ABSTRAK KEANEKARAGAMAN METABOLIT SEKUNDER TURUNAN FENOL DARI BEBERAPA SPESIES TUMBUHAN ARTOCARPUS ASAL INDONESIA SERTA AKTIVITAS BIOLOGINYA Oleh : IQBAL MUSTHAPA NIM 30504005 (Program Studi Kimia) Artocarpus, yang dikenal masyarakat sebagai tumbuhan “nangka-nangkaan”, merupakan salah satu genus penting dalam famili Moraceae selain Morus dan Ficus. Tumbuhan ini tumbuh secara endemik atau dibudidayakan sehingga penyebarannya relatif merata di seluruh wilayah Indonesia. Masyarakat lebih mengenal kelompok tumbuhan ini karena beberapa tumbuhan di antaranya merupakan penghasil buah yang sangat dikenal, yaitu nangka (A. heterophyllus Lamk.), cempedak (A. integer Merr.), dan sukun (A. communis Forst.). Selain itu, tumbuhan ini juga menghasilkan kayu yang tergolong tahan terhadap rayap sehingga sesuai untuk berbagai keperluan perabot rumah tangga (meja dan kursi). Ciri yang menonjol dari kayu tumbuhan Artocarpus adalah tersimpannya zat-zat warna kuning atau jingga alami di dalamnya, yang telah mendorong kajian fitokimia terhadap kelompok tumbuhan ini. Kajian fitokimia Artocarpus memperlihatkan bahwa tumbuhan ini merupakan sumber metabolit sekunder turunan fenol, meliputi golongan flavonoid, stilben, 2-arilbenzofuran, dan adduct Diels-Alder. Golongan flavonoid, terutama kelompok flavon terprenilasi, merupakan ciri utama senyawa turunan fenol dalam Artocarpus. Dari segi struktur, golongan flavonoid Artocarpus memiliki kekhasan yaitu adanya pola oksigenasi di cincin B pada kerangka flavon yang tidak mengikuti kelaziman pola oksigenasi flavonoid pada tumbuhan lain pada umumnya serta adanya gugus isoprenil yang terikat pada C-3. Adanya kekhasan tersebut memungkinkan Artocarpus untuk memproduksi metabolit sekunder yang beragam. Kemudian selain secara struktural menarik, metabolit sekunder turunan fenol Artocarpus terutama dari golongan flavonoid diketahui memiliki aktivitas biologi yang beragam, antara lain sebagai antiinflamasi, antioksidan, antitumor dan antimalaria. Berdasarkan latar belakang tersebut, pada penelitian ini telah dilakukan kajian fitokimia terhadap tiga spesies Artocarpus yaitu A. heterophyllus Lamk., A. elasticus Reinw. dan A. lanceifolius Roxb., serta efek biologi senyawa-senyawa yang berhasil diisolasi terhadap sel murine leukemia P388 dan parasit Plasmodium falciparum strain K1 dan 3D7. Berdasarkan keanekaragam struktur dan data IC50, pada penelitian ini juga telah dikaji hubungan antara struktur dan sitotoksisitas terhadap sel murine leukemia P-388 serta sifat antimalaria terhadap P. falciparum strain K1 dan 3D7 dari senyawa turunan fenol yang berhasil diisolasi. Sampel kayu batang (lignum) A. heterophyllus diperoleh dari kabupaten Garut, Jawa Barat, sedangkan kayu batang A. elasticus diperoleh dari dua lokasi yaitu dari kabupaten Garut dan kabupaten Cianjur, Jawa Barat. Sementara kulit batang (kortek) A. lanceifolius diperoleh dari kabupaten Padang Pariaman, Sumatera Barat. Isolasi i metabolit sekunder yang dilakukan pada penelitian ini melalui beberapa tahapan yaitu, tahapan ekstraksi dengan menggunakan teknik maserasi, kemudian tahapan fraksinasi dan pemurnian senyawa dengan menggunakan berbagai teknik kromatografi. Struktur molekul senyawa hasil isolasi ditetapkan dengan cara-cara spektroskopi, yang meliputi spektroskopi UV, IR, NMR-1D, NMR-2D serta spektroskopi massa resolusi tinggi. Uji sitotoksisitas terhadap sel murine leukemia P-388 dilakukan dengan menggunakan metode MTT [3-(4,5-dimetiltiazo-2-il)2,5-difeniltetrazolium bromida], sedangkan sifat antimalaria dievaluasi terhadap P. falciparum strain K1 dan 3D7 dengan metode candle jar. Dari hasil penelitian ini telah berhasil diisolasi 20 jenis senyawa flavonoid terprenilasi, termasuk tiga senyawa di antaranya merupakan senyawa baru, yaitu artoindonesianin E1 (1) (jenis oksepinoflavon), artoindonesianin Z-4 (2) (jenis dihidrobenzosanton) dan artoindonesianin Z-5 (3) (jenis piranodihidrobenzosanton). Tujuh belas senyawa lainnya merupakan senyawa-senyawa turunan flavonoid yang telah dikenal, yang meliputi tiga senyawa calkon: gemicalkon A (4), gemicalkon B (5) dan moracalkon A (6); dua senyawa flavanon: norartokarpanon (7) dan artokarpanon (8); satu senyawa flavanon-3ol: dihidromorin (9); tiga senyawa flavon: norartokarpetin (10), artokarpesin (11) dan sikloartokarpesin (12); empat senyawa turunan 3-prenil-flavon: kudraflavon C (13), artokarpin (14), artonin E (15) dan 12-hidroksiartonin E (16); dua senyawa piranoflavon: sikloartokarpin (17) dan isosiklomorusin (18); satu senyawa dihidrobenzosanton: artobilosanton (19); dan satu senyawa furanodihidrobenzosanton: sikloartobilosanton (20). Penemuan senyawa baru artoindonesianin E-1 (1) dari A. elasticus, artoindonesianin Z4 (2) dan artoindonesianin Z-5 (3) dari A. lanceifolius merupakan data kimiawi yang penting pada tumbuhan Artocarpus. Senyawa 1 merupakan turunan oksepinoflavon dengan gugus metilen pada posisi C-12. Adanya gugus tersebut pada turunan oksepinoflavon adalah yang pertamakali ditemukan pada Artocarpus. Senyawa 2 merupakan turunan 3’-prenil dari dihidrobenzosanton, sehingga cincin B tersubstitusi penuh. Pola substitusi cincin B tersebut sangat jarang ditemui pada turunan flavonoid Artocarpus. Selain itu, senyawa 2 juga memiliki gugus metoksil pada C-4’, yang mencerminkan adanya kemampuan selektif A. lanceifolius dalam memodifikasi gugus fenol. Senyawa baru yang terakhir, yaitu senyawa 3, merupakan turunan piranodihidrobenzosanton yang merupakan jenis turunan flavonoid langka. Pembentukan jenis flavonoid ini secara biogenesis dimungkinkan akibat adanya modifikasi gugus metil pada C-12 dari turunan dihidrobenzosanton menjadi gugus aldehid, yang kemudian mengalami reaksi siklisasi lebih lanjut dengan melibatkan gugus OH pada C-5’ menghasilkan cincin pirano tambahan. Sejauh ini, flavonoid turunan piranodihidrobenzosanton hanya diperoleh dari A. lanceifolius. Selanjutnya, tujuh belas senyawa lain yang diperoleh pada penelitian ini memiliki ciri dan pola struktur molekul yang sesuai dengan umumnya struktur molekul turunan flavonoid Artocarpus. Secara keseluruhan, berdasarkan keanekaragaman senyawa golongan flavonoid yang dihasilkan dari ketiga spesies Artocarpus tersebut, tampak bahwa A. lanceifolius cenderung untuk menghasilkan flavonoid dengan pola oksigenasi di cincin B pada C2’,C-4’ dan C-5’, sementara A. heterophyllus dan A. elasticus pada C-2’ dan C-4’. Kecenderungan ini sangat penting artinya bagi kemosistematika tumbuhan Artocarpus. Apabila kemampuan pemasukan oksigen lebih banyak ke dalam cincin aromatik ii flavonoid dikaitkan dengan tingkat filogenetik yang tinggi, maka dapat disarankan A. lanceifolius memiliki tingkat evolusi lebih tinggi dari A. heterophyllus dan A. elasticus. Pada uji bioaktivitas, hasil pengujian sifat sitotoksik terhadap sel murine leukemia P388 menunjukkan bahwa senyawa 3, 14, 15, 16 dan 19 memiliki daya penghambatan sel yang sangat kuat atau dikategorikan sangat aktif (IC50 < 2,0 μg/mL), sementara senyawa 5, 13, dan 20 tergolong aktif (IC50 2,1–4,0 μg/mL), sedangkan dua belas senyawa turunan flavonoid terprenilasi lainnya digolongkan memiliki sitotoksisitas rendah atau bahkan tidak aktif (IC50 > 4,0 μg/mL). Berdasarkan hasil pengukuran sifat sitotoksik tersebut, serta dengan mengkaitkan kepada ciri-ciri struktur dari masing-masing senyawa, maka dapat disarankan hubungan struktur-aktivitas sebagai berikut. Adanya ikatan rangkap yang menjembatani kedua cincin aromatik pada jenis calkon (senyawa 5) dan flavon (senyawa 13-16, 19, 20 dan 3) memiliki peran yang penting dalam memberikan sifat sitotoksik. Pengubahan ikatan rangkap dua tersebut menjadi gugus alkil jenuh menurunkan (senyawa 7 dan 8) atau bahkan menghilangkan sifat sitotoksik (senyawa 9). Kemudian data sitotoksisitas dari berbagai senyawa turunan flavon hasil isolasi memperlihatkan bahwa sitotoksisitas kelompok senyawa ini akan menjadi sangat kuat apabila terdapat gugus prenil di C-3 dan pola oksigenasi di cincin B pada C-2’, C4’ dan C-5’ (senyawa 15). Modifikasi kimiawi yang melibatkan kedua ciri struktur tersebut, yaitu siklisasi gugus 3-prenil menjadi cincin pirano, oksepino atau dihidrobenzosanton (termasuk juga pada pembentukan furanodihidrobenzosanton) mengakibatkan menurunnya sifat sitotoksik. Pada pengujian sifat antimalaria, yang dilakukan terhadap sembilan turunan flavonoid hasil isolasi, memperlihatkan bahwa artonin E (15) memiliki aktivitas antimalaria yang dikategorikan sangat aktif (IC50 0,1 μg/mL) dalam menghambat pertumbuhan P. falciparum strain K1 (strain yang resisten terhadap senyawa standar klorokuin), tetapi hanya dikategorikan moderat (IC50 1,3 μg/mL) terhadap strain 3D7 (strain yang sensitif terhadap senyawa standar klorokuin). Sementara itu, flavon terprenilasi sejenis dengan senyawa 15, yaitu 12-hidroksiartonin E (16) memiliki aktivitas antimalaria yang dikategorikan aktif (IC50 0,9 μg/mL) terhadap strain K1, tetapi lemah (IC50 14,3 μg/mL) ketika diujikan terhadap strain 3D7. Kedua senyawa tersebut mewakili kelompok turunan 3-prenilflavon. Sementara itu, kelompok flavonoid yang lain semuanya tergolong memiliki aktivitas yang dikategorikan moderat (senyawa 3, 5, 11, 12, 17 dan 19 masing-masing dengan nilai IC50 berturut-turut 2,1; 1,6; 3,6; 1,3; 6,7 dan 2,1 μg/mL), kecuali kelompok favanon-3-ol (yaitu senyawa 9) yang bersifat tidak aktif terhadap kedua strain P. falciparum tersebut. Berdasarkan data tersebut, senyawa-senyawa turunan flavon terprenilasi baik di C-3 ataupun bersama-sama dengan di C-6 dan/atau C-8, umumnya menunjukkan aktivitas antimalaria yang dikategorikan aktif. Berdasarkan data aktivitas antimalaria tersebut, maka dapat disarankan juga bahwa adanya gugus prenil bebas di C-3 pada senyawa flavon juga berperan sangat penting terhadap aktivitas antimalaria. Sebagaimana pada sifat sitotoksik, modifikasi gugus 3prenil pada turunan flavon menjadi berbagai jenis flavonoid lain, yaitu piranoflavon, dihidrobenzosanton, dan piranodihidrobenzosanton, tampaknya sedikit menurunkan aktivitas antimalaria. Sebagai kesimpulan, penelitian ini telah berhasil menemukan tiga senyawa baru dari jenis flavonoid terprenilasi yaitu, artoindonesianin E-1 (1) (jenis oksepinoflavon), artoindonesianin Z-4 (2) (jenis dihidrobenzosanton) dan artoindonesianin Z-5 (3) (jenis piranodihidrobenzosanton). Penemuan senyawa-senyawa tersebut memberikan iii kontribusi yang penting terhadap fitokimia Artocarpus. Selanjutnya, penemuan tujuh belas senyawa lain dalam penelitian ini semakin mempertegas kemampuan genus ini untuk memproduksi senyawa flavonoid terprenilasi dengan pola oksigenasi yang khas di cincin B. Perbedaan ciri kimia pada masing-masing spesies pada penelitian ini tampaknya sesuai dengan tingkat filogenetiknya. Selain itu, hasil penelitian menunjukkan adanya hubungan antara aktivitas sitotoksik terhadap sel murine leukemia P-388 dan aktivitas antimalaria terhadap P. falciparum strain K1 dan 3D7, yaitu aktivitas yang tinggi dari senyawa-senyawa turunan flavonoid terjadi apabila terdapat ikatan rangkap dua yang menjembatani kedua cincin aromatik pada jenis calkon dan flavon, pola oksigenasi C-2’,C-4’ dan C-5’ di cincin B, dan adanya gugus isoprenil bebas pada C-3. iv ABSTRACT MOLECULAR DIVERSITY AND BIOLOGICAL ACTIVITIES OF PHENOLIC DERIVED SECONDARY METABOLITES FROM SOME INDONESIAN ARTOCARPUS By : IQBAL MUSTHAPA NIM 30504005 Artocarpus, locally known as “nangka-nangkaan”, is one of the important genera of family Moraceae, in addition to Morus and Ficus. The plants belong to this genus grow endemically and also cultivated so that the plants are widely distributed throughout Indonesian region. The local people knows the plants very much because some of them produce edible fruits, such as “nangka” (A. heterophyllus), “cempedak” (A. integer), and “sukun” (A. communis). In addition, the plants also produce good quality of wood which is suitable for furniture. The most prominent properties of the wood are the yellow or orange pigment that has stimulated their phytochemical studies. The phytochemical studies of Artocarpus plants show that these plants are sources of phenolic-derived secondary metabolites, including flavonoids, stilbenes, 2arylbenzofurans, and adduct Diels-Alder. The flavonoid compounds, particularly of prenylated flavones, are the main group of the phenolic constituents. Structurally, the Artocarpus flavonoid is characterized by the presence of unique oxygenated functionalities in the ring B of the flavone skeleton which has different pattern of the flavonoids from other plant species, as well as the presence of an isoprenyl group at C-3. These characteristics allow the Artocarpus flavonoid to develop further to produce a number of new flavonoid-derived skeletons. Furthermore, from biological activity’s perspective, isolated compounds from Artocarpus exhibited a number of biological activities, such as anti-inflammatory, antioxidant, antitumor, and antimalaria. Based on these backgrounds, in this research a phytochemical study on three species of Artocarpus, namely A. heterophyllus, A. elasticus and A. lanceifolius, has been carried out, and the biological effects of the isolated compounds against murine leukemia P388 cells and Plasmodium palcifarum strain K1 and 3D7 have been evaluated. The structure-activity relationship of the isolated compounds against cytotoxicity and antimalarial properties has also been evaluated from the diversity of chemical structures and their IC50. Samples of A. heterophyllus Lamk. and A. lanceifolius Roxb. were collected from Garut-West Java, and Padang–West Sumatera, respectively; while A. elasticus Reinw. was collected from two regions namely Garut and Cianjur, West Java. Isolation of secondary metabolites involved a number of laboratory works, including extraction, fractionation and purification, using various chromatographic techniques. The molecular structures of the isolated compounds were determined based on spectroscopic data, including UV, IR, 1-D and 2-D NMR, and mass spectra. Cytotoxic effect of the isolated compounds was evaluated against murine leukemia P388 cells using MTT [3-(4,5dimethyltiazo-2-yl)2,5-diphenyltetrazolium bromide] method, while antimalarial effect was evaluated against P. falciparum strain K1 and 3D7 using candle jar method. v The phytochemical investigation of these plants resulted, three new prenylated flavones, trivially named artoindonesianin E-1 (1) (an oxepynoflavone derivative), artoindonesianin Z-4 (2) (a dihydrobenzoxanthone derivative) and artoindonesianin Z-5 (3) (a pyranodihydrobenzoxanthone derivative), beside seventeen known prenylated flavones. The known compounds included three chalcone derivatives: gemichalcone A (4), gemichalcone B (5) and morachalcone A (6); two flavanone derivatives: norartocarpanone (7) and artocarpanone (8); one flavanone-3-ol derivative: dihydromorin (9); three flavone derivatives: norartocarpetin (10), artocarpesin (11) and cycloartocarpesin (12); four 3-prenylated flavone derivatives: cudraflavone C (13), artocarpin (14), artonin E (15) and 12-hydroxyartonin E (16); two pyranoflavone derivatives: cycloartocarpin (17) and isocyclomorusin (18); one dihydrobenzoxanthone derivative: artobiloxanthone (19); and one cyclodihydrobenzoxanthone derivative namely cycloartobiloxanthone (20). The presence of the three new compounds: artoindonesianin E-1 (1) in A. elasticus, artoindonesianin Z-4 (2) and Z-5 (3) in A. lanceifolius are chemically important to the Artocarpus plants. Compound 1 is an oxepynoflavone derivative containing a methylene group attached to C-12 of the oxepyno ring. The presence of this group in the oxepynoflavone derivative represents the first example of this type of secondary metabolites of Artocarpus. Compound 2 is a flavone of dihydrobenzoxanthone-type substituted with an isoprenyl group at C-3’ of the ring B, making this ring becomes fully substituted. This type of substitution is very rarely in the flavonoid compounds of Artocarpus. In addition, compound 2 has also a methoxyl group attach to C-4’. The presence of this moiety may reflect the ability of the plant (A. lanceifolius) selectively to methylate the phenolic groups. The last new compound 3, belongs to a pyranodihydrobenzoxanthone-type of flavone. The occurrence of this skeletal type is so far found in A. lanceifolius only. This type of flavonoid is biogenetically formed through a modification of the methyl group at C-12 of the dihydrobenzoxanthone derivative into an aldehyde group, which in turn reacts further with 5’-OH to form an additional pyrano ring. On the other hand, the molecular structures of the seventeen known flavonoids which were isolated in this investigation follow the flavonoid structures normally found from the Artocarpus. Based on the structural diversity of prenylated flavones isolated from the three investigated Artocarpus plants, A. lanceifolius has a tendency to produce prenylated flavones with 2’,4’,5’-trioxygenated pattern in the B-ring, while the structures of the flavonoids of A. heterophyllus and A. elasticus contain only 2’,4’-dioxygenated functionality in this ring. The presence of these significant differences of the oxygenated functionality in the B-ring between these three species of Artocarpus may have an important implication to the chemotaxonomy of Artocarpus at the species level. It is tempting to hypothesize that A. lanceifolius at the evolutionary level is higher than both A. heterophyllus and A. elasticus. The biological evaluations of the isolated compounds disclose the result as follows: the cytotoxic effect against P388 cells showed that compounds 3, 14, 15, 16 and 19 exhibited very strong inhibition (IC50 < 2.0 μg/mL), compounds 5, 13, and 20 gave strong inhibition (IC50 2.1–4.0 μg/mL), while the rest of thirteen prenylated flavones showed weak inhibition or even inactive (IC50 > 4.0 μg/mL). Based on these results, the structure-activity relationship between the isolated flavonoids and cytotoxicity against P388 as follow: the presence of a double bond bridged between the two aromatic rings vi in the chalcone (compound 5) and flavone (compound 13-16, 19, 20 and 3) derivatives contributes significantly to the cytotoxic property. Reduction of double bond to became a saturated alkyl moiety decreases (compounds 7-9) the cytotoxic effect. Furthermore, the cytotoxicity of the isolated compounds will increase by the presence of a prenyl group attached to C-3 and a 2’,4’,5’-trioxygenated pattern in the B-ring (compound 15). Structural modification involving these groups, such as cyclication of the 3-prenyl to make a pyrano, oxepino or dihydrobezoxanthone types (including the making of pyranohydrobenzoxanthone type) decreases cytotoxicities. Antimalarial effect of some selected isolated flavone derivatives showed that artonin E (15) exhibited very strong inhibition (IC50 0.1 μg/mL) against K1 strain, but only strong inhibition (IC50 0.3 μg/mL) against 3D7 strain of P. falciparum. A related prenylated flavone related to compound 15, namely 12-hydroxyartonin E (16), exhibited strong inhibition (IC50 0.9 μg/mL) against K1 strain, but weak inhibition (IC50 14.3 μg/mL) against 3D7 strain. Those two compounds were the member of 3-prenylflavone type. In addition, the other isolated flavone derivatives namely compound 3, 5, 11, 12, 17 and 19 showed moderate inhibition with IC50 respectively 2.1, 1.6, 3.6, 1.3, 6.7 and 2.1 μg/mL against both two strain of P. falciparum, except that a flavanone-3-ol derivative, namely compound 9, disclosed inactivity. From these results, the prenylated flavones, either at C-3 or together with that at C-6/C-8, showed strong inhibition against K1 and 3D7 strains of P. falciparum. This data also highlight the important of the presence of a prenyl group at C-3 on antimalarial activity. As in cytotoxicity, modification of this prenyl group also decreases antimalarial properties. In conclusion, three new prenylated flavones, namely artoindonesianin E-1 (1) artoindonesianin Z-4 (2) and artoindonesianin Z-5 (3) have been successfully isolated in this research work. The presence of these compounds gives a significant contribution to the phytochemistry of Artocarpus. In addition, the isolation of seventeen other prenylated flavones in this work strongly supports regarding the ability of this genus to produce the 3-prenylated flavone with unique features in the oxygenation pattern of the B-ring. The differences of flavonoid characteristics in the species used in this investigation seem to reflect their phylogenetic levels. Furthermore, the results of biological evaluation demonstrate that cytotoxic and antimalarial properties of the prenylated flavonoids are related to the presence of a double bond bridging the two aromatic rings in the chalcone and flavone derivatives, a certain pattern of oxygenation at B-ring of the flavone skeleton, and the presence of free isoprenyl substituent at C-3. vii DAFTAR ISI Halaman ABSTRAK………………………………………………………………... i ABSTRACT……………………………………………………………… v PEDOMAN PENGGUNAAN TESIS…………………………………… viii UCAPAN TERIMA KASIH…………………………………………….. ix DAFTAR ISI……………………………………………………………... x DAFTAR LAMPIRAN…………………………………………………... xii DAFTAR GAMBAR DAN ILUSTRASI……………………………….. xiii DAFTAR TABEL………………………………………………………... xvii DAFTAR SINGKATAN DAN LAMBANG……………………………. xix Bab I Pendahuluan……………………........…………………………. 1 Bab II Tinjauan Pustaka………………………………………............ 10 II.1 Tinjauan Umum Tumbuhan Artocarpus................................... 10 II.2 Ilmu Kimia Tumbuhan Artocarpus............................................ 12 II.2.1 Senyawa Flavonoid...................................................................... 12 a. Calkon dan dihidrocalkon....................................................... 17 b. Flavanon.................................................................................. 20 c. Flavan-3-ol.............................................................................. 24 d. Flavon dan flavon terprenilasi................................................ 25 e. Oksepinoflavon....................................................................... 30 f. Piranoflavon............................................................................ 32 g. Dihidrobenzosanton dan furanodihidrobenzosanton............... 35 h. Kuinodihidrosanton................................................................. 38 i. Tetrahidrosanton...................................................................... 39 j. Siklopentenosanton dan santonolida....................................... 40 II.2.2 Senyawa turunan fenol lainnya dari Artocarpus....................... 42 a. Adduct Diels-Alder ................................................................. 42 b. Stilben..................................................................................... 43 c. Senyawa turunan fenol lainnya............................................... 45 II.2.3 Senyawa non fenolik dari Artocarpus....................................... 47 II.3 Bioaktivitas Metabolit Sekunder dari Tumbuhan Artocarpus 48 x Bab III Percobaan dan Hasil ................................................................. 50 III.1 Umum.......................................................................................... 50 III.2 Bahan Tumbuhan...................................................................... 51 III.3 Isolasi senyawa dari kayu batang tumbuhan Artocarpus heterophyllus............................................................................... III.4 III.5 Isolasi senyawa dari kayu batang tumbuhan Artocarpus elasticus....................................................................................... 54 a. Artocarpus elasticus I.............................................................. 54 b. Artocarpus elasticus II............................................................. 56 Isolasi senyawa dari kulit batang tumbuhan Artocarpus lanceifolius.................................................................................. III.6 58 Data sifat fisik dan spektroskopi senyawa-senyawa hasil isolasi........................................................................................... III.7 51 60 Uji aktivitas sitotoksik terhadap sel murine leukemia P-388 dan uji anti malaria terhadap parasit Plasmodium falcifarum strain K1 dan 3D7................................................... 69 a. Uji aktivitas sitotoksik terhadap sel murine leukemia P-388.. 69 b. Uji anti malaria terhadap Plasmodium falcifarum strain K1 dan 3D7................................................................................... 70 Bab IV Pembahasan................................................................................ 72 IV.1 Penentuan struktur senyawa-senyawa hasil isolasi................ 73 IV.2 Biogenesis senyawa flavonoid terprenilasi dan turunannya dari tumbuhan A. heterophyllus, A. elasticus dan A. lanceifolius.................................................................................. IV.3 107 Makna penemuan senyawa hasil isolasi terhadap hubungan kekerabatan antara species dalam genus Artocarpus............. 115 Sitotoksisitas dan anti malaria senyawa hasil isolasi.............. 118 Bab V Kesimpulan ..................................................................................... 125 Daftar Pustaka............................................................................................ 129 IV.4 xi DAFTAR LAMPIRAN Lampiran 1 Prosedur Percobaan Uji Sitotoksisitas Terhadap Sel Murine Leukemia P-388 dengan Metode MTT assay (Alley, 1998) …………………………………………….. Lampiran 2 Lampiran 3 142 Prosedur Percobaan Uji Aktivitas Anti malaria dengan Metode Candle Jar (Jensen dan Trager, 1977) ................. 145 Riwayat Hidup ................................................................... 150 xii DAFTAR GAMBAR DAN ILUSTRASI Gambar II.1 Skema hubungan genetik tumbuhan Artocarpus dan genus lain pada famili Moraceae (Kanzaki dkk., 1997)………….... 11 Gambar II.2 Pokok-pokok biosintesis flavonoid (Manitto, 1981) ...……... 16 Gambar II.3 Hubungan biogenetik berbagai jenis flavon (Manitto, 1981). Gambar II.4 Kecenderungan pola oksigenasi dan isoprenilasi senyawa flavonoid Artocarpus ............................................................. Gambar II.5 17 Struktur senyawa kelompok calkon Artocarpus dengan substituen isoprenil bebas ..................................................... Gambar II.6 16 18 Struktur senyawa kelompok calkon Artocarpus dengan substituen isoprenil termodifikasi .......................................... 19 Gambar II.7 Struktur senyawa kelompok dihidrocalkon Artocarpus ......... 20 Gambar II.8 Struktur senyawa kelompok flavanon dengan pola monooksigenasi di cincin B ................................................... Gambar II.9 Struktur senyawa kelompok flavanon dengan pola dioksigenasi di cincin B ......................................................... Gambar II.10 Struktur senyawa kelompok flavanon dengan 21 22 pola trioksigenasi di cincin B ......................................................... 23 Gambar II.11 Struktur senyawa kelompok flavan-3-ol Artocarpus ............. Gambar II.12 Struktur senyawa kelompok flavon sederhana 24 dari Artocarpus .............................................................................. 25 Gambar II.13 Struktur senyawa flavon terpisoprenilasi tanpa gugus isoprenil pada C-3 .................................................................. 26 Gambar II.14 Isoprenilasi flavon pada posisi C-3 ........................................ 27 Gambar II.15 Struktur senyawa 3-prenil flavon dengan pola dioksigenasi di cincin B .............................................................................. Gambar II.16 Struktur senyawa 3-prenil flavon dengan pola trioksigen di cincin B .................................................................................. Gambar II.17 29 30 Reaksi pembentukan senyawa kelompok oksepinoflavon (Hakim dkk., 2005) ................................................................ xiii 31 Gambar II.18 Struktur senyawa kelompok oksepinoflavon dari Artocarpus Gambar II.19 Saran biogenesis pembentukan senyawa kelompok piranoflavon (Hakim dkk., 2006) .......................................... Gambar II.20 34 Struktur senyawa piranoflavon dengan pola trioksigenasi di cincin B .................................................................................. Gambar II.22 32 Struktur senyawa piranoflavon dengan pola dioksigenasi di cincin B .................................................................................. Gambar II.21 32 Saran biogenesis pembentukan 35 kerangka dihidrobenzosanton (19) dan furanodihidrobenzosanton (20) dari 3-prenilflavon (15) (Nomura dkk., 1998) ....................... Gambar II.23 Struktur senyawa kelompok dihidrobenzosanton 36 dari Artocarpus .............................................................................. 37 Gambar II.24 Struktur senyawa kelompok furanodihidrobenzosanton dari Artocarpus .............................................................................. 38 Gambar II.25 Struktur senyawa kelompok kuinohidrosanton dari Artocapus ............................................................................... Gambar II.26 39 Saran biogenesis pembentukan artonol A (98) dari artobilosanton (19) (Nomura dkk., 1998) ............................... 40 Gambar II.27 Struktur senyawa kelompok siklopentanosanton dari Artocarpus .............................................................................. 40 Gambar II.28 Saran biogenesis pembentukan kelompok senyawa siklopentenosanton dan santonolida (Hakim dkk., 2006) ..... Gambar II.29 Reaksi pembentukan senyawa kelompok Adduct DielsAlder (Nomura dkk., 1998) ................................................... Gambar II.30 41 42 Struktur senyawa kelompok adduct Diels-Alder dari Artocarpus .............................................................................. 43 Gambar II.31 Struktur senyawa kelompok stilbenoid dari Artocarpus ........ Gambar II.32 Struktur senyawa kelompok dimer stilbenoid 44 dari Artocarpus............................................................................... 44 Gambar II.33 Struktur senyawa kelompok polifenol terprenilasi dari Artocarpus .............................................................................. 45 xiv Gambar II.34 Struktur senyawa kelompok 2-arilbenzofuran dari Artocarpus .............................................................................. 46 Gambar II.35 Struktur senyawa heterofilol (119) ......................................... 46 Gambar II.36 Struktur senyawa turunan benzaldehida dari Artocarpus ..... Gambar II.37 Struktur senyawa kelompok triterpen sikloartan dari 47 Artocarpus .............................................................................. 47 Gambar III.1 Skema pemisahan dan pemurnian senyawa dari kayu batang A.heterophylus ........................................................................ 53 Gambar III.2 Skema pemisahan dan pemurnian senyawa dari kayu batang A. elasticus I ........................................................................... Gambar III.3 55 Skema pemisahan dan pemurnian senyawa dari kayu batang A. elasticus II .......................................................................... 57 Gambar III.4 Skema pemisahan dan pemurnian senyawa dari kulit batang A. lanceifolius ......................................................................... 59 Gambar IV.1 Korelasi HMBC (1H ⇔13C) artoindonesianin E-1 (1) ........... 76 Gambar IV.2 Korelasi HMBC (1H ⇔13C) artoindonesianin Z-4 (2) ........... 78 Gambar IV.3 Korelasi NOESY dan HMBC gemicalkon A (4).................... 84 Gambar IV.4 Pembentukan kuwanon J dari L-tirosin bertanda (Hano dkk., 1994b) .................................................................................... Gambar IV.5 Skema hubungan biogenesis antar kerangka flavonoid Artocarpus (Hakim dkk., 2006) ............................................. Gambar IV.6 111 Usulan biogenesis pembentukan artoindonesianin E-1 (1) dari artokarpin (14) ................................................................ Gambar IV.9 110 Usulan biogenesis pembentukan sikloarokarpin (17) dari artokarpin (14) ....................................................................... Gambar IV.8 109 Usulan biogenesis pembentukan kudraflavon C (13) dari artokarpesin (11) .................................................................... Gambar IV.7 108 111 Usulan biogenesis pembentukan artoindonesianin Z-5 (3) dari artonin E (15) melalui 12-hidroksi-artonin E (16) .......... 112 Gambar IV.10 Usulan biogenesis pembentukan gemicalkon B (5) ............... 113 Gambar IV.11 Skema hubungan biogenesis senyawa fenolik hasil isolasi .. 114 xv Gambar IV.12 Grafik hubungan antara aktivitas sitotoksik dengan jenis flavonoid ................................................................................. 119 Gambar IV.13 Grafik aktivitas antimalaria dan sitotoksisitas senyawa hasil isolasi ...................................................................................... 123 xvi DAFTAR TABEL Tabel II.1 Distribusi senyawa flavonoid dalam tumbuhan Artocarpus . 13 Tabel II.2 Distribusi senyawa calkon pada Artocarpus ......................... 18 Tabel II. 3 Senyawa flavanon dengan pola monooksigenasi di cincin B 21 Tabel II. 4 Senyawa flavanon dengan pola dioksigenasi di cincin B ..... 22 Tabel II. 5 Senyawa flavanon dengan pola trioksigenasi di cincin B ..... 23 Tabel II.6 Senyawa flavon terpisoprenilasi tanpa gugus isoprenil pada C-3 …………………………………………………………. 26 Tabel II.7 Senyawa 3-prenil flavon dengan pola dioksigenasi di cincin B ........................................................................................... Tabel II.8 28 Senyawa 3-prenil flavon dengan pola trioksigenasi di cincin B ................................................................................. 29 Tabel II.9 Distribusi senyawa oksepinoflavon pada Artocarpus ........... 31 Tabel II.10 Senyawa piranoflavon dengan pola dioksigenasi di cincin B 33 Tabel II.11 Aktivitas sitotoksik senyawa flavonoid dari Artocarpus terhadap sel murine leukemia P388 ...................................... Tabel III.1 Aktivitas sitotoksik senyawa kimia hasil isolasi terhadap sel murine leukemia P388 ………………………………… Tabel III.2 73 Data spektrum NMR artoindonesianin E-1 (1) dalam aseton-d6 ............................................................................... Tabel IV.3 71 Distribusi dan keragaman kerangka senyawa hasil isolasi dari A. heterophyllus, A. elasticus, dan A. lanceifolius …… Tabel IV.2 70 Aktivitas antimalaria senyawa kimia hasil isolasi terhadap Plasmodium falciparum strain K1 dan 3D7 ……………… Tabel IV.1 49 75 Data spektrum NMR artoindonesianin Z-4 (2) dalam aseton-d6 ................................................................................ 79 Tabel IV.4 Data spektrum NMR artoindonesianin Z-5 (3) dalam DMSO-d6 .............................................................................. Tabel IV.5 81 Data spektrum NMR gemicalkon A (4) dan B (5) dalam aseton-d6 ................................................................................ xvii 85 Tabel IV.6 Data spektrum NMR moracalkon A (6) dalam aseton-d6 ..... Tabel IV.7 Data spektrum NMR norartokarpanon (7), artokarpanon (8) dan dihidromorin (9) dalam aseton-d6 .................................. Tabel IV.8 90 Data spektrum NMR norartokarpetin (10), artokarpesin (11) dan sikloartokarpesin (12) dalam aseton-d6 .................. Tabel IV.9 87 94 Data spektrum NMR kudraflavon C (13) dan artokarpin (14) ........................................................................................ 97 Tabel IV.10 Data spektrum 1H dan 13 C NMR artonin E (15) dan 12-hidroksi-artonin E (16)..................................................... Tabel I V.11 Data spektrum NMR sikloartokarpin (17) 100 dan isosiklomorusin (18) dalam aseton-d6 .................................. 103 Tabel IV.12 Data spektrum NMR artobilosanton (19) dalam aseton-d6 ... 104 Tabel IV.13 Data spektrum NMR sikloartobilosanton (20) dalam aseton-d6 ............................................................................... xviii 106 DAFTAR SINGKATAN DAN LAMBANG Pemakaian pertama kali pada halaman Singkatan Nama cpDNA DNA kloroplas 2 KCV Kromatografi Cair Vakum 4 KKT Kromatografi Kolom Tekan 4 KR Kromatografi Radial 4 KLT Kromatografi Lapis Tipis 4 UV Ultra Violet 4 IR Infra red (infra merah) 4 NMR Nuclear Magnetic Resonance (resonansi magnet inti) 4 Apt Attach Proton Test 4 1D NMR Nuclear Magnetic Resonance satu dimensi 4 2D NMR Nuclear Magnetic Resonance dua dimensi 4 COSY Correlation Spectroscopy 4 HMQC Heteronuclear Multiple Quantum Coherence 4 HMBC Heteronuclear Multiple Bond Cohherence 4 NOESY Nuclear Overhauser Effect Spectroscopy 4 HRMS High Resolution Mass Spectroscopy 4 IC50 Inhibition Concentration 50% 8 NCI National Cancer Institute 48 KG Kromatografi Gravitasi 50 FAB Fast Atom Bombardment 51 EI Electron Impact 51 t.l. Titik leleh 60 s Singlet 60 dd Double doublet 60 dt Double triplet 60 br d Broad doublet 61 Ddd Double double doublet 61 xix DAFTAR SINGKATAN DAN LAMBANG (lanjutan) Pemakaian pertama kali pada halaman Singkatan Nama ddq Double double quartet 61 t Triplet 65 m Multiplet 65 μg Mikrogram (10-6 gram) 8 mL Milliliter (10-3 liter) 8 g Gram 51 mg Milligram (10-3gram) 51 kg Kilogram 51 MeOH Metanol 51 CH2Cl2 Diklorometana 51 EtOAc Etilasetat 51 CHCl3 Kloroform 52 d6 Deuterium-6 60 ε Tetapan ekstinksi molar 60 λ max Panjang gelombang maksimum (nm) 60 νmax Bilangan gelombang maksimum (cm-1) 60 δ Geseran kimia (ppm) 74 Lambang xx