled, energy at each
stage, materials recyclability,
manufacturability, costs
• Challenges:
– Adequate database about materials and
their impacts
– Concurrent engineering to work across
R&D, marketing, quality..
– Public sector involvement for defining
values for trade-off
90
DFE Example - Xerox
Raw Materials
Build
New Components
Certified
Reprocessing
Closed Loop
Recycling
Return to
Suppliers
Certified
Reprocessing
Customer Use
Sort/Inspect
Third Party
Recycling
Remove
Materials for
Recycling
Alternative Uses
Deliver
Dismantle
Disposal Goal:
Zero to Landfill
91
The Eco-Industrial Park (EIP)
• A community of manufacturing and service
businesses seeking enhanced environmental
and economic performance through
collaborating in the management of
environmental and resource issues.
• The interactions among companies resemble
the dynamics of a natural ecosystem where all
materials are continually recycled.
• Industrial Park: restricted meaning in terms of
geography and ownership.
92
• An EIP is a relate estate property that must be
managed to bring a competitive advantage to
its owners.
• An EIP is a “community of companies” that
must manage itself to provide benefits for its
members.
• Decisions are based on maximizing the
profitability of the EIP as a whole
• Transfer prices negotiated so each member
will be as profitable as without the EIP
93
Selamat Belajar
94
Download