SISTEM BILANGAN PENDAHULUAN Materi ini mendiskusikan beberapa konsep penting mencakup sistem bilangan biner dan hexadecimal, organisasi data biner (bit, nibbles, byte, kata/word, dan double word), sistem penomoran bertanda (signed) dan tidak bertanda (unsigned), aritmatika, logika, shift/geser, dan operasi rotate pada nilai biner, bit field dan paket data, dan himpunan karakter ASCII SISTEM BILANGAN DAN KONVERSI BILANGAN PENDAHULUAN Ada beberapa sistem bilangan yang digunakan dalam sistem digital. Yang paling umum adalah sistem bilangan desimal, biner, oktal dan heksadesimal Sistem bilangan desimal merupakan sistem bilangan yang paling familier dengan kita karena berbagai kemudahannya yang kita pergunakan sehari – hari. SISTEM BILANGAN Secara matematis sistem bilangan bisa ditulis seperti contoh di bawah ini: Contoh: Bilangan desimal: 5185.6810 = 5x103 + 1x102 + 8x101 + 5x100 + 6 x 10-1 + 8 x 10-2 = 5x1000 + 1x100 + 8x10 + 5 x 1 + 6x0.1 + 8x0.01 Bilangan biner (radiks=2, digit={0, 1}) 100112 = 1 × 16 + 0 × 8 + 0 × 4 + 1 × 2 + 1 × 1 = 1910 MSB LSB 101.0012 = 1x4 + 0x2 + 1x1 + 0x.5 + 0x.25 + 1x.125 = 5.12510 Sistem Radiks Himpunan/elemen Digit Desimal r=10 {0,1,2,3,4,5,6,7,8,9} Biner r=2 {0,1} Oktal r= 8 {0,1,2,3,4,5,6,7} Heksadesimal r=16 {0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F} 25510 111111112 3778 Desimal 0 1 2 3 4 5 6 7 8 9 Heksa Biner 0 1 2 3 4 5 6 7 8 9 0000 0001 0010 0011 Contoh FF16 10 11 12 13 14 15 A B C D E F 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 KONVERSI RADIKS-R KE DESIMAL Rumus konversi radiks-r ke desimal: Contoh: 11012 = 1×23 + 1×22 + 1×20 = 8 + 4 + 1 = 1310 5728 = 5×82 + 7×81 + 2×80 = 320 + 56 + 16 = 39210 2A16 = 2×161 + 10×160 = 32 + 10 = 4210 KONVERSI BILANGAN DESIMAL KE BINER Konversi bilangan desimal bulat ke bilangan Biner: Gunakan pembagian dgn 2 secara suksesif sampai sisanya = 0. Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB). Contoh: Konersi 17910 ke biner: 179 / 2 = 89 sisa 1 (LSB) / 2 = 44 sisa 1 / 2 = 22 sisa 0 / 2 = 11 sisa 0 / 2 = 5 sisa 1 / 2 = 2 sisa 1 / 2 = 1 sisa 0 / 2 = 0 sisa 1 (MSB) ⇒ 17910 = 101100112 MSB LSB KONVERSI BILANGAN DESIMAL KE OKTAL Konversi bilangan desimal bulat ke bilangan oktal: Gunakan pembagian dgn 8 secara suksesif sampai sisanya = 0. Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB). Contoh: Konversi 17910 ke oktal: 179 / 8 = 22 sisa 3 (LSB) / 8 = 2 sisa 6 / 8 = 0 sisa 2 (MSB) ⇒ 17910 = 2638 MSB LSB KONVERSI BILANGAN DESIMAL KE HEXADESIMAL Konversi bilangan desimal bulat ke bilangan hexadesimal: Gunakan pembagian dgn 16 secara suksesif sampai sisanya = 0. Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB). Contoh: Konversi 17910 ke hexadesimal: 179 / 16 = 11 sisa 3 (LSB) / 16 = 0 sisa 11 (dalam bilangan hexadesimal berarti B)MSB ⇒ 17910 = B316 MSB LSB KONVERSI BILANGAN BINER KE OKTAL Untuk mengkonversi bilangan biner ke bilangan oktal, lakukan pengelompokan 3 digit bilangan biner dari posisi LSB sampai ke MSB Contoh: konversikan 101100112 ke bilangan oktal Jawab : 10 110 011 2 6 3 Jadi 101100112 = 2638 KONVERSI BILANGAN OKTAL KE BINER Sebaliknya untuk mengkonversi Bilangan Oktal ke Biner yang harus dilakukan adalah terjemahkan setiap digit bilangan oktal ke 3 digit bilangan biner Contoh Konversikan 2638 ke bilangan biner. Jawab: 2 6 3 010 110 011 Jadi 2638 = 0101100112 Karena 0 didepan tidak ada artinya kita bisa menuliskan 101100112 KONVERSI BILANGAN BINER KE HEXADESIMAL Untuk mengkonversi bilangan biner ke bilangan hexadesimal, lakukan pengelompokan 4 digit bilangan biner dari posisi LSB sampai ke MSB Contoh: konversikan 101100112 ke bilangan heksadesimal Jawab : 1011 0011 B 3 Jadi 101100112 = B316 KONVERSI BILANGAN HEXADESIMAL KE BINER Sebaliknya untuk mengkonversi Bilangan Hexadesimal ke Biner yang harus dilakukan adalah terjemahkan setiap digit bilangan Hexadesimal ke 4 digit bilangan biner Contoh Konversikan B316 ke bilangan biner. Jawab: B 3 1011 0011 Jadi B316 = 101100112 TUGAS Konversikan Bilangan di Bawah ini 8910 = ……16 3678 = ……2 110102 = ……10 7FD16 = ……8 29A16 = ……10 1101112 = …….8 35910 = ……2 4728 = ……16 Jawaban Konversi 8910 ke hexadesimal: 89 / 16 = 5 sisa 9 8910 = 5916 Konversi 3678 ke biner: 3 = 011 ; 6 = 110 ; 7 = 111 » 0111101112 = 111101112 Konversi 110102 ke desimal: = 1×24 + 1×23 +0×22 + 1×21 + 0×20 = 16 + 8 + 2 = 2610 JAWABAN Konversi 7FD16 ke oktal: 7 = 0111 ; F = 1111 ; D = 1101 0111111111012 = 111111111012 111111111012 = 37758 » 7FD16 = 37758 Konversi 29A16 ke desimal: = 2×162 + 9×161 + A×160 = 512 + 144 + 10 = 66610 JAWABAN Konversi 1101112 ke Oktal 110= 6 ; 111 = 7 1101112 = 678 Konversi 35910 ke biner 359 / 2 = 179 sisa 1 (LSB) / 2 = 89 sisa 1 / 2 = 44 sisa 1 / 2 = 22 sisa 0 / 2 = 11 sisa 0 / 2 = 5 sisa 1 / 2 = 2 sisa 1 / 2 = 1 sisa 0 / 2 = 0 sisa = 1 (MSB) ⇒ 35910 = 1011001112