G. Aplikasi Fungsi dalam Bisnis dan Ekonomi 1. Permintaan (Demand) dan Penawaran (Supply) Permintaan : Sejumlah barang yang diminta konsumen pada tingkat harga tertentu. Hukum Permintaan (Demand): ”Apabila harga naik maka jumlah barang yang diminta akan turun dan sebaliknya, apabila harga turun maka jumlah barang yang diminta akan naik” (Jumlah barang yang diminta berbanding terbalik dengan harga barang) Jika Q = Variabel jumlah barang (Quantity) P = Variabel harga barang (Price) P Fungsi Permintaan menunjukkan hubungan jumlah produk yang diminta konsumen dan harga a b Bentuk Umum Fungsi Permintaan : Qd = a – bP Q a atau Pd = a 1 − Q b b Penawaran : Jumlah barang yang ditawarkan pada tingkat harga tertentu Hukum Penawaran (Supply): ”Apabila harga naik maka jumlah barang yang ditawarkan akan naik dan apabila harga turun maka jumlah barang yang ditawarkan akan turun” (Jumlah barang yang ditawarkan berbanding lurus terhadap harga barang) Fungsi Penawaran menunjukkan hubungan jumlah produk yang ditawarkan produsen dan harga P Bentuk Umum Fungsi Penawaran : a b Qs = – a + bP Q –a atau Ps = a 1 + Q b b Contoh : 1. Suatu produk jika harganya Rp 1000,- akan terjual 10 unit, dan jika hargnay turun menjadi Rp 750,- akan terjual 20 unit. Tentukan fungsi permintaan dan gambarkan grafiknya. Penyelesaian : Q1 = 10 Diketahui P1 = 1000 Q2 = 20 P2 = 750 Q − Q1 Q 2 − Q1 Cara I (Dengan rumus ) = P − P1 P2 − P1 Q − 10 20 − 10 = P − 1000 750 − 1000 10 Q − 10 = P − 1000 − 250 1 Q − 10 =− 25 P − 1000 1 (Q – 10) = − (P – 1000) 25 1 Q – 10 = − P + 40 25 1 1 P atau P = 50 – Q Qd = 50 − 25 25 Pd = 1250 – 25Q Cara II (dengan rumus Q = a – bP ) Substitusi ke salah persamaan : Misal ke persamaan (1) : a – b(1000) = 10 Q1 = a – bP1 Q2 = a – bP2 a – b(1000) = 10 .....(1) a – b(750) = 20 .....(2) – 250 b = –10 1 b= 25 1 (1000) 25 a– Diperoleh Fungsi Permintaan Qd = 50 – atau Pd = Grafiknya : a 1 − P b b a – 40 = 10 a 50 1 25 P Pd = 1250 – 25Q P Q = 10 satu 2. Jika harga suatu produk Rp 500,- maka produsen menawarkan sebanyak 60 unit. Bila harga meningkat menjadi Rp 700,- maka produsen menawarkan 100 unit. Tentukan fungsi penawaran dan gambarkan grafiknya ! Penyelesaian : Q1 = 60 Diketahui P1 = 500 Q2 = 100 P2 = 700 Q − Q1 Q 2 − Q1 Cara I (Dengan rumus ) = P − P1 P2 − P1 Q − 60 100 − 60 = P − 500 700 − 500 40 Q − 60 = P − 500 200 Q − 60 1 = P − 500 5 1 (Q – 60) = (P – 500) 5 1 Q – 60 = P – 100 5 1 1 Qs = – 40 + P atau P = 40 + Q 5 5 Ps = 200 + 5Q Cara II (dengan rumus Q = – a + bP ) Substitusi ke salah persamaan : Misal ke persamaan (1) : – a + b(500) = 60 Q1 = –a + bP1 Q2 = –a + bP2 –a + b(500) = 60 .....(1) –a + b(700) = 100 .....(2) – 200 b = – 40 1 b= 5 1 5 – a + (500) = 60 – a + 100 = 60 a 40 1 Diperoleh Fungsi Permintaan Qs = – 40 + atau Ps = Grafiknya : a 1 + P b b 5 Ps = 200 + 5Q P Q P satu Latihan : 1. Fungsi permintaan produk pensil merk ”2B” ditunjukkan sebagai berikut : Jika dijual seharga Rp 4.000,-/batang maka akan laku 2500 batang dan jika dijual dengan harga Rp 3.000,-/batang akan laku 3500 batang. a. Rumuskan bentuk fungsi permintaan tersebut b. Gambar grafik fungsi tersebut c. Berapa harga pensil jika ternyata tidak laku (tidak ada yang terjual) 2. Fungsi penawaran suatu produk ditunjukkan sebagai berikut : Jika harga Rp 30.000,- maka produsen menawarkan 1000 unit, dan setiap kenaikan harga Rp 5.000,- produsen akan menambah jumlah barangnya 200 unit. a. Rumuskan bentuk fungsi penawaran tersebut b. Gambarkan grafiknya c. Tentukan jumlah barang yang ditawarkan jika harga Rp 50.000,- 2. Titik Keseimbangan Pasar (Equilibrium) Harga dan kuantitas keseimbangan pasar merupakan hasil kesepakatan antara pembeli (konsumen) dan penjual (produsen) dimana kuantitas dan harga yang diminta dan yang ditawarkan sama besarnya. Titik keseimbangan terbentuk pada titik pertemuan kurva permintaan dan kurva penawaran. Titik keseimbangan Pasar (Equilibrium) pada koordinat E (Qe, Pe) P Pe E = Equilibrium Qe = Jumlah keseimbangan Pe = Harga keseimbangan Qs E(Qe, Syarat terjadi keseimbangan : Qd Qe Q Qd = Qs atau Pd = Ps Contoh : 1. Diketahui fungsi permintaan dan penawaran sebagai berikut : Qd = 6 – ¾ P Qs = – 5 + 2P Tentukan : a. Harga dan kuantitas pada keseimbangan pasar b. Grafik Penyelesaian : a. Syarat keseimbangan pasar Qd = Qs 6 – ¾ P = –5 + 2P 6 + 5 = 2P + ¾ P 11 P 11 = 4 Pe = 4 Diperoleh : Substitusi nilai Pe ke salah satu persamaan. Misal ke persamaan Qs Q = –5 + 2P Q = –5 + 2(4) Q = –5 + 8 Q=3 - Harga keseimbangan pasar adalah 4 - Kuantitas keseimbangan adalah 3 unit b. Gambar grafik Untuk Qd = 6 – ¾ P Jika P = 0 Q = 6 – ¾(0) = 6 Jika Q = 0 0=6–¾P ¾P=6 P=8 P E(3,4) Untuk Qs = –5 + 2P Jika P = 0 Q = –5 + 2(0) = –5 Jika Q = 0 0 = –5 + 2P 2P = 5 P = 2½ Q 2. Diketahui fungsi permintaan (Pd) dan fungsi penawaran (Ps) sebagai berikut : Pd = 24 – 3Q2 Ps = Q2 + 2Q + 4 a. Tentukan Harga dan Jumlah keseimbangan b. Tunjukkan secara geometris (Gambar grafiknya) Penyelesaian : a. Syarat keseimbangan Pd = Ps 24 – 3Q2 = Q2 + 2Q + 4 4Q2 + 2Q – 20 = 0 2Q2 + Q – 10 = 0 (2Q + 5)(Q – 2) = 0 2Q + 5 = 0 Q–2=0 2Q = –5 Q=2 Q = – 5/2 (Q dipilih yang positif) Untuk Q = 2 maka P = 24 – 3Q2 P = 24 – 3(2)2 P = 24 – 12 P = 12 Diperoleh jumlah keseimbangan 2 dan harga keseimbangan 12 atau Titik keseimbangan pasar di E(2, 12) b. Gambar grafik Ps E(2,12 ) Pd Latihan : Tentukan Jumlah dan harga keseimbangan pasar jika diketahui 1. Fungsi Permintaannya P = 15 – Q dan fungsi penawarannya P = 3 + 0,5Q 2. Fungsi permintaan dan penawaranya berturut-turut P = 11 – Q2 dan P = Q2 + 3 3. Pajak dan Subsidi Pemberlakuan pajak dan pemberian subsidi sangat berpengaruh bagi keseimbangan pasar. Pajak akan menaikkan harga penjualan sedangkan subsidi akan menurunkan harga penjualan. a. Pajak Jika pemerintah mengenakan pajak penjualan pada suatu barang maka harga jual barang tersebut akan naik. 1) Pajak Spesifik Pajak yang dikenakan kepada barang yang dihasilkan oleh produsen, misalnya sebesar t per unit produksi, pada awalnya merupakan biaya bagi produsen, tetapi karena produsen pada umumnya tidak bersedia mengurangi laba yang akan diterimanya, maka beban pajak tersebut berusaha untuk dibebankan kepada konsumen. Fungsi penawaran sebelum ada pajak : Ps = f(Q) Fungsi penawaran setelah ada pajak : P’ = f(Q) + t P’ Ps Tkons E’ E TProd Pd Jumlah pajak yang diterima pemerintah : T = t . Q’ Pajak yang ditanggung konsumen per unit barang : tkons = (P’ – Pe) Pajak yang ditanggung produsen per unit barang : tprod = t – (P’ – Pe) Total pajak ditanggung konsumen : Tkons = (P’ – Pe).Q’ Total pajak ditanggung produsen : Tprod = (t – (P’ – Pe)).Q’ = T – Tkons Contoh : 1) Fungsi permintaan suatu produk P = 15 – Q dan fungsi penawaran P = 0,5Q + 3. Bila pemerintah memberlakukan pajak penjualan sebesar Rp 3/unit tentukan : a. Keseimbangan pasar sebelum pajak b. Keseimbangan pasar setelah pajak c. Penerimaan pajak total pemerintah d. Pajak yang ditanggung konsumen dan produsen per unit barang Penyelesaian : a. Keseimbangan sebelum pajak dan Ps = 0,5Q + 3 Pd = 15 – Q Syarat keseimbangan : P = 15 – Q Pd = P s 15 – Q = 0,5Q + 3 P = 15 – 8 – 1,5Q = –12 P=7 Q=8 Jadi keseimbangan sebelum pajak E(8, 7) b. Keseimbangan setelah pajak dan P’ = Ps + t Pd = 15 – Q P’ = 0,5Q + 3 + 3 P’ = 0,5Q + 6 Keseimbangan Pd = P’ 15 – Q = 0,5Q + 6 – 1,5Q = – 9 Q’ = 6 P’ = 15 – Q P’ = 15 – 6 P’ = 9 Jadi keseimbangan setelah pajak adalah E’ (6, 9) c. Pajak yang diterima pemerintah T = t . Q’ T = Rp 3 x 6 = Rp 18 Jadi pajak yang diterima pemerintah adalah Rp 18,d. Pajak yg ditanggung konsumen tkons = (P’ – Pe) tkons = (9 – 7) tkons = 2 (Pajak yang ditanggung konsumen Rp 2,- per unit barang) Pajak yang ditanggung produsen tprod = t – tkons tprod = 3 – 2 tprod = 1 (Pajak yang ditanggung produsen Rp 1,- per unit barang) 2) Fungsi permintaan suatu barang Pd = –0,5Q + 150 dan fungsi penawaran Ps = 0,25Q. Setelah barang tersebut dikenakan pajak Rp.75,- per unit, berapakah : a. Titik keseimbangan setelah dikenakan pajak b. Total pajak yang akan diterima pemerintah c. Total pajak yang harus ditanggung konsumen dan produsen Penyelesaian : Diketahui : Pd = –0,5Q + 150 Ps = 0,25Q t = 75 a. Titik keseimbangan setelah dikenakan pajak P’ = Ps + t P’ = 0,25Q + 75 Syarat keseimbangan P’ = 0,25(100) + 75 P’ = Pd 0,25Q + 75 = –0,5Q + 150 P’ = 25 + 75 0,75Q = 75 P’ = 100 Q’ = 100 Jadi titik keseimbangan setelah kena pajak Et = (100, 100) b. Total pajak yg diterima pemerintah T = t . Q’ T = 75 . 100 = 7.500 Jadi pemerintah memperoleh penerimaan pajak sebesar Rp 7.500 c. Untuk menghitung pajak yang dibayarkan konsumen harus ditentukan harga keseimbangan sebelum pajak Qd = 300 – 2Pd Pd = –0,5Q + 150 Qs = 4Ps Ps = 0,25Q Syarat keseimbangan Qs = Qd 4P = 300 – 2P 6P = 300 Pe = 50 Sehingga beban pajak yang ditanggung konsumen per unit tkons = (P’ – Pe) tkons = (100 – 50) = 50 Sehingga total pajak yang ditanggung konsumen Tkons = tkons x Q’ = 50 x 100 = 5.000 Pajak yang ditanggung produsen tprod = t – tkons tprod = 75 – 50 = 25 Sehingga total pajak yang ditanggung produsen Tprod = tprod x Q’ = 25 x 100 = 2.500 2) Pajak Proporsional Selain pajak per unit yang jumlahnya atau besarnya tetap, pemerintah juga dapat mengenakan pajak proporsional terhadap harga barang yang ditetapkan oleh produsen. Jumlah pajak yang akan diterima pemerintah adalah sejumlah tertentu dari harga. Dengan demikian semakin tinggi harga yang ditetapkan oleh produsen, maka semakin tinggi pula pajak yang diterima oleh pemerintah. Jika Penawaran sebelum pajak Penawaran sesudah pajak dengan t = pajak proporsional (dalam %) P = f(Q) maka P = f(Q) + t.P Contoh : 1) Fungsi permintaan suatu barang ditunjukkan oleh persamaan P = 15 – Q, sedangkan fungsi penawarannya P = 3 + 0,5Q. Jika pemerintah mengenakan pajak sebesar 25% dari harga jual, tentukan : a. Harga dan jumlah keseimbangan sebelum dan sesudah pajak. b. Beban pajak yang ditanggung konsumen dan produsen per unit barang. c. Jumlah pajak yang diterima pemerintah. Penyelesaian : Diketahui Pd = 15 – Q Ps = 3 + 0,5Q t = 25% = 0,25 = ¼ a. Keseimbangan sebelum pajak Syarat keseimbangan sebelum pajak Ps = Pd sehingga 3 + 0,5Q = 15 – Q 1,5Q = 12 Q=8 Jadi sebelum pajak : Jumlah keseimbangan Qe = 8 Harga keseimbangan Pe = 7 P = 15 – Q P = 15 – 8 P=7 Keseimbangan setelah pajak : Fungsi penawaran setelah pajak : P = f(Q) + t.P P = 3 + 0,5Q + ¼ P ¾ P = 3 + 0,5Q 4 P = (3 + 0,5Q). P’ = 4 + 2 3 Q 3 Syarat keseimbangan : P’ = Pd sehingga 2 3 5 Q 3 P=4+ 4 + Q = 15 – Q P=4+ = 11 Q= 33 5 P = 8,4 2 33 . 3 5 22 5 = 6,6 Jadi sesudah terkena pajak, harga keseimbangan P’ = 8,4 jumlah keseimbangan Q’ = 6,6 Perlu dicatat bahwa besarnya pajak yang diterima pemerintah dari setiap unit barang adalah 0,25 x 8,4 = 2,1 b. Beban pajak yang ditanggung konsumen per unit barang 1,4 tkons = P’ – Pe = 8,4 – 7 = 1,4 atau x 100% = 67% 2,1 Beban pajak yang ditanggung produsen per unit barang 0,7 tprod = t – tkons = 2,1 – 1,4 = 0,7 atau x 100% = 33% 2,1 c. Jumlah pajak yang diterima pemerintah T = 6,6 x 2,1 = 13,86 Latihan : 1. Dari fungsi penawaran P = 0,25Q dan fungsi permintaan P = -0,50Q + 150 seperti pada Contoh 3.14 pemerintah mengenakan pajak sebesar 20% dari harga penawaran produsen. Tentukanlah keseimbangan sesudah pajak dan total pajak yang dibayarkan konsumen dan produsen. serta total pajak yang akan diterima pemerintah. 2. Diketahui fungsi permintaan sepeda motor adalah Q = -2P + 240, sedangkan fungsi penawarannya adalah P = 4Q + 7,5. Jika pemerintah memungut pajak sebesar 10% dari tingkat harga penawaran, hitunglah : a. Keseimbangan pasar sebelum pajak b. Keseimbangan pasar sesudah pajak c. Total Pajak yang diterima pemerintah d. Total Pajak yang dibayar konsumen e. Total Pajak yang dibayar produsen b. Subsidi Kebijaksanaan pemberian subsidi atas suatu barang oleh pemerintah dimaksudkan agar produsen dapat menjual barangnya dengan harga yang lebih rendah dari yang seharusnya, sehingga konsumen dapat memenuhi kebutuhan barang tersebut dengan harga yang terjangkau. Subsidi yang berfungsi sebagai pengurang biaya poduksi akan membuat harga barang menjadi lebih murah. Hal itu akan mengakibatkan fungsi penawaran bergeser ke kanan bawah, sehingga dengan jumlah barang yang sama produsen mampu mengenakan harga baru yang lebih rendah dari yang sebelumnya. Jika Ps = fungsi penawaran sebelum subsidi s = besarnya subsidi per unit barang P’ = fungsi penawaran setelah subsidi P’ = Ps – s Maka P Ps Subsidi yg dinikmati produsen P’ Pe P e’ Subsidi yg dinikmati konsumen Pd Qe Q e’ Q Subsidi yang dinikmati konsumen per unit barang skons = Pe – Pe’ Subsidi yang dinikmati konsumen per unit barang sprod = s – skons Total subsidi dari pemerintah S = s x Qe’ Total subsidi yg dinikmati konsumen Skons = skons x Qe’ Total subsidi yg dinikmati produsen Sprod = sprod x Qe’ = S – Skons Contoh : Diketahui fungsi penawaran Q = 4P dan fungsi permintaan Q = –2P + 300, pemerintah memberikan subsidi sebesar Rp. 37,50. Tentukanlah harga dan jumlah keseimbangan pasar yang baru, subsidi yang akan dinikmati konsumen dan produsen serta subsidi yang harus diberikan oleh pemerintah Penyelesaian : - Fungsi penawaran sebelum subsidi: Q = 4P menjadi: P = 0,25Q - Fungsi penawaran sesudah subsidi: P’ = 0,25Q – 37,5 - Fungsi permintaan: Q = –2P + 300 menjadi: P = –0,5Q + 150 Harga Keseimbangan sebelum subsidi ditentukan dengan : Q = 4P Q = –2P + 300 0 = 6P – 300 6P = 300 300 Pe = = 50 6 Keseimbangan setelah subsidi : P’ = 0,25Q – 37,5 P = –0,5Q + 150 0 = 0,75Q – 187,5 0,75Q = 187,5 187,5 Qe’ = = 250 0,75 Sehingga P = – 0,5(250) + 150 P = – 125 + 150 Pe’ = 25 Jadi keseimbangan setelah diberikan subsidi tercapai pada jumlah barang 250 unit pada harga Rp 25,- per unit. Subsidi yang dinikmati konsumen per unit barang skons = Pe – Pe’ = 50 – 25 = 25 Subsidi yang dinikmati produsen per unit barang sprod = s – skons = 37,5 – 25 = 12,5 4. Fungsi Biaya dan Fungsi Penerimaan Fungsi Biaya Biaya terbagi menjadi Biaya Total, Biaya Tetap, dan Biaya Variabel. Biaya Total / Total Cost (TC) adalah seluruh dana yang harus dikeluarkan perusahaan untuk melaksanakan operasinya. Biaya total terdiri dari : a. Biaya Variabel/Variable Cost (VC) yaitu biaya yang dipengaruhi oleh jumlah barang yang diproduksi. (Biaya untuk memproduksi 1 unit produksi). Contoh : biaya bahan baku, upah tenaga kerja. b. Biaya Tetap/Fix Cost (FC) yaitu biaya yang besarnya tetap tanpa terpengaruh jumlah barang yang diproduksi. Contoh : biaya mandor, biaya administrasi, biaya pemasaran. Secara matematis dapat dinyatakan dengan TC = FC + VC Jika biaya tetap (FC) = k Biaya variabel (VC) setiap memproduksi 1 unit barang adalah = a (dengan Q = kuantitas/ jumlah produksi) maka biaya total (TC) dapat dinyatakan sebagai : TC = k + aQ Secara grafis, a merupakan lereng kurva linier TC TC = k + aQ VC = aQ k 0 FC = k Q Contoh : 1. Biaya tetap yang dikeluarkan perusahaan sebesar Rp 20.000,- sedangkan biaya variabelnya ditunjukkan oleh persamaan VC = 100 Q. Tentukan : a. persamaan biaya total b. biaya total jika perusahaan memproduksi 500 unit barang Penyelesaian : Diketahui FC = 20.000 VC = 100 Q a. TC = FC + VC = 20.000 + 100 Q b. Jika Q = 500 TC = 20.000 + 100 (500) = 20.000 + 50.000 = 70.000 2. Kalkulasi biaya di perusahaan yang menghasilkan batako adalah biaya tetap sebesar Rp. 300.000,- dan biaya variabel per unit sebesar Rp. 500,- Dari data tersebut, tentukanlah : a. Fungsi biaya totalnya b. Biaya totalnya jika diproduksi batako 4.000 unit c. Jumlah yang diproduksi jika biaya totalnya sebesar Rp. 5.000.000,- Penyelesaian : Diketahui : FC = k = 250.000 a = 500 a. Fungsi biaya total TC = k + aQ TC = 250.000 + 500 Q b. Jika Q = 4.000 maka TC = 250.000 + 500 (4.000) TC = 250.000 + 2.000.000 TC = 2.250.000 Jadi Jika diproduksi 4.000 unit batako maka biaya totalnya Rp 2.250.000,c. Jika TC = 5.000.000 maka TC = 250.000 + 500 Q 5.000.000 = 250.000 + 500 Q 500 Q = 5.000.000 – 250.000 = 4.750.000 Q= 4.750.000 500 = 9.500 Jadi jika biaya total Rp 5.000.000,- maka produksinya sejumlah 9.500 unit. Selain fungsi biaya di atas, ada juga beberapa hal berikut : Biaya rata-rata/Average Cost (AC) Merupakan biaya yang dikeluarkan untuk menghasilkan tiap unit produk Diperoleh dari hasil bagi Biata Total (TC) dengan jumlah barang terjual AC = TC Q Biaya tetap rata-rata/Average Fix Cost (AFC) AFC = Q Biaya variabel rata-rata/Average Variable Cost (AVC) AVC = FC VC Q Biaya Marjinal/Marginal Cost Merupakan biaya tambahan yang dikeluarkan untuk menghasilkan 1 unit produk tambahan. MC = ∆C ∆Q Pada fungsi biaya berbentuk fungsi kuadrat : Fungsi biaya total TC = aQ2 – bQ + c VC Sehingga diperoleh AC = FC TC Q AVC = AFC = = aQ – b + c/Q VC Q 𝑐𝑐 Q = aQ – b Contoh : Biaya total yang dikeluarkan oleh sebuah perusahaan ditunjukkan oleh persamaan TC = 2Q2 – 24Q + 102. Tentukan : a. Pada tingkat produksi berapa unit, biaya total ini minimum b. Besarnya biaya total minimum tersebut c. Besar biaya Tetap, biaya variabel, biaya rata-rata, biaya tetap rata-rata, biaya variabel rata-rata pada tingkat produksi tadi . d. Jika dari kedudukan ini produksi ditambah 1 unit, berapa besar biaya marjinal Penyelesaian : Diketahui TC = 2Q2 – 24Q + 102 a. TC minimum pada saat Q = -b 2a = 24 4 =6 Jadi Biata total minimum pada saat jumlah barang yang diproduksi 6 unit b. TC minimum TC = 2Q2 – 24Q + 102 TC = 2(6)2 – 24(6) + 102 TC = 72 – 144 + 102 TC = 30 Jadi Biaya Total minimumnya 30 c. Pada saat Q = 6 unit diperoleh : FC = 102 VC = 2Q2 – 24Q = 2(6)2 – 24(6) = 72 – 144 = – 72 AC = TC AFC = = Q FC AVC = Q VC Q 30 = =5 6 102 = 6 -72 6 = 17 = –12 d. Jika Q bertambah 1 unit menjadi 7 unit maka TC = 2Q2 – 24Q + 102 = 2(7)2 – 24(7) + 102 = 98 – 168 + 102 = 32 MC = ∆C ∆Q = 32 - 30 7-6 =2 Fungsi Penerim aan Penerimaan (Revenue) merupakan hasil kali jumlah (Q) produksi yang berhasil dijual dengan harga (P) jual produk tersebut. Secara matematis dapat dituliskan : TR = P . Q Contoh : Perusahaan batako berhasil menjual produknya seharga Rp 4.000,-/unit. Tentukan : a. Fungsi Penerimaan b. Jumlah penerimaan saat penjualan mencapai 1000 unit c. Jumlah produk yang terjual jika diinginkan penerimaan sebesar Rp 2.400.000,- Penyelesaian : a. Fungsi penerimaan TR = P . Q TR = 4.000 Q b. Jika Q = 1000 unit maka TR = 4.000 (1000) TR = 4.000.000 Jadi, jika terjual 1000 unit maka perusahaan menerima Rp 4.000.000,c. TR = Rp 2.400.000,- maka 2.400.000 = 4.000 Q Q= 2.400.000 4000 = 600 Jadi agar penerimaan Rp 2.400.000,- maka harus diproduksi 600 unit Penerimaan Rata-rata dan Penerimaan Marjinal 1. Penerimaan Rata-rata/Average Revenue (AR) Merupakan penerimaan yang diperoleh tiap unit barang. Diperoleh dari hasil bagi penerimaan total (TR) terhadap jumlah barang AR = TR Q 2. Penerimaan Marjinal/Marginal Revenue (MR) Merupakan penerimaan tambahan yang diperoleh dari setiap tambahan satu unit barang yang diproduksi/terjual. MR = Mengingat TR = P.Q ∆R ∆Q atau P = TR Q = AR Hal ini berarti penerimaan rata-rata sama dengan harga barang per unit (P). Contoh : Fungsi permintaan suatu perusahaan ditunjukkan oleh P = 900 – 1,5Q. a. Tentukan fungsi penerimaan total b. Berapa besar penerimaan bila terjual sebanyak 200 unit dan berapa harga jual per unitnya c. Berapa penerimaan marjinal dari penjualan 200 unit menjadi 250 unit. d. Berapa tingkat penjualan yang menghasilkan penerimaan total maksimum e. Berapa besar penerimaan total maksimum Penyelesaian : a. TR = P. Q = (900 – 1,5Q).Q TR = 900 Q – 1,5 Q2 b. Bila Q = 200 unit maka TR = 900 (200) – 1,5 (200)2 TR = 180.000 – 60.000 TR = 120.000 Harga jual per unit P = 900 – 1,5 P P = 900 – 1,5(200) P = 900 – 300 P = 300 TR = 900 (250) – 1,5(250)2 TR = 225.000 – 93.750 TR = 131.250 c. Jika Q = 250 maka Sehingga MR = ∆R ∆Q = 131.250 – 120.000 250 - 200 = 225 d. TR = 900 Q – 1,5Q2 Penerimaan total maksimum pada saat Q = e. Penerimaan total maksimum TRmax = 900Q – 1,5Q2 -b 2a = -3 = 300 unit atau gunakan rumus TRmax = TRmax = 900(300) – 1,5(300)2 TRmax = TRmax = 270.000 – 135.000 TRmax = 135.000 Atau gunakan rumus TRmax = -900 −𝐷𝐷 4𝑎𝑎 = -D 4a −(900 2 −4∙(−1,5)∙0) 4(−1,5) = = −810.000 −6 −𝐷𝐷 4𝑎𝑎 = 135.000 5. Analisis Laba-Rugi Penerimaan dan biaya merupakan variabel-variabel penting untuk mengetahui kondisi bisnis suatu perusahaan. Dengan diketahuinya penerimaan total (TR) dan biaya total (TC) yang dikeluarkan, dapat dianalisis apakah perusahaan mendapat keuntungan atau kerugian. - Keuntungan (profit positif, π > 0) didapat jika TR > TC - Kerugian (profit negatif, π < 0) didapat jika TR < TC - Keseimbangan (profit not, π =0) didapat jika TR = TC Jika laba/rugi (profit) dilambangkan dengan π maka π = TR – TC Contoh : Andaikan biaya total yang dikeluarkan perusahaan ditunjukkan oleh persamaan TC = 20.000 + 100 Q dan penerimaan toalnya TR = 200 Q, tentukan : a. Pada tingkat produksi berapa unit perusahaan berada dalam posisi seimbang b. Apa yang terjadi jika perusahaan memproduksi 150 dan 300 unit Penyelesaian : Diketahui TC = 20.000 + 100 Q TR = 200 Q a. Perusahaan dalam posisi keseimbangan jika TR = TC TR = TC 200 Q = 20.000 + 100 Q 100 Q = 20.000 Q = 200 Jadi perusahaan berada pada posisi profit not saat memproduksi 200 unit. b. Pada saat produksi 150 unit TC = 20.000 + 100 Q = 20.000 + 100(150) = 20.000 + 15.000 = 35.000 TR = 200 Q = 200 (150) = 30.000 π = TR – TC Profit = 30.000 – 35.000 = – 5.000 Jadi pada saat produksi 150 unit perusahaan mengalami kerugian Rp 5.000,Pada saat produksi 300 unit TC = 20.000 + 100 Q = 20.000 + 100 (300) = 20.000 + 30.000 = 50.000 TR = 200 Q = 200 (300) = 60.000 π = TR – TC Profit = 60.000 – 50.000 = 10.000 Jadi saat produksi 300 unit perusahaan mengalami keuntungan Rp 10.000,-