PENGEMBANGAN MODUL UNTUK KAMUS WORD GRAPH KATA SIFAT PADA SISTEM APLIKASI BOGORDELFTCONSTRUCT ANNISSA ZAHARA DEPARTEMEN ILMU KOMPUTER FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2010 i ABSTRACT ANNISSA ZAHARA. The development of adjective word graph dictionary module in BogorDelftConstruct. Supervised by SRI NURDIATI. One of natural language processing methods that represents the result of semantic analysis of a text in a graph form is Knowledge Graph (KG). Until now, there are only a few researches using KG to do semantic analysis for texts in Indonesian language. Those researches were mainly focus on analyzing text, constructing rules to analyze text and engineering to understand the text. Some other researches have done semantic analysis from various part-of-speech. Nevertheless, the results of the research have not been implemented yet. To realize a long term goal of doing text abstraction automatically, BogorDelftConstruct has been developed as an early stage. In line with that, this research implemented semantic analysis for one part-of-speech in BogorDelftConstruct. The objective of the research is to develop an adjective word graph dictionary module in BogorDelftConstruct system. The adjective to be analyzed have 19 word graph patterns formed by affixation. Process of forming word graph started by getting root word and affix that contained in input word using stemming based on Kamus Besar Bahasa Indonesia (KBBI). Root word is used to search part-of-speech in KBBI. Part-of-speech of root word and affix is used as parameter to determine which pattern of adjective word graph that is appropriate. The appropriate pattern which contains the meaning of the word is generated in the system. The process of determining the appropriate pattern can be considered as a testing stage. In this module, from 19 patterns of adjective word graph, only 18 patterns that can be identified. A pattern of adjective word graph that unidentified is me-kata benda-kan. Adjective word graph me-kata dasar-kan and me-kata benda-kan have a similar former affix. Because of that, the system was not able to distinguish the two patterns. From 250 input words which used in testing module, there were 13 errors which resulted in accuracy of 94,80%. The occurrences of the error, was due to incapability of stemming function to produce intended root word and the uncompleteness of KBBI. Keyword : adjective word graph, Knowledge Graph, stemming, Kamus Besar Bahasa Indonesia (KBBI). ii PENGEMBANGAN MODUL UNTUK KAMUS WORD GRAPH KATA SIFAT PADA SISTEM APLIKASI BOGORDELFTCONSTRUCT ANNISSA ZAHARA Skripsi Sebagai salah satu syarat untuk memperoleh gelar Sarjana Komputer pada Program Studi Ilmu Komputer DEPARTEMEN ILMU KOMPUTER FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2010 iii Judul skripsi Nama NIM : Pengembangan Modul untuk Kamus Word Graph Kata Sifat Pada Sistem Aplikasi BogorDelftConstruct : Annissa Zahara : G64076004 Menyetujui, Dosen Pembimbing, Dr. Ir. Sri Nurdiati, M.Sc. NIP: 19601126198601 2 001 Mengetahui: Ketua Departemen, Dr. Ir. Sri Nurdiati, M.Sc. NIP: 19601126198601 2 001 Tanggal lulus: iv RIWAYAT HIDUP Penulis dilahirkan di Jakarta pada tanggal 17 Agustus 1986 dari ayah Mochammad Agus Jaya dan Ibu Suhanah. Penulis merupakan putri pertama dari dua bersaudara. Penulis lulus dari SMA Negeri 1 Ciputat pada tahun 2004 dan pada tahun yang sama penulis lulus seleksi masuk IPB melalui jalur Undangan Seleksi Masuk IPB. Penulis memilih Program Studi D3 Informatika dengan Sub Program Teknik Informatika, Departemen Ilmu Komputer, Fakultas Matematika dan Ilmu Pengetahuan Alam. Pada tahun 2007 penulis melakukan Kerja Praktek di Balai Penelitian Tanaman Obat dan Aromatik, Cimanggu, Bogor selama 45 hari. Penulis lulus dari Program Studi D3 Informatika pada tahun 2007 dan pada tahun yang sama penulis melanjutkan ke jenjang S1 Program Penyelenggaraan Khusus Ekstensi Ilmu Komputer IPB melalui jalur tes. v PRAKATA Puji dan syukur penulis panjatkan kepada Allah SWT atas segala cinta dan kasih sayangNya sehingga karya ilmiah ini berhasil diselesaikan. Shalawat serta salam penulis sampaikan kepada junjungan kita Nabi Muhammad SAW atas teladan beliau sebagai motivasi penulis. Tema yang dipilih dalam penelitian ini adalah penerapan metode Knowledge Graph pada pembentukan kamus kata sifat, dengan judul Pengembangan Modul untuk Kamus Word Graph Kata Sifat pada Sistem aplikasi BogorDelftConstruct. Penelitian dilakukan sejak Juni 2009 sampai dengan April 2010. Terima kasih penulis ucapkan kepada 1. Papa dan Mama untuk doa, kasih sayang dan dukungan yang tak pernah putus. Ungkapan terima kasih juga penulis sampaikan untuk adik, Diana atas diskusi dan motivasinya. Terima kasih juga tak lupa penulis sampaikan untuk seluruh keluarga besar penulis. 2. Ibu Dr. Ir. Sri Nurdiati M.Sc. selaku pembimbing atas waktu, saran, bimbingan dan pengertian yang diberikan. 3. Bapak Ahmad Ridha, S.Kom, MS. dan Bapak Sony Hartono Wijaya, S.Kom, M.Kom. selaku penguji yang telah memberikan kritik dan saran selama penulis mulai melakukan penelitian hingga sidang tugas akhir. 4. Anggi dan Wanda untuk ilmu, diskusi, semangat dan dukungan bagi penulis. Untuk Arifa atas diskusi, dukungan dan sebagai teman seperjuangan dalam penelitian ini. 5. Ayi, Disty dan Mba Tessa untuk semangatnya baik secara moral maupun spiritual. 6. Yuli, Sayi, Neng, Uchie, Pipit, Cece Dian, Rheinja, Neng Dian, dan Inne sebagai sahabat-sahabat penulis yang selalu memberikan semangat dan keceriaan selama penulis melakukan penelitian. 7. Teman-teman seperjuangan di Ekstensi ILKOM Angkatan II. 8. Semua pihak yang tidak dapat penulis sebutkan satu persatu yang telah membantu penulis dalam menyelesaikan penelitian ini. Karya ilmiah ini masih jauh dari kesempurnaan, dengan segala kerendahan hati penulis mengharapkan kritik dan saran yang membangun bagi karya ilmiah ini. Penulis berharap semoga karya ilmiah ini dapat memberikan manfaat. Bogor, Mei 2010 Annissa Zahara vi DAFTAR ISI Halaman DAFTAR ISI ................................................................................................................................. vii DAFTAR GAMBAR.................................................................................................................... viii DAFTAR LAMPIRAN ................................................................................................................ viii PENDAHULUAN ........................................................................................................................... 1 Latar Belakang ............................................................................................................................. 1 Tujuan........................................................................................................................................... 1 Ruang Lingkup ............................................................................................................................. 1 Manfaat......................................................................................................................................... 1 TINJAUAN PUSTAKA .................................................................................................................. 1 Natural Language Processing (NLP) ........................................................................................... 1 Stemming ...................................................................................................................................... 2 Knowledge Graph (KG) ............................................................................................................... 2 Concept......................................................................................................................................... 2 Token ............................................................................................................................................ 2 Type .............................................................................................................................................. 2 Word Graph.................................................................................................................................. 2 Aspek Ontologi............................................................................................................................. 2 Ekspresi Semantik dengan KG ..................................................................................................... 3 Adjektiva (Kata Sifat) .................................................................................................................. 3 METODE PENELITIAN ............................................................................................................... 4 Data .............................................................................................................................................. 4 Metodologi ................................................................................................................................... 4 HASIL DAN PEMBAHASAN ....................................................................................................... 7 KESIMPULAN DAN SARAN ..................................................................................................... 12 Kesimpulan................................................................................................................................. 12 Saran ........................................................................................................................................... 13 DAFTAR PUSTAKA .................................................................................................................... 13 LAMPIRAN .................................................................................................................................. 14 vii DAFTAR GAMBAR Halaman 1 Contoh penggunaan relasi ALI, CAU, SUB, DIS, dan PAR. .............................................................. 3 2 Diagram Alir Metodologi Penelitian.................................................................................................... 4 3 Panel Dictionary. ................................................................................................................................. 5 4 Panel Relationship. .............................................................................................................................. 5 5 Contoh Word graph yang dibentuk dalam workspace. ........................................................................ 5 6 Proses Stemming. ................................................................................................................................. 8 DAFTAR LAMPIRAN Halaman 1 Diagram Alir Pengembangan Modul Kamus Word Graph Kata Sifat ......................................... 15 2 Splash Screen DelftConstruct ...................................................................................................... 16 3 Tampilan Menu Modul Kamus Word Graph Kata Sifat .............................................................. 16 4 Pola word graph kata sifat ........................................................................................................... 17 5 Pola se-Kata Sifat ........................................................................................................................ 20 6 Contoh Kata Sifat Masukan Word Graph Pola se-Kata sifat ....................................................... 21 7 Pola ter-Kata Sifat dengan Kualitas Paling Tinggi ...................................................................... 22 8 Contoh Kata Sifat Masukan Word Graph Pola terKata Sifat dengan Kualitas Paling Tinggi ..... 23 9 Pola ter-Kata Sifat dengan Kualitas Paling Rendah ..................................................................... 24 10 Contoh Kata Sifat Masukan Word Graph Pola terKata Sifat dengan Kualitas Paling Rendah .. 26 11 Pola ber-Kata Bilangan .............................................................................................................. 27 12 Contoh Kata Sifat Masukan Word Graph Pola ber-Kata Bilangan............................................ 28 13 Pola me-Kata Benda .................................................................................................................. 29 14 Contoh Kata Sifat Masukan Word Graph Pola me-Kata Benda ................................................ 30 15 Pola pe-Kata Sifat ...................................................................................................................... 31 16 Contoh Kata Sifat Masukan Word Graph Pola pe-Kata Sifat .................................................... 32 17 Pola Kata Benda-em- ................................................................................................................. 33 18 Contoh Kata Sifat Masukan Word Graph Pola Kata Benda-em- ............................................... 34 19 Pola Kata Benda-an ................................................................................................................... 35 20 Contoh Kata Sifat Masukan Word Graph Pola Kata Benda-an ................................................. 36 21 Pola Kata Benda-al .................................................................................................................... 37 22 Contoh Kata Sifat Masukan Word Graph Pola Kata Benda-al .................................................. 38 23 Pola Kata Benda-il ..................................................................................................................... 39 24 Contoh Kata Sifat Masukan Word Graph Pola Kata Benda-il................................................... 39 25 Pola Kata Benda-iah .................................................................................................................. 40 26 Contoh Kata Sifat Masukan Word Graph Pola Kata Benda-iah ................................................ 41 27 Pola Kata Benda-i ...................................................................................................................... 42 28 Contoh Kata Sifat Masukan Word Graph Pola Kata Benda-i .................................................... 43 29 Pola Kata Benda-if ..................................................................................................................... 44 30 Contoh Kata Sifat Masukan Word Graph Pola Kata Benda-if .................................................. 45 31 Pola Kata Benda-ik .................................................................................................................... 46 32 Contoh Kata Sifat Masukan Word Graph Pola Kata Benda-ik .................................................. 47 33 Pola Kata Benda-is..................................................................................................................... 48 34 Contoh Kata Sifat Masukan Word Graph Pola Kata Benda-is .................................................. 49 viii 35 Kata Benda-istis ......................................................................................................................... 50 36 Contoh Kata Sifat Masukan Word Graph Pola Kata Benda-istis .............................................. 51 37 Pola ke-Kata Sifat-an ................................................................................................................. 52 38 Contoh Kata Sifat Masukan Word Graph Pola ke-Kata sifat-an ............................................... 53 39 Pola me-Kata Dasar-kan ............................................................................................................ 54 40 Contoh Kata Sifat Masukan Word Graph Pola me-Kata Dasar-kan .......................................... 55 41 Pola Kata Sifat Dasar ................................................................................................................. 56 42 Contoh Kata Sifat Masukan Word Graph Pola Kata Sifat Dasar............................................... 57 ix PENDAHULUAN Latar Belakang Salah satu teknologi pemrosesan bahasa alami adalah pemrosesan teks. Pemrosesan teks dapat berupa analisis makna (semantik) pada suatu teks. Makna suatu teks dapat direpresentasikan sebagai pengetahuan dan salah satu metode yang merepresentasikan pengetahuan dalam bentuk graf adalah metode Knowledge Graph (KG). Berbagai penelitian menggunakan metode KG telah banyak dibahas, namun untuk implementasi metode KG belum banyak dilakukan. Penelitian yang ada masih dalam menganalisis teks dan membuat aturan untuk menganalisis teks. Implementasi metode KG dalam analisis semantik diharapkan dapat berguna untuk melakukan abstraksi teks secara otomatis. Untuk dapat mewujudkan hal tersebut, telah dikembangkan BogorDelftConstruct sebagai implementasi metode KG tahap awal. Awalnya implementasi metode KG dikembangkan berdasarkan hasil analisis struktur bahasa Inggris, yaitu DelftConStruct. DelftConStruct adalah perangkat lunak yang telah dikembangkan oleh Mark van Koningsveld pada tahun 2003-2008. DelftConStruct merupakan tools yang berguna sebagai editor yang dikembangkan untuk membuat graf kata ataupun kalimat dalam struktur bahasa Inggris. DelftConStruct dapat menganalisis suatu kata dan membentuk suatu graf antara satu kata dengan kata yang lainnya (word graph), namun belum sesuai dengan konsep KG menurut Romadoni (2009). Sebagai perbaikan dari DelftConStruct maka dikembangkan untuk struktur bahasa Indonesia BogorDelftConstruct. Selain itu, beberapa penelitian juga telah dilakukan untuk analisis semantik pada beragam jenis kata, antara lain kata sifat, kata kerja, kata benda dan kata depan. Perwujudan abstraksi teks secara otomatis dapat diwujudkan dengan mengimplementasikan analisis semantik kata dari beragam jenis kata. Diawali dengan menganalisis makna kata untuk satu jenis kata kemudian dikembangkan untuk jenis kata yang lain. Dari analisis semantik jenis kata dapat dikembangkan untuk menganalisis makna kalimat, frase hingga teks dari setiap kata yang terdapat pada masing-masingnya. Merujuk pada BogorDelftConstruct sebagai tools yang berguna untuk membuat graf kata maka BogorDelftConstruct digunakan sebagai wadah pengembangan implementasi bagi perwujudan abstraksi teks. Dengan fitur pembentukan kamus word graph yang dimiliki BogorDelftConstruct maka penelitian ini akan mengembangkan modul untuk kamus word graph kata sifat. Analisis semantik dari pembentukan kata sifat telah dilakukan pada penelitian sebelumnya oleh Rahmat (2009) yang menghasilkan pola aturan untuk kata sifat. Penelitian ini diharapkan menjadi tahap lanjutan dalam mewujudkan abstraksi teks secara otomatis. Tujuan Penelitian ini bertujuan untuk mengembangkan modul kamus word graph kata sifat pada sistem aplikasi BogorDelftConstruct berdasarkan hasil analisis aturan dari penelitian sebelumnya. Penelitian ini akan membentuk word graph yang dapat merepresentasikan makna suatu kata sifat secara otomatis. Ruang Lingkup Penelitian ini dibatasi pada pengembangan modul sistem aplikasi BogorDelftConstruct untuk membuat kamus word graph kata sifat sesuai aturan-aturan kata sifat dari hasil analisis penelitian sebelumnya. Selain itu, penelitian ini dibatasi hanya untuk kata sifat bentuk tunggal dalam bahasa Indonesia, bukan paduan kata sifat dengan kata lain. Manfaat Manfaat utama dari penelitian ini adalah mengekspresikan makna suatu kata sifat yang direpresentasikan dalam bentuk word graph sehingga tidak terjadi ambiguitas. Manfaat lain adalah memberikan pengetahuan yang tidak hanya dalam memaknai kata sifat tetapi juga untuk semua jenis kata dalam bahasa Indonesia. Selain itu, dengan menambah kelengkapan modul untuk jenis kata selain kata sifat pada BogorDelftConstruct diharapkan sistem dapat melakukan abstraksi teks secara otomatis. TINJAUAN PUSTAKA Natural Language Processing (NLP) Perkembangan teknologi mengarah kepada proses komunikasi secara interaktif antara manusia dan komputer menggunakan bahasa alami. Natural Language Processing (NLP) merupakan bagian dari kecerdasan buatan yang mampu mewujudkan teknologi tersebut. Dalam sejarahnya, NLP telah danyak diteliti dan dikembangkan dari segala aspek, seperti bidang 1 Ilmu Komputer dengan NLP, Ilmu Bahasa dengan Komputasi Linguistik, Elektro dengan Speech Recognition, dan Psikologi dengan Komputasi Psikolinguistik. Teknologi NLP memungkinkan berbagai macam pemrosesan bahasa alami seperti pengenalan suara dan pemrosesan teks. Dalam pemrosesan teks salah satu aplikasinya adalah text summarization. Text summarization adalah sistem yang meringkas teks untuk mengambil informasi penting dalam teks (Hulliyah 2007). Stemming Stemming merupakan proses menemukan kata dasar dari suatu kata berimbuhan dengan membuang awalan (prefiks) dan akhiran (suffiks). Tujuannya adalah untuk menghemat media penyimpanan dan mempercepat proses pencarian kata (Liddy 2001). Knowledge Graph (KG) Metode KG adalah cara pandang baru yang digunakan untuk menggambarkan bahasa alami. Aspek ontologi menjadi perbedaan yang mendasar antara metode KG dengan metode representasi lain. KG memiliki beberapa keuntungan. KG memiliki kemampuan dalam menyatakan aspek semantik dengan lebih mendalam, menggunakan jenis relasi yang terbatas dan digunakan untuk meniru pemahaman manusia. Pada prinsipnya, komposisi dari KG mencakup concept (token dan type) dan relationship (binary dan multivariate relation) (Zhang 2002). Concept Representasi pemikiran dapat dimodelkan dengan KG, disebut dengan mind graph. Concept merupakan komponen dari mind graph yang menerangkan persepsi mengenai sesuatu (Zhang 2002). Token Token merupakan node dalam KG, yang dinyatakan dengan simbol □. Token menyatakan segala sesuatu yang kita alami dalam dunia nyata atau bahkan mengenai sebuah konsep dalam pikiran kita. Dalam metode KG segala sesuatu akan direpresentasikan atau digambarkan sebagai sebuah token (Zhang 2002) . Type Type adalah konsep yang berisi informasi umum. Type bersifat objektif karena merupakan hasil kesepakatan bersama (Zhang 2002). Word Graph Word graph merupakan graf dari kata. Dalam metode KG setiap kata berhubungan dengan sebuah word graph, menyatakan arti kata yang disebut dengan semantic word graph. Gabungan semantic word graph dalam sebuah kalimat akan membentuk sentence graph. Graf yang merepresentasikan gabungan dari sentence graph dalam sebuah teks disebut text graph yang terdapat pengetahuan di dalamnya (Hoede dan Nurdiati 2008). Aspek Ontologi Ontologi merupakan gambaran dari beberapa konsep dan relasi antar konsep yang bertujuan mendefinisikan ide-ide yang merepresentasikan konsep, relasi dan logika. (Rusiyamti 2008). Relasi menghubungkan antara dua konsep yang membentuk graf. Jika relasi antara dua konsep A dan B membentuk sebuah graf, maka ada hubungan timbal balik antara A dan B. Menurut Nurdiati dan Hoede (2009), Ontologi word graph sampai saat ini terdiri atas 9 binary relationship yaitu 8 binary relationship dan tambahan Ontologi F (Focus) serta 4 frame relationship. Penggunaan beberapa binary relationship dapat dilihat pada Gambar 1. 8 binary relationship dan Ontologi F (Focus) tersebut antara lain: 1. 2. 3. 4. 5. 6. 7. 8. 9. Similarity of alikeness Causality Equality Subset relationship Disparateness Attribution Ordering Informational dependency Ontologi F (Focus) : ALI : CAU : EQU : SUB : DIS : PAR : ORD : SKO Berikut penjelasan masing-masing binary relationship: 1. Relasi ALI Relasi ALI digunakan untuk menghubungkan sebuah type dengan token (Rahmat 2009). Jika relasi ALI digunakan antara dua token, maka menyatakan bahwa kedua token tersebut sama. Penggunaan relasi ALI terdapat pada Gambar 1. 2. Relasi CAU Relasi CAU antara dua token dinyatakan dengan anak panah berlabel CAU. Relasi CAU menyatakan hubungan sebab akibat atau sesuatu yang mempengaruhi sesuatu 2 menimpa yang lain. Menurut Nurdiati dan Hoede (2009), relasi CAU digunakan untuk menghubungkan subjek dengan objek dan predikat dengan objek. Penggunaan relasi CAU terdapat pada Gambar 1. 3. Relasi SUB Jika dua concept dinyatakan secara berturut-turut dan concept yang satu merupakan subset dari concept yang lain maka digunakan relasi SUB. Jika penggunaannya antara dua token dan menyatakan mengenai properti terhadap suatu token, maka relasi yang digunakan adalah relasi FPAR. Penggunaan relasi SUB terdapat pada Gambar 1. 5. Relasi DIS Relasi DIS digunakan untuk menyatakan concept yang satu berbeda dengan concept yang lain. Penggunaan relasi DIS terdapat pada Gambar 1. 6. Relasi PAR Relasi PAR menyatakan bahwa sesuatu merupakan atribut (sifat) dari sesuatu yang lain. Penggunaan relasi PAR terdapat pada Gambar 1. 7. Relasi ORD Relasi ORD menyatakan bahwa dua hal saling berurutan. Relasi ini digunakan untuk menunjukkan urutan dalam hal waktu dan tempat. 8. Relasi SKO Relasi SKO berdasarkan konsep mengenai ketergantungan informasi. 9. Ontologi F (Focus) Ontologi F digunakan untuk menunjukkan fokus dari suatu graf (Nurdiati & Hoede 2009). Ontologi F untuk menunjukkan kata atau kalimat yang diterangkan dalam suatu pernyataan (inti). Penggunaan Ontologi F terdapat pada Gambar 1. ALI PAR PAR Relasi EQU Relasi EQU digunakan untuk menyatakan penamaan dengan label anak panah menunjuk ke arah konsep. Relasi EQU digunakan untuk menyatakan bahwa kedudukan concept yang sama atau sederajat. 4. F ALI CAU ALI CAU ALI meteor hantaman karang SUB DIS ALI laut ALI sungai Gambar 1 Contoh penggunaan relasi ALI, CAU, SUB, DIS, dan PAR. Frame merupakan verteks yang berlabel dan digunakan untuk mengelompokkan beberapa konsep (Rahmat 2009). Adakalanya 1 (satu) objek tidak cukup terwakili oleh sebuah token, maka diperlukan frame yang mengelompokkan token tersebut dalam sebuah pernyataan. Menurut Zhang (2002), frame relationships ada empat macam, antara lain: 1. 2. 3. 4. Focusing on a situation Negation on a situation Possibility on a situation Necessity on a situation : FPAR : NEGPAR : POSPAR : NECPAR Relasi frame menyatakan bahwa simpul yang telah berlabel yang membentuk graf yang kompleks disusun di dalam frame. Relasi FPAR menyatakan sesuatu memiliki properti dari sesuatu yang lain. Relasi NEGPAR menyatakan negasi dari isi frame. Relasi POSPAR menyatakan kemungkinan dari isi frame. Relasi NECPAR menyatakan perlu tidaknya dari isi frame. Ekspresi Semantik dengan KG Dalam metode KG untuk membangun model pemahaman bahasa alami dibutuhkan kemampuan untuk menyatakan makna kata atau kalimat. Untuk dapat memahami makna kalimat harus lebih dahulu dapat memahami makna setiap kata. Kemudian makna setiap kata disusun menjadi makna suatu kalimat secara keseluruhan (Zhang 2002). Pemaknaan setiap kata menjadi dasar pembentukan graf kata (word graph). Pemaknaan kata dinyatakan secara terhubung antar konsep. Makna kata dalam metode KG membangun struktur arti, sehingga dapat mengatasi ambiguitas. Adjektiva (Kata Sifat) 1. Batasan dan Ciri Adjektiva (Kata Sifat) Menurut Rahmat (2009) yang diacu dalam Alwi et. al (2003), adjektiva atau kata sifat adalah kata yang menerangkan kata benda 3 (nomina) dalam kalimat. Adjektiva memunyai ciri sebagai berikut: 1) Adjektiva dapat diberi keterangan penguat seperti lebih, kurang, dan paling. Contoh: lebih muda, kurang manis, paling cantik. adjektiva dengan kata benda akan menghasilkan arti baru contoh: rendah hati, mulut manis. Pemaduan adjektiva dengan adjektiva memberi arti menguatkan unsur pertama. Contoh: hitam legam, pucat pasi, cerah ceria. (Alwi et. al 2003 dalam Rahmat 2009). 2) Adjektiva dapat diberi keterangan penguat seperti sangat, amat, benar, sekali, dan terlalu. Contoh: sangat sulit, amat jauh, kotor benar, pendek sekali, terlalu panjang. 3) Adjektiva dapat diingkari dengan kata ingkar tidak. Contoh: tidak tipis. 4) Adjektiva dapat diulang dengan awalan sedan akhiran -nya. Contoh: sejauh-jauhnya. 5) Adjektiva pada kata tertentu dapat berakhiran antara lain dengan –er, -(w)i, iah, -if, -al dan -ik. Contoh: rohaniah, surgawi, material. 2. Adjektiva dari segi bentuknya METODE PENELITIAN Data Data yang akan dianalisis pada penelitian ini adalah kata sifat masukan berbahasa Indonesia dalam bentuk tunggal. Metodologi Pada bab ini dibahas beberapa tahapan penelitian dalam proses pembentukan kamus word graph kata sifat : Dari segi bentuk, adjektiva terbagi atas adjektiva dasar (monofemis) dan adjektiva turunan (polimorfemis). Contoh adjektiva dasar: cantik, jelek, baik, buruk, jauh, dekat. Adjektiva turunan dibentuk dengan tiga cara: pengafiksan, pengulangan, dan pemaduan dengat kata lain. 1) Adjektiva polimorfemis yang dibentuk dengan pengafiksan. Adjektiva ini menggunakan serapan adjektiva berafiks dari bahasa lain seperti bahasa Arab, Belanda dan Inggris dengan afiks serapan: -i, -iah, -wi, atau –wiah. Contoh: manusiawi, hewani, ilmiah. Hasil pengafiksan dengan infiks atau sisipan -empada kata benda (nomina). Contoh: gemuruh, kemilau, temaram. Hasil pengafiksan tingkat ekuatif dengan prefiks atau awalan se- dan tingkat superlatif dengan prefiks ter-. Di samping itu, beberapa nomina digunakan sebagai adjektiva dalam kalimat contoh: pemberani, pemalas. 2) Pengulangan Adjektiva ini dapat berfungsi sebagai predikat dan adverbial. Adjektiva yang berfungsi predikat berarti kejamakan, keanekaan, atau keintensifan. Perulangan dapat terjadi melalui perulangan penuh, perulangan sebagian, dan perulangan salin suara. Contoh: gelap-gelap, terang-terangan, hiruk-pikuk. 3) Pemaduan dengan kata lain Gambar 2 Diagram Alir Metodologi Penelitian. 1. Pemahaman Bidang Identifikasi Masalah a. Kajian dan Studi Literatur Adjektiva dipadukan dengan kata benda (nomina) atau adjektiva. Pemaduan 4 Penelitian ini diawali dengan mengumpulkan bahan-bahan pustaka yang relevan dengan topik kajian penelitian. Penelitian ini mengkaji mengenai pembentukan kamus word graph kata sifat dan sistem aplikasi BogorDelftConstruct. Seperti yang telah diungkapkan pada bab pendahuluan, penelitian ini didasarkan pada penelitian sebelumnya di antaranya tesis Usep Rahmat (2009) yang berjudul “Analisis Pembentukan Word graph Kata Sifat Menggunakan Metode Knowledge Graph” dan skripsi Deni Romadoni yang berjudul “Pengembangan Sistem Pembentukan Word graph untuk Teks Berbahasa Indonesia”. Hasil pengkajian dua penelitian sebelumnya digunakan untuk mengembangkan modul untuk kamus word graph kata sifat. b. BogorDelftConstruct ditampilkan pada Gambar 6. Gambar 3 Panel Dictionary. Analisis BogorDelftConstruct Tahap kedua adalah menganalisis sistem aplikasi BogorDelftConstruct. Seperti yang telah dijelaskan pada bab pendahuluan, BogorDelftConstruct adalah pengembangan perangkat lunak DelftConStruct. Pada bab pendahuluan disebutkan bahwa DelftConStruct masih memiliki banyak kekurangan dan belum sesuai dengan konsep KG. Kekurangan DelftConStruct antara lain: • Belum memiliki fitur Dictionary untuk menyimpan, menampilkan dan mengubah graf. • Ketidakjelasan arah relasi antar token, karena tidak adanya tanda panah yang menunjuk dari dan/atau ke suatu token. • Belum memiliki kemampuan untuk membuat graf baru. Hanya mampu mengubah graf yang sedang ditampilkan. Gambar 4 Panel Relationship. • Belum mampu untuk menghapus token dan/atau teks. • Tidak memiliki mekanisme untuk menampilkan graf lain yang sudah dibuat. Oleh karena keterbatasan yang dimiliki DelftConStruct maka dikembangkan editor yang serupa yaitu BogorDelftConstruct yang sesuai dengan konsep KG dan mampu menganalisis graf dalam struktur Bahasa Indonesia serta visualisasinya. BogorDelftConstruct menambahkan semua fitur yang kurang dalam DelftConStruct. Tampilan fitur DelftConStruct dapat dilihat di Lampiran 3. Fitur BogorDelftConstruct disajikan pada Gambar 4 dan Gambar 5, sedangkan contoh graf yang dibentuk oleh editor Gambar 5 Contoh Word graph yang dibentuk dalam workspace. BogorDelftConstruct memiliki fitur pembentukan kamus word graph. Penelitian ini akan mengembangkan modul untuk kamus word graph kata sifat menggunakan fitur tersebut. Analisis mengenai bentuk kata sifat 5 dan maknanya telah dilakukan pada penelitian sebelumnya oleh Rahmat (2009) yang menghasilkan pola aturan untuk kata sifat. Sistem aplikasi BogorDelftConstruct dan versi sebelumnya DelftConStruct dikembangkan menggunakan metode pengembangan Evolusioner dengan jenis exploratory. Dalam pengembangannya sistem aplikasi DelftConStruct dan BogorDelftConstruct menggunakan bahasa pemrograman MATLAB, maka dalam pengembangan modul kamus word graph kata sifat pada sistem BogorDelftConstruct dikembangkan pula menggunakan bahasa pemrograman MATLAB sesuai sistem BogorDelftConstruct. 2. Pengembangan Modul Graph Kata Sifat a. Praproses Kamus Word Tahapan praproses adalah menentukan apakah kata masukan bersifat tunggal atau tidak. Jika bersifat tunggal maka diproses ke tahap selanjutnya. Selain itu, tahap praproses juga digunakan untuk memeriksa nilai masukan, dimana masukan yang akan diproses hanya yang berupa karakter. b. Stemming dan Basis Data Kamus Besar Bahasa Indonesia (KBBI) Kata masukan dilakukan proses stemming untuk memperoleh afiks (imbuhan) dan kata dasar. Afiks (imbuhan) yang dihasilkan dapat berupa prefiks (awalan), suffiks (akhiran), konfiks (kombinasi keduanya) dan/atau infiks (sisipan). KBBI dilakukan pengubahan dari KBBI asli. Dalam KBBI asli terdapat 3 (tiga) field yaitu, ‘Kata’, ‘Sifat’ dan ‘Subkata’. Field ‘Kata’ berisi kata dasar, field ‘Sifat’ berisi sifat kata seperti n (nomina), a (adjektiva), dan sebagainya. Field ‘Subkata’ berisi kata turunan yang terbentuk dari kata dasar yang mengandung imbuhan. Satu kata dasar dapat memiliki lebih dari satu subkata. Berdasarkan kebutuhan penelitian ini, basis data KBBI dibuat dalam tabel Entry. Pada penelitian ini KBBI diubah susunannya pada field ‘Subkata’ yang awalnya ditempatkan sebagai sublema karena menyimpan bentuk turunan dari kata dasar menjadi bagian pada field ‘Kata’ atau diperlakukan sebagai lema (Iqbal 2010). Susunan tabel Entry terdiri dari nomor identifikasi kata dalam field ‘EntryID’, kata dan bentuk turunannya dalam field ‘Word’, sifat kata dalam field ‘Category’, kata dasar dalam field ‘Stem’ dan kualitas kata dasar (hanya untuk kata sifat) dalam field ‘Qty’. Selain itu, pada field ‘Category’ dilakukan pengubahan. Sifat kata yang bersifat khusus diambil secara umumnya. Misalnya suatu kata dasar memiliki sifat ‘a bio’ merupakan kata sifat (adjektiva) khusus untuk ilmu biologi, maka diubah menjadi a (adjektiva) secara umum. 3. Pembentukan Pola Kamus Word Graph Kata Sifat Pembentukan pola harus sesuai dengan aturan-aturan pembentukan kata sifat yang sebagaimana telah dianalisis dalam penelitian Rahmat (2009). Pada penelitian Rahmat (2009) dihasilkan 19 pola kata sifat yang digolongkan berdasarkan bentuk pengafiksannya dan maknanya. 4. Penentuan Pola Word Graph (Pengujian) Kata dasar hasil stemming diperiksa sifat kata dasarnya dalam KBBI. Sifat kata dasar yang didapat dari pengecekan dalam KBBI dan imbuhan yang didapat dari hasil stemming akan digunakan untuk menentukan pola kata sifat mana yang sesuai. Penentuan kesesuaian kata masukan dengan pola word graph kata sifat tertentu dalam penelitian ini dilakukan dengan mencocokkan sifat kata dasarnya dan imbuhan yang terkandung dalam suatu kata sifat. Keterbatasan dalam pengembangan modul ini adalah belum mampu membedakan pola dengan imbuhan serupa berdasarkan maknanya. 5. Analisis Hasil Pengujian Dari hasil tahap sebelumnya didapat pola kata sifat mana yang sesuai dengan kata masukan, kemudian dibentuk word graph kata sifatnya secara otomatis oleh sistem. Di samping itu, hasil word graph yang terbentuk dianalisis maknanya. Tahap ini juga merupakan bagian dari tahapan pengujian sistem dalam mengenali kata masukan yang sesuai dengan pola tertentu. Aturan perhitungan akurasi juga mencakup sesuai tidaknya kata dasar yang dihasilkan dari hasil stemming dengan kata dasar yang seharusnya. Sejumlah kata masukan berupa kata sifat yang terbentuk dari hasil pengafiksan dijadikan sebagai skenario pengujian untuk dihitung akurasinya, banyaknya kata masukan yang dikenali benar dengan pola word graph tertentu dan kesesuaian kata dasarnya. Tahapan pengembangan modul Kamus Word Graph Kata Sifat secara rinci dijelaskan pada Lampiran 1. 6 akurasi = ∑ kata yang benar x100% ∑ kata yang diuji HASIL DAN PEMBAHASAN 1. Hasil Pemahaman Bidang Kajian dan Identifikasi Masalah Pengkajian mengenai pembentukan kamus word graph kata sifat dan sistem aplikasi BogorDelftConstruct didapat dari penelitian sebelumnya, tesis Usep Rahmat (2009) dan skripsi Deni Romadoni (2009). Identifikasi masalah dalam penelitian ini mencakup keseluruhan yang dijelaskan bab metode penelitian antara lain, pembatasan penelitian berdasarkan ruang lingkup, proses stemming, penggunaan KBBI dalam penelitian, pembentukan pola word graph, pengujian pola word graph, dan analisis hasil pengujian. Pola pembentukan word graph kata sifat berdasarkan aturan yang telah dibuat oleh Rahmat (2009) antara lain se-Kata Sifat, terKata Sifat dengan kualitas paling tinggi, terKata Sifat dengan kualitas paling rendah, berKata Bilangan, me-Kata Benda, Kata Benda-an, Kata Benda-al, Kata Benda-il, Kata Benda-ik, Kata Benda-is, Kata Benda-if, Kata Benda-istis, Kata Benda-i, Kata Benda-iah, Kata Benda-em-, ke-Kata Sifat-an, me-Kata Dasar-kan, dan meKata Benda-kan. 2. Praproses Praproses merupakan tahap awal pengembangan modul Kamus Word Graph Kata Sifat. Praproses dilakukan untuk membatasi nilai masukan pada sistem. Tahap praproses didokumentasikan pada fungsi checkInput dalam sistem. Pada fungsi checkInput terdiri atas fungsi checkString dan checkNum. Fungsi checkString digunakan untuk memeriksa apakah masukan terdiri atas satu kata atau lebih. Jika kata masukan lebih dari satu maka tidak akan diproses ke tahap selanjutnya. Selain itu, fungsi checkNum digunakan untuk membatasi nilai masukan yang berupa numerik, sehingga sistem akan menampilkan peringatan kepada user untuk memasukkan nilai berupa kata bukan numerik ataupun karakter. 3. Proses stemming yang digunakan pada penelitian ini mengadopsi proses stemming yang telah dilakukan Iqbal (2010). Proses stemming yang dilakukan Iqbal (2010) mampu menangani masalah overstem dan understem dengan baik. Selain menggunakan KBBI proses stemming yang dilakukan Iqbal (2010) juga Fixations untuk menggunakan tabel menampung imbuhan-imbuhan penyusun kata turunan yang tidak terdapat pada KBBI, seperti ‘di-‘ dan ‘-kan’. Dalam penelitian ini, pada tabel Fixations ditambah dengan beberapa imbuhan asing yang proses pembentukan kata dasarnya tidak mengalami peluruhan. Untuk imbuhan asing yang mengalami peluruhan dilakukan proses stemming terpisah. Untuk imbuhan yang mengalami peluruhan huruf awal kata dasar ‘meng’ dan ‘peng’ sudah tercakup dalam KBBI (Iqbal 2010). Proses stemming dengan KBBI yang disajikan dalam Gambar 6 dan dilakukan dengan langkah-langkah berikut: 1. Kata masukan dicari apakah terdapat pada KBBI atau tidak. Jika masukan berupa kata ulang, maka kata masukan terdiri atas dua kata yang akan diproses. Kata pertama adalah kata sebelum tanda hubung (-) dan kata kedua adalah kata setelah tanda hubung. 2. Jika ada pada KBBI, kata masukan diperiksa apakah mengandung imbuhan yang terdapat pada tabel Fixations atau tidak. Jika ya, dilakukan proses pemotongan berurut sesuai imbuhanimbuhan yang dikenali pada tabel Fixations. Jika tidak, untuk imbuhan asing maka kata dilakukan proses stemming. Selainnya, kata masukan yang dikenali pada KBBI dikembalikan kata dasarnya dan langsung dicari sifat kata dasarnya dalam KBBI. Jika kata masukan berupa kata ulang maka kata dasarnya langsung diambil dari KBBI tanpa proses stemming. 3. Jika tidak terdapat pada KBBI maka dilakukan proses stemming. Jika kata masukan berupa kata ulang, maka kedua kata yang telah dipisah dilakukan stemming untuk masing-masingnya. 4. Kata masukan dilakukan proses pemotongan bertahap untuk setiap kondisinya. Setiap tahap yang menghasilkan hasil stemming dimasukkan ke dalam daftar kandidat kata. Setiap kata 7 Stemming Stemming dibuat sesuai kebutuhan penelitian yaitu mampu membuang awalan, akhiran, sisipan ataupun konfiks (gabungan antara awalan dan akhiran). Selain itu, stemming yang dibuat akan menyimpan imbuhan yang terkandung dalam kata masukan. yang terdapat dalam kandidat kata diperiksa apakah terdapat pada KBBI atau tidak. Jika tidak ada satupun kata ditemukan maka dikembalikan kata masukan sebelum di-stem. Jika terdapat lebih dari satu kata, maka dikembalikan semua kata yang ditemukan. Pengembalian kata juga disertai pengambilan sifat kata yang ditemukan. 4. Penggunaan KBBI Penggunaan KBBI dalam penelitian ini adalah untuk mengenali sifat dari kata dasar yang didapat dari hasil stemming. KBBI disimpan dalam database ‘kamus’ pada MySQL yang telah dikoneksikan dengan MATLAB. Seperti yang telah dijelaskan pada bab metode penelitian, pada tabel Entry ditambahkan field untuk mengenali tinggi rendahnya kualitas kata sifat tertentu. Pada field ‘Qty’ kata dasar yang memiliki sifat a (adjektiva) yang memiliki ukuran sifat dan nilai tertentu akan diberi nilai ‘pos’ jika nilai dan ukurannya tinggi (positif) dan ‘neg’ (negatif) jika sebaliknya, namun jika tidak keduanya maka bernilai ‘null’. Misalnya, kata ’besar’ akan bernilai ‘pos’. Hal itu dilakukan secara manual hanya untuk kata dasar yang memiliki sifat a (adjektiva). Hal ini dilakukan agar sistem mampu mengatasi keterbatasan dalam mengenali pola word graph kata sifat yang terbentuk dari ter-Kata Sifat dengan kualitas paling tinggi dan ter-Kata Sifat dengan kualitas paling rendah. Sebagian besar kata berimbuhan asing yang terdapat pada KBBI kata pada field ‘Entry’ sama dengan kata pada field ‘Stem’. Misalnya, kata ‘nasionalisme’ pada KBBI memiliki kata dasar ‘nasionalisme’. Kata dasar dari ‘nasionalisme’ seharusnya adalah ‘nasional’. Untuk menanggulangi hal tersebut, maka kata berimbuhan asing dilakukan proses stemming seperti yang dijelaskan pada subbab stemming dan Gambar 6. 5. Pengenalan Pola Word Graph Kata Sifat Setelah didapat kata dasar, sifat kata dasar dan imbuhannya akan digunakan untuk mengenali pola word graph pembentuk kata sifat menggunakan fungsi checkPattern. Untuk mengetahui sifat kata dasar hasil stemming dilakukan pengecekan kata dasar pada tabel Entry menggunakan fungsi cekKata. Koneksi antara MySQL dengan MATLAB menggunakan fungsi MysqlConnection. Gambar 6 Proses Stemming. Program stemming terdokumentasi dalam fungsi getStem yang terdiri dari fungsi stemFix untuk kata masukan yang mengandung imbuhan yang terdapat dalam tabel Fixations dan fungsi stemm untuk imbuhan asing dan untuk menanggulangi kata yang tidak terdapat dalam KBBI. Fungsi checkPattern akan membandingkan apakah kata dasar, sifat kata dasar dan imbuhan yang terkandung dari kata masukan sesuai dengan pola word graph yang ada. Jika ya, maka fungsi akan mengembalikan salah satu nama pola dari 19 daftar pola word graph yang memenuhi kondisi. Misalnya, kata masukan ‘pemalas’ jika dilakukan stemming akan menghasilkan ‘malas’ sebagai kata dasar, imbuhan ‘pe’ dan ‘a’ sebagai sifat kata dasar. Parameter tersebut digunakan pada fungsi checkPattern untuk memeriksa apakah 8 parameter tersebut dikenali sebagai pola word graph ‘pe-kata sifat’. Jika ya, maka akan dibangkitkan word graph dengan pola yang dikenali. 6. Pembentukan Pola Word Graph Kata Sifat Hasil tahap penentuan pola word graph kata sifat akan menampilkan word graph dari pola yang membentuknya. Kata masukan yang memenuhi kondisi pola word graph kata sifat tertentu akan memanggil fungsi yang membuat pola word graph kata sifat tersebut. Jika semua kondisi pola pembentukan word graph kata sifat tidak terpenuhi, maka kata tersebut bukan kata sifat bentuk turunan yang dibentuk berdasarkan pengafiksan dan sistem akan menampilkan peringatan bahwa kata masukan bukan kata sifat serta menampilkan sifat kata dari kata masukan/kata dasar. Dalam penelitian ini, juga ditambahkan pola word graph kata sifat dasar jika kata masukan berupa kata sifat dasar. Penelitian ini juga dibatasi untuk pola word graph me-Kata Dasar-kan dan me-Kata Bendakan, karena sulitnya membedakan kedua pola tersebut hanya dari maknanya. Pembedaan kedua pola tersebut dapat dilakukan dengan melihat posisi kata sifat dengan pola word graph me-Kata Dasar-kan ataupun pola word graph me-Kata Benda-kan dalam kalimat. Batasan sistem telah disebutkan dalam subbab ruang lingkup penelitian bahwa kata masukan hanya berupa kata tunggal, bukan kalimat maka dipilih pola word graph me-Kata Dasar-kan. Jika tidak dibedakan, akan memungkinkan terjadinya salah dalam memaknai kata masukan karena pola word graph me-Kata Benda-kan dapat juga dikenali sebagai pola me-Kata Dasar-kan. Dari segi imbuhan penyusun kata sifat dan kata dasarnya pola word graph meKata Dasar-kan mencakup kemungkinan kata benda di dalamnya. Dalam penelitian ini dipilih pola word graph kata sifat me-Kata Dasar-kan dengan asumsi kata masukan memiliki makna dan word graph yang sesuai dengan kata masukan dalam sebuah konteks. Semua tahapan mulai dari praproses hingga tahap ini digabung dalam sebuah modul indAdjDict yang memroses pembentukan kamus word graph kata sifat. Modul Kamus Word Graph Kata Sifat ditambahkan pada sistem aplikasi BogorDelftConstruct pada bagian menu Dictionary yang dapat dilihat pada Lampiran 3. 7. Analisis Kata Masukan Berdasarkan fitur yang dimiliki sistem aplikasi BogorDelftConstruct, graf yang tersimpan akan dapat dianalisis secara otomatis oleh sistem dengan mengklik 2 (dua) kali pada token sehingga muncul pesan yang menunjukkan makna token ataupun juga dapat mengklik 1 (satu) kali pada token sehingga keterangan token yang dipilih akan muncul pada panel Relationship. Pada tahap ini juga dilakukan pengujian sistem dalam mengenali kata masukan yang sesuai dengan pola word graph kata sifat tertentu. Sebanyak 15 kata sifat masukan untuk sebagian besar pola pembentuk kata sifat. Jumlah kata masukan bergantung pada banyak tidaknya kata sifat pada pola tersebut untuk dijadikan sebagai skenario pengujian sehingga jumlah kata sifat untuk setiap pola dapat berbeda-beda. Kemudian dihitung akurasinya untuk setiap pola pembentuk kata sifat maupun untuk keseluruhan pola. 8. Analisis Hasil Pengujian Pada Tabel 1 disajikan persentase akurasi yang dihasilkan dari pengujian modul kamus word graph kata sifat dengan penjelasan untuk setiap pola word graph kata sifat yang diujikan dan pola word graph kata sifat secara keseluruhan. Tabel 1 Persentase Akurasi Pengujian Modul Kamus Word Graph Kata Sifat PolaWord Graph Kata Sifat Jumlah input Jumlah input sesuai Akurasi Pola seKata Sifat 15 14 93,33 Pola terKata Sifat dengan Kualitas paling tinggi 15 15 100,00 15 14 93,33 Pola terKata Sifat dengan Kualitas paling rendah 9 PolaWord Graph Kata Sifat Jumlah input Jumlah input sesuai Akurasi word graph se-kata sifat dengan benar. Hasil pengujian dapat dilihat pada Lampiran 5 dan 6. Pola ter-Kata Sifat dengan Kualitas Paling Tinggi Pola berKata Bilangan 9 9 100,00 Pola peKata Sifat 15 15 100,00 Pola meKata Benda 15 15 100,00 Pola Kata Benda-em- 15 15 100,00 Pola ter-Kata Sifat dengan Kualitas Paling Rendah Pola Kata Benda-an 11 10 90,91 Pola Kata Benda-al 10 8 80,00 Pola Kata Benda-il 5 5 100,00 Pola Kata Benda-iah 10 9 90,00 Lima belas kata sifat masukan sebesar 93,33% dikenali dengan benar sesuai pola pembentuk word graph kata sifat ter-kata sifat dengan kualitas paling rendah. Hal ini disebabkan oleh kata sifat masukan ‘terendah’ menghasilkan kata dasar hasil stemming ‘endah’ dan kata dasar ‘endah’ tidak terdapat dalam KBBI. Hasil pengujian dapat dilihat pada Lampiran 9 dan 10. Pola Kata Benda-i 15 15 100,00 Pola Kata Benda-if 15 15 100,00 Pola Kata Benda-ik 13 12 92,31 Pola Kata Benda-is 15 15 100,00 Pola Kata Benda-istis 15 14 93,33 15 15 100,00 12 11 91,67 Pola keKata Sifatan Pola meKata Dasarkan Pola Kata Sifat Dasar Total 15 13 86,67 250 237 94,80 Pola se-KataSifat Lima belas kata sifat masukan dengan aturan pembentuk kata sifat se-kata sifat memiliki akurasi 93,33%. Hal ini terjadi karena, satu kata sifat masukan terdapat dalam KBBI namun kata dasarnya sama dengan kata masukan, yaitu terjadi pada kata ‘sedingin’. Sisanya, kata dasar hasil stemming telah sesuai dan mengenali pola Dari 15 kata sifat masukan yang sesuai dengan aturan pembentuk word graph kata sifat ter-kata sifat dengan kualitas paling tinggi memiliki akurasi 100%. Semua kata sifat masukan menghasilkan kata dasar dan pola word graph yang sesuai. Hasil pengujian dapat dilihat pada Lampiran 7 dan 8. Pola ber-Kata Bilangan Dari 9 (sembilan) kata sifat masukan memiliki akurasi 100%. Semua kata sifat masukan menghasilkan kata dasar dan pola word graph yang sesuai. Hasil pengujian dapat dilihat pada Lampiran 11 dan 12. Pola me-Kata Benda Lima belas kata sifat masukan memiliki akurasi 100%. Semua kata masukan menghasilkan kata dasar hasil stemming yang sesuai. Keseluruhan kata sifat masukan menghasilkan pola aturan pembentuk word graph kata sifat me-kata benda. Hasil pengujian dapat dilihat pada Lampiran 13 dan 14. Pola pe-Kata Sifat Lima belas kata sifat masukan memunyai akurasi 100%. Seluruh kata masukan menghasilkan stemming yang sesuai sehingga semua kata masukan dikenali dengan benar sesuai pola pembentuk word graph pe-kata sifat. Hasil pengujian dapat dilihat pada Lampiran 15 dan 16. Pola Kata Benda–em- Dari 15 kata sifat masukan memiliki akurasi 100%. Secara keseluruhan kata dasar hasil stemming telah sesuai dengan kata dasar yang seharusnya dan menampilkan pola kata sifat yang sesuai yaitu pola kata benda-em. Hasil pengujian dapat dilihat pada Lampiran 17 dan 18. 10 Pola Kata Benda-an Dari 11 kata sifat masukan akurasi yang dihasilkan sebesar 90,91% telah sesuai dengan pola pembentuk word graph kata sifat kata benda-an. Satu kesalahan terjadi karena kata dasar hasil stemming tidak sesuai, yaitu pada kata masukan ‘pengangguran’ dengan hasil stemming ‘anggur’ yang mana seharusnya adalah ‘penganggur’. Hasil pengujian dapat dilihat pada Lampiran 19 dan 20. Pola Kata Benda-al 10 kata sifat masukan memiliki akurasi 80% yang dikenali dengan benar sesuai pola pembentuk word graph kata benda-al. Dua kesalahan terjadi karena kata dasar hasil stemming tidak sesuai sehingga tidak terdapat pada KBBI. Misalnya pada kata ‘rasional’ menghasilkan kata dasar ‘rasi’. Hasil pengujian dapat dilihat pada Lampiran 21 dan 22. Pola Kata Benda-il Dari 5 kata sifat masukan menghasilkan akurasi 100% atau semua kata sifat masukan yang dikenali benar sesuai dengan pola pembentuk word graph kata sifat dari kata benda-il. Semua kata masukan menghasilkan hasil stemming yang sesuai. Hasil pengujian dapat dilihat pada Lampiran 23 dan 24. Pola Kata Benda-iah Sepuluh kata sifat masukan memiliki akurasi sebesar 90%. Kesalahan yang terjadi karena kata dasar yang dihasilkan tidak terdapat pada KBBI, yaitu pada kata ‘harfiah’, dengan kata dasar ‘harfi’ dari hasil stemming tidak terdapat dalam KBBI. Hasil pengujian dapat dilihat pada Lampiran 25 dan 26. Pola Kata Benda-i Dari 15 kata sifat masukan menghasilkan akurasi 100% dimana semua kata sifat masukan dikenali dengan benar sesuai pola pembentuk word graph kata benda-i dan juga semua kata dasar hasil stemming sesuai dengan yang seharusnya. Hasil pengujian dapat dilihat pada Lampiran 27 dan 28. Pola Kata Benda-if Dari 15 kata sifat masukan memiliki akurasi 100% yang dikenali sesuai sebagai pola pembentuk word graph kata benda-if. Semua kata masukan dikenali dengan benar sesuai pola word graph kata benda-if. Hasil pengujian dapat dilihat pada Lampiran 29 dan 30. Pola Kata Benda-ik Tiga belas kata sifat masukan memiliki akurasi sebesar 92,31%. Terjadi 1 (satu) kesalahan yang disebabkan oleh hasil stemming yang jenis kata dasarnya tidak memenuhi aturan pola kata benda-ik. Hal ini terjadi pada kata masukan ‘feodalistik’ yang menghasilkan kata dasar ‘feodal’, sedangkan kata yang dibutuhkan untuk dapat memenuhi aturan pola kata bendaik adalah ‘feodalis’ yang mana tidak terdapat dalam KBBI. Hasil pengujian dapat dilihat pada Lampiran 31 dan 32. Pola Kata Benda–is Lima belas kata sifat masukan menghasilkan akurasi sebesar 100% atau semua kata masukan menghasilkan hasil stemming yang sesuai sehingga mengenali dengan benar pola kata benda-is. Hasil pengujian dapat dilihat pada Lampiran 33 dan 34. Pola Kata Benda-istis Dari 15 kata sifat masukan menghasilkan 93,33%. Satu kesalahan terjadi karena hasil stemming yang tidak sesuai dengan kata dasar yang diinginkan, namun tetap dikenali sebagai pola word graph kata benda-istis. Hal ini terjadi karena pada saat pengenalan pola kata bendaistis kata dasar tersebut memenuhi aturan pola kata benda-istis. Hasil pengujian dapat dilihat pada Lampiran 35 dan 36. Pola ke-Kata Sifat-an Dari 15 pola kata sifat masukan dihasilkan akurasi sebesar 100,00%. Semua kata sifat masukan dikenali dengan benar sesuai dengan pola pembentuk word graph kata sifat dari kekata sifat-an dan hasil stemming yang juga sesuai dengan yang seharusnya. Hasil pengujian dapat dilihat pada Lampiran 37 dan 38. Pola me-Kata Dasar-kan Dua belas kata sifat masukan menghasilkan akurasi sebesar 91,67%. Kesalahan terjadi karena kata dasar hasil stemming tidak sesuai dengan yang seharusnya namun pola word graph yang dihasilkan memenuhi kondisi pola pembentuk word graph kata sifat me-kata dasar-kan. Hal ini terjadi karena kata dasar melingkupi semua sifat kata dasar, baik itu adjektiva, nomina, kata kerja dan sebagainya. Hasil pengujian dapat dilihat pada Lampiran 39 dan 40. Pola Kata Sifat Dasar Dari 15 kata sifat masukan menghasilkan akurasi sebesar 86,67%, dua kesalahan terjadi 11 dalam mengenali kata masukan, kata masukan ‘lincah’ tidak terdapat dalam KBBI. Untuk kata masukan ‘menawan’, kata tersebut tidak dikenali sebagai kata dasar melainkan kata yang mengandung imbuhan me- dengan kata dasar ‘tawan’. Hasil pengujian dapat dilihat pada Lampiran 41 dan 42. Analisis Hasil Pengujian Keseluruhan Dari semua kata sifat masukan yang dijadikan skenario pengujian untuk pola word graph kata sifat sebanyak 250 kata sifat masukan dengan total kesalahan 13 menghasilkan akurasi 94,80%. Secara umum, modul kamus word graph kata sifat telah cukup baik. Masalah utama dari pengembangan modul kamus word graph kata sifat adalah tidak lengkapnya KBBI. Permasalahan lainnya adalah tidak sesuainya hasil stemming, beberapa kata sifat berimbuhan asing terjadi overstemming. Selain itu, beberapa kata sifat mengalami pembentukan kata dasar yang tidak teratur. Kata sifat tersebut adalah kata sifat berimbuhan asing. Untuk menanggulangi masalah tersebut dibuat tabel yang mampu menampung semua ketidakteraturan kata dasar untuk beberapa kata sifat. 9. Analisis Kekurangan dan Kelebihan Pengembangan Modul Kamus Word Graph Kata Sifat Kekurangan modul Kamus Word Graph Kata Sifat ini, seperti yang telah disebutkan pada subbab ruang lingkup. Modul Kamus Word Graph Kata Sifat hanya mampu menampilkan graf kata sifat yang dibentuk dengan pengafiksan dan word graph untuk kata sifat dasar. Selain itu, kata sifat yang dimaksud terbatas pada penelitian Rahmat (2009). Misalnya, pada kata sifat ‘terdepan’ dengan pola pembentuk kata sifat ter- dengan kata depan (preposisi) tidak tercakup dalam penelitian Rahmat (2009) namun memiliki makna yang justru sesuai dengan salah satu pola word graph dalam penelitian tersebut. Hal itu menjadi keterbatasan pengembangan modul yang belum diterapkan. Ataupun juga untuk kata sifat lain yang terbentuk dari sifat kata selain yang telah dianalisis oleh Rahmat (2009) dan dengan beragam makna lainnya. Keterbatasan dari segi pengembangan adalah proses untuk membangkitkan graf-graf kata sifat tersimpan dalam fungsi yang sesuai dengan nama pola kata sifat. Dengan demikian, pada setiap fungsi harus disediakan secara tepat jumlah token dan posisinya dalam objek Axes, jumlah teks dan posisinya dalam objek Axes, jumlah relasi dan frame yang digunakan. Posisi token dan teks diatur sedemikian rupa hingga diposisikan sesuai dengan pola word graph kata sifat dari tesis Rahmat (2009). Beberapa pola word graph kata sifat yang telah berhasil dibuat dalam modul tidak persis sama dengan word graph yang ada pada penelitian Rahmat (2009). Misalnya, pada pola kata benda-em menggunakan relasi ALI ke satu token secara berulang untuk menyatakan intensitas, yang disimbolkan dengan ALI . Pada sistem, word graph tidak menghasilkan relasi seperti simbol tersebut melainkan hanya menampilkan teks ‘ali’ pada token yang memiliki makna memunyai intensitas tertentu. Selain itu, word graph yang dihasilkan sistem tidak seperti word graph pada penelitian Rahmat (2009) yang disajikan pada Lampiran 3. Untuk label yang menyatakan makna kata sifatnya diposisikan berada di bawah frame. Hal ini dimaksudkan agar saat menggabungkan dengan sub graf yang lain frame tidak menimpa sub graf lain. Dalam hal ini fokus ditunjukkan dengan token yang berwarna lebih muda. Pada beberapa kata masukan menghasilkan hasil stemming lebih dari satu kata. Hal ini menjadi keterbatasan sistem. Sistem ke depannya diharapkan mampu menghasilkan graf sesuai dengan yang diinginkan user dengan memilih kata dasar dari beberapa hasil stemming yang ada. Kelebihan pengembangan modul Kamus Word Graph Kata Sifat ini adalah menjadi langkah maju untuk mengembangkan sistem aplikasi BogorDelftConstruct yang tidak hanya sebagai graph editor yang berbasis metode KG tetapi juga akan berguna sebagai tools yang mampu melakukan peringkasan teks secara otomatis sebagai manfaat jangka panjang. Kelebihan penggunaan fungsi dalam membangkitkan graf adalah sistem tidak terbebani untuk selalu menyimpan pola-pola word graph kata sifat. KESIMPULAN DAN SARAN Kesimpulan Dari pengembangan modul kamus word graph kata sifat, sistem hanya mampu mengenali 18 pola word graph kata sifat dari 19 pola kata sifat hasil penelitian Rahmat (2009). Pola kata sifat yang tidak dapat dikenali adalah pola me-Kata Benda-kan. Pembedaan pola meKata Dasar-kan dengan pola me-Kata Benda12 kan hanya dari maknanya merupakan hal yang sulit dilakukan. Oleh karena itu, dari kedua pola tersebut hanya dipilih salah satunya. Pola yang dipilih adalah pola me-Kata Dasar-kan karena pola me-Kata Dasar-kan memiliki makna yang lebih umum dan sifat kata dasarnya bisa beragam. Dari hasil pengujian modul untuk pola word graph kata sifat secara keseluruhan dihasilkan akurasi sebesar 94,80%, dengan 250 total kata sifat masukan dan total kesalahan sebanyak 13. Kesalahan terjadi karena dua faktor. Faktor utamanya adalah tidak lengkapnya KBBI. Faktor kedua yang juga menyebabkan kesalahan adalah ketidaksesuaian hasil stemming. Beberapa kata sifat masukan yang mengalami overstemming menjadi tidak sesuai dengan kata dasar yang seharusnya atau dengan kata dasar yang diinginkan. Walau demikian, beberapa di antaranya membuat sistem tetap menampilkan graf kata sifat sesuai pola word graph yang dimaksud. Saran Saran dalam penelitian ini antara lain: 1. Pembuatan aturan stemming yang lebih baik sehingga mampu menghasilkan kata dasar yang sesuai atau yang diinginkan, terutama untuk kata sifat berimbuhan asing. 2. Penambahan bagian dalam modul agar mampu membedakan kata sifat pola meKata Dasar-kan dan pola me-Kata Bendakan. 3. Sistem mampu memberikan pilihan pada user agar dapat memilih kata dasar yang diinginkan untuk hasil stemming yang lebih dari satu kata. 4. Pengembangan modul serupa untuk sifat kata yang lain selain kata sifat (adjektiva) dalam Bahasa Indonesia, agar ke depannya mampu digunakan sebagai peringkasan teks otomatis untuk manfaat sistem jangka panjang. 5. Pengembangan BogorDelftConstruct agar graf yang dihasilkan dapat digabungkan dengan graf kata yang lain, sehingga erguna untuk menganalisis frase, kalimat bahkan teks. DAFTAR PUSTAKA Alwi H, Dardjowidjojo S, Lapowila H, Moeliono AM. 2003. Tata Bahasa Baku Bahasa Indonesia. Ed ke-3. Jakarta: Balai Pustaka. Hoede C, Nurdiati S. 2008a. On Word Graphs and Structural Parsing, Memorandum No. 1871, Departement of Applied Mathematics, University of Twente, Enschede, The Netherlands, ISSN: 1874-4850, (2008). Hulliyah K. 2007. Rekayasa Memahami Teks Menggunakan Metode Knowledge Graph. [tesis]. Bogor Sekolah Pascasarjana, Institut Pertanian Bogor. Iqbal, R. 2010. Pengembangan Stemmer Berbasis Kamus Besar Bahasa Indonesia. [skripsi]. Bogor. Liddy E. 2001. How a Search engine Works. [terhubung berkala] http://www.infotoday.com/searcher/may01/l iddy.htm [05-08-2009] Nurdiati S, C Hoede. 2009. Word Graph Construction of Certain Aspects of Indonesian Language. Supplementary Proceedings of the 17th International Conference on Conceptual Structures. Moscow, Russia Rahmat U. 2009. Analisis Pembentukan Word graph Kata Sifat Menggunakan Metode Knowledge Graph [tesis]. Bogor: Sekolah Pascasarjana, Institut Pertanian Bogor. Romadoni D. 2009. Pengembangan Sistem Pembentukan Word graph Untuk Teks Berbahasa Indonesia. [skripsi]. Bogor. Rusiyamti. 2008. Analisis Teks Berbahasa Indonesia Menggunakan Metode Knowledge Graph. [tesis]. Bogor: Sekolah Pascasarjana, Institut Pertanian Bogor. Zhang, L. 2002. Knowledge Graph Theory and Structural Parsing. [disertasi]. University of Twente, Enschede, The Netherlands, ISSN 9036518350. 13 LAMPIRAN 14 Lampiran 1 Diagram Alir Pengembangan Modul Kamus Word Graph Kata Sifat 15 Lampiran 2 Splash Screen DelftConstruct Lampiran 3 Tampilan Menu Modul Kamus Word Graph Kata Sifat 16 Lampiran 4 Pola word graph kata sifat Pola Pembentuk Kata Sifat Word Graph Kata Sifat ukuran ALI Pola se-Kata Sifat A ALI PAR PAR ALI ALI se-KS KS nilai nilai EQU Pola ter-Kata Sifat dengan Kualitas Paling Tinggi nilai EQU ORD EQU ORD ALI B ALI ALI ter-KS ALI ter-KS ALI ukuran ukuran ukuran nilai nilai EQU EQU Pola ter-Kata Sifat dengan Kualitas Paling Rendah nilai ORD EQU ORD ALI ALI ALI ukuran ukuran ukuran CAU Pola ber-Kata Bilangan sesuatu ALI ber-KS ALI me-KB EQU ALI KBil PAR Pola me-Kata Benda ALI EQU sesuatu KB PAR Pola pe-Kata Sifat ALI ALI orang EQU pe-KS KS 17 ALI Pola Kata Benda-em- ALI ALI KB-em- KB PAR Pola Kata Benda-an ALI KS-an ALI KB-al ALI KB-il ALI KB-iah ALI KB-i ALI KB-if ALI KB SKO Pola Kata Benda-al ALI KB SKO Pola Kata Benda-il ALI KB SKO Pola Kata Benda-iah ALI KB SKO Pola Kata Benda-i ALI KB SKO Pola Kata Benda-if ALI KB 18 SKO Pola Kata Benda-ik ALI KB-ik ALI KB-is ALI KB-istis ALI KB SKO Pola Kata Benda-is ALI KB PAR Pola Kata Benda-istis ALI ALI orang KB CAU ALI Pola ke-Kata Sifat-an ALI ALI sesuatu ke-KS-an KS CAU Pola me-Kata Dasar-kan ALI me-Kata Dasar-kan ALI Kata Sifat Dasar ALI KD PAR Pola Kata Sifat Dasar ALI ALI orang/sesuatu 19 Lampiran 5 Pola se-Kata Sifat No Kata Masukan 1 sebaik 2 seberat 3 sebesar 4 secepat 5 secukup 6 sedangkal 7 sedingin 8 seelok 9 sehebat 10 sekecil 11 selebar 12 seluas 13 semudah 14 sepanjang 15 sependek Skenario Word Graph pola se-Kata Sifat Word Graph pola se-Kata Sifat Word Graph pola se-Kata Sifat Word Graph pola se-Kata Sifat Word Graph pola se-Kata Sifat Word Graph pola se-Kata Sifat Word Graph pola se-Kata Sifat Word Graph pola se-Kata Sifat Word Graph pola se-Kata Sifat Word Graph pola se-Kata Sifat Word Graph pola se-Kata Sifat Word Graph pola se-Kata Sifat Word Graph pola se-Kata Sifat Word Graph pola se-Kata Sifat Word Graph pola se-Kata Sifat Hasil Pengujian Kata Dasar Sifat Kata Dasar Sesuai dengan pola Word Graph se-Kata Sifat baik a (adjektiva) Sesuai dengan pola Word Graph se-Kata Sifat berat a (adjektiva) Sesuai dengan pola Word Graph se-Kata Sifat besar a (adjektiva) Sesuai dengan pola Word Graph se-Kata Sifat cepat a (adjektiva) Sesuai dengan pola Word Graph se-Kata Sifat cukup a (adjektiva) Sesuai dengan pola Word Graph se-Kata Sifat dangkal a (adjektiva) Sesuai dengan pola Word Graph se-Kata Sifat sedingin a (adjektiva) Sesuai dengan pola Word Graph se-Kata Sifat elok a (adjektiva) Sesuai dengan pola Word Graph se-Kata Sifat hebat a (adjektiva) Sesuai dengan pola Word Graph se-Kata Sifat kecil a (adjektiva) Sesuai dengan pola Word Graph se-Kata Sifat lebar a (adjektiva) Sesuai dengan pola Word Graph se-Kata Sifat luas a (adjektiva) Sesuai dengan pola Word Graph se-Kata Sifat mudah a (adjektiva) Sesuai dengan pola Word Graph se-Kata Sifat panjang a (adjektiva) Sesuai dengan pola Word Graph se-Kata Sifat pendek a (adjektiva) 20 Lampiran 6 Contoh Kata Sifat Masukan Word Graph Pola se-Kata sifat Kata Masukan Sesuai/ Tidak Word graph yang ditampilkan seelok Sesuai sependek Sesuai 21 Lampiran 7 Pola ter-Kata Sifat dengan Kualitas Paling Tinggi No Kata Masukan 1 teradil 2 teraman 3 terbaik 4 terbanyak 5 terbaru 6 terbenar 7 terberat 8 terbesar 9 tercantik 10 tercepat 11 terenak 12 terindah 13 terjauh 14 terkenal 15 terkini Skenario Word Graph pola terKata Sifat dengan Kualitas Paling Tinggi Word Graph pola terKata Sifat dengan Kualitas Paling Tinggi Word Graph pola terKata Sifat dengan Kualitas Paling Tinggi Word Graph pola terKata Sifat dengan Kualitas Paling Tinggi Word Graph pola terKata Sifat dengan Kualitas Paling Tinggi Word Graph pola terKata Sifat dengan Kualitas Paling Tinggi Word Graph pola terKata Sifat dengan Kualitas Paling Tinggi Word Graph pola terKata Sifat dengan Kualitas Paling Tinggi Word Graph pola terKata Sifat dengan Kualitas Paling Tinggi Word Graph pola terKata Sifat dengan Kualitas Paling Tinggi Word Graph pola terKata Sifat dengan Kualitas Paling Tinggi Word Graph pola terKata Sifat dengan Kualitas Paling Tinggi Word Graph pola terKata Sifat dengan Kualitas Paling Tinggi Word Graph pola terKata Sifat dengan Kualitas Paling Tinggi Word Graph pola terKata Sifat dengan Kualitas Paling Tinggi Hasil Pengujian Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Kata Dasar Sifat Kata Dasar adil a (adjektiva) aman a (adjektiva) baik a (adjektiva) banyak a (adjektiva) baru a (adjektiva) benar a (adjektiva) berat a (adjektiva) besar a (adjektiva) cantik a (adjektiva) cepat a (adjektiva) enak a (adjektiva) indah a (adjektiva) jauh a (adjektiva) kenal a (adjektiva) kini a (adjektiva) 22 Lampiran 8 Contoh Kata Sifat Masukan Word Graph Pola terKata Sifat dengan Kualitas Paling Tinggi Kata Masukan Sesuai/ Tidak Word graph yang ditampilkan terindah Sesuai terjauh Sesuai 23 Lampiran 9 Pola ter-Kata Sifat dengan Kualitas Paling Rendah No Kata Masukan 1 terbodoh 2 terburuk 3 terdekat 4 terdingin 5 terjelek 6 terkecil 7 terlambat 8 terlemah 9 termuda 10 termurah 11 terpendek Skenario Word Graph pola terKata Sifat dengan Kualitas Paling Rendah Word Graph pola terKata Sifat dengan Kualitas Paling Rendah Word Graph pola terKata Sifat dengan Kualitas Paling Rendah Word Graph pola terKata Sifat dengan Kualitas Paling Rendah Word Graph pola terKata Sifat dengan Kualitas Paling Rendah Word Graph pola terKata Sifat dengan Kualitas Paling Rendah Word Graph pola terKata Sifat dengan Kualitas Paling Rendah Word Graph pola terKata Sifat dengan Kualitas Paling Rendah Word Graph pola terKata Sifat dengan Kualitas Paling Rendah Word Graph pola terKata Sifat dengan Kualitas Paling Rendah Word Graph pola terKata Sifat dengan Kualitas Paling Rendah Hasil Pengujian Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Rendah Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Rendah Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Rendah Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Rendah Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Rendah Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Rendah Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Rendah Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Rendah Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Rendah Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Rendah Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Rendah Kata Dasar Sifat Kata Dasar bodoh a (adjektiva) buruk a (adjektiva) dekat a (adjektiva) dingin a (adjektiva) jelek a (adjektiva) kecil a (adjektiva) lambat a (adjektiva) lemah a (adjektiva) muda a (adjektiva) murah a (adjektiva) pendek a (adjektiva) 24 12 terendah 13 terringan 14 tersedikit 15 tersempit Word Graph pola terKata Sifat dengan Kualitas Paling Rendah Word Graph pola terKata Sifat dengan Kualitas Paling Rendah Word Graph pola terKata Sifat dengan Kualitas Paling Rendah Word Graph pola terKata Sifat dengan Kualitas Paling Rendah Muncul pesan bahwa kata dasarnya null Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Rendah Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Rendah Sesuai dengan pola Word Graph ter-Kata Sifat dengan Kualitas Paling Rendah endah null ringan a (adjektiva) sedikit a (adjektiva) sempit a (adjektiva) 25 Lampiran 10 Contoh Kata Sifat Masukan Word Graph Pola terKata Sifat dengan Kualitas Paling Rendah Kata Masukan Sesuai/ Tidak Word graph yang ditampilkan terdingin Sesuai termuda Sesuai 26 Lampiran 11 Pola ber-Kata Bilangan No Kata Masukan Skenario Hasil Pengujian Kata Dasar Sifat Kata Dasar 1 bersatu Word Graph pola ber-Kata Bilangan Sesuai dengan pola Word Graph ber-Kata Bilangan satu num (numerik) 2 berdua Word Graph pola ber-Kata Bilangan Sesuai dengan pola Word Graph ber-Kata Bilangan dua num (numerik) 3 bertiga Word Graph pola ber-Kata Bilangan Sesuai dengan pola Word Graph ber-Kata Bilangan tiga num (numerik) 4 berempat Word Graph pola ber-Kata Bilangan Sesuai dengan pola Word Graph ber-Kata Bilangan empat num (numerik) 5 berlima Word Graph pola ber-Kata Bilangan Sesuai dengan pola Word Graph ber-Kata Bilangan lima num (numerik) 6 berenam Word Graph pola ber-Kata Bilangan Sesuai dengan pola Word Graph ber-Kata Bilangan enam num (numerik) 7 bertujuh Word Graph pola ber-Kata Bilangan Sesuai dengan pola Word Graph ber-Kata Bilangan tujuh num (numerik) 8 berdelapan Word Graph pola ber-Kata Bilangan Sesuai dengan pola Word Graph ber-Kata Bilangan delapan num (numerik) 9 bersembilan Word Graph pola ber-Kata Bilangan Sesuai dengan pola Word Graph ber-Kata Bilangan sembilan num (numerik) 27 Lampiran 12 Contoh Kata Sifat Masukan Word Graph Pola ber-Kata Bilangan Kata Masukan Sesuai/ Tidak Word graph yang ditampilkan berempat Sesuai berenam Sesuai 28 Lampiran 13 Pola me-Kata Benda No Kata Masukan 1 membudaya 2 mendarah 3 menggajah 4 menggunung 5 mengijuk 6 menguning 7 melembaga 8 melengah 9 melepuh 10 meradang 11 merakyat 12 menyemak 13 menyemut 14 memuncak 15 menjamur Kata Dasar Sifat Kata Dasar Skenario Hasil Pengujian Word Graph pola me-Kata Benda Word Graph pola me-Kata Benda Word Graph pola me-Kata Benda Word Graph pola me-Kata Benda Word Graph pola me-Kata Benda Word Graph pola me-Kata Benda Word Graph pola me-Kata Benda Word Graph pola me-Kata Benda Word Graph pola me-Kata Benda Word Graph pola me-Kata Benda Word Graph pola me-Kata Benda Word Graph pola me-Kata Benda Word Graph pola me-Kata Benda Word Graph pola me-Kata Benda Word Graph pola me-Kata Benda Sesuai dengan pola Word Graph me-Kata Benda budaya n (nomina) Sesuai dengan pola Word Graph me-Kata Benda darah n (nomina) Sesuai dengan pola Word Graph me-Kata Benda gajah n (nomina) Sesuai dengan pola Word Graph me-Kata Benda gunung n (nomina) Sesuai dengan pola Word Graph me-Kata Benda ijuk n (nomina) Sesuai dengan pola Word Graph me-Kata Benda kuning n (nomina) Sesuai dengan pola Word Graph me-Kata Benda lembaga n (nomina) Sesuai dengan pola Word Graph me-Kata Benda lengah n (nomina) Sesuai dengan pola Word Graph me-Kata Benda lepuh n (nomina) Sesuai dengan pola Word Graph me-Kata Benda radang n (nomina) Sesuai dengan pola Word Graph me-Kata Benda rakyat n (nomina) Sesuai dengan pola Word Graph me-Kata Benda semak n (nomina) Sesuai dengan pola Word Graph me-Kata Benda semut n (nomina) Sesuai dengan pola Word Graph me-Kata Benda puncak n (nomina) Sesuai dengan pola Word Graph me-Kata Benda jamur n (nomina) 29 Lampiran 14 Contoh Kata Sifat Masukan Word Graph Pola me-Kata Benda Kata Masukan Sesuai/ Tidak Word graph yang ditampilkan menguning Sesuai menyemut Sesuai 30 Lampiran 15 Pola pe-Kata Sifat No Kata Masukan 1 pengampun 2 pemberani 3 pemboros 4 pencemburu 5 pendendam 6 pendengki 7 pendiam 8 pengacau 9 pengasih 10 pelupa 11 pemalas 12 pemalu 13 pemarah 14 pemurah 15 peramah Skenario Word Graph pola pe-Kata Sifat Word Graph pola pe-Kata Sifat Word Graph pola pe-Kata Sifat Word Graph pola pe-Kata Sifat Word Graph pola pe-Kata Sifat Word Graph pola pe-Kata Sifat Word Graph pola pe-Kata Sifat Word Graph pola pe-Kata Sifat Word Graph pola pe-Kata Sifat Word Graph pola pe-Kata Sifat Word Graph pola pe-Kata Sifat Word Graph pola pe-Kata Sifat Word Graph pola pe-Kata Sifat Word Graph pola pe-Kata Sifat Word Graph pola pe-Kata Sifat Hasil Pengujian Kata Dasar Sifat Kata Dasar Sesuai dengan pola Word Graph pe-Kata Sifat ampun a (adjektiva) Sesuai dengan pola Word Graph pe-Kata Sifat berani a (adjektiva) Sesuai dengan pola Word Graph pe-Kata Sifat boros a (adjektiva) Sesuai dengan pola Word Graph pe-Kata Sifat cemburu a (adjektiva) Sesuai dengan pola Word Graph pe-Kata Sifat dendam a (adjektiva) Sesuai dengan pola Word Graph pe-Kata Sifat dengki a (adjektiva) Sesuai dengan pola Word Graph pe-Kata Sifat diam a (adjektiva) Sesuai dengan pola Word Graph pe-Kata Sifat kacau a (adjektiva) Sesuai dengan pola Word Graph pe-Kata Sifat kasih a (adjektiva) Sesuai dengan pola Word Graph pe-Kata Sifat lupa a (adjektiva) Sesuai dengan pola Word Graph pe-Kata Sifat malas a (adjektiva) Sesuai dengan pola Word Graph pe-Kata Sifat malu a (adjektiva) Sesuai dengan pola Word Graph pe-Kata Sifat marah a (adjektiva) Sesuai dengan pola Word Graph pe-Kata Sifat murah a (adjektiva) Sesuai dengan pola Word Graph pe-Kata Sifat ramah a (adjektiva) 31 Lampiran 16 Contoh Kata Sifat Masukan Word Graph Pola pe-Kata Sifat Kata Masukan Sesuai/ Tidak Word graph yang ditampilkan pemalu Sesuai pemarah Sesuai 32 Lampiran 17 Pola Kata Benda-emNo Kata Masukan 1 gemeletuk 2 gementam 3 gemerincing 4 gemerlap 5 gemersik 6 gemertak 7 gemetar 8 gemilang 9 gemilap 10 gemulung 11 gemunung 12 kemilap 13 kemilau 14 semantan 15 temaram Skenario Word Graph pola Kata Benda-emWord Graph pola Kata Benda-emWord Graph pola Kata Benda-emWord Graph pola Kata Benda-emWord Graph pola Kata Benda-emWord Graph pola Kata Benda-emWord Graph pola Kata Benda-emWord Graph pola Kata Benda-emWord Graph pola Kata Benda-emWord Graph pola Kata Benda-emWord Graph pola Kata Benda-emWord Graph pola Kata Benda-emWord Graph pola Kata Benda-emWord Graph pola Kata Benda-emWord Graph pola Kata Benda-em- Hasil Pengujian Kata Dasar Sifat Kata Dasar Sesuai dengan pola Word Graph Kata Benda-em- geletuk n (nomina) Sesuai dengan pola Word Graph Kata Benda-em- gentam n (nomina) Sesuai dengan pola Word Graph Kata Benda-em- gerincing n (nomina) Sesuai dengan pola Word Graph Kata Benda-em- gerlap n (nomina) Sesuai dengan pola Word Graph Kata Benda-em- gersik n (nomina) Sesuai dengan pola Word Graph Kata Benda-em- gertak n (nomina) Sesuai dengan pola Word Graph Kata Benda-em- getar n (nomina) Sesuai dengan pola Word Graph Kata Benda-em- gilang n (nomina) Sesuai dengan pola Word Graph Kata Benda-em- gilap n (nomina) Sesuai dengan pola Word Graph Kata Benda-em- gulung n (nomina) Sesuai dengan pola Word Graph Kata Benda-em- gunung n (nomina) Sesuai dengan pola Word Graph Kata Benda-em- kilap n (nomina) Sesuai dengan pola Word Graph Kata Benda kilau n (nomina) Sesuai dengan pola Word Graph Kata Benda santan n (nomina) Sesuai dengan pola Word Graph Kata Benda taram n (nomina) 33 Lampiran 18 Contoh Kata Sifat Masukan Word Graph Pola Kata Benda-emKata Masukan Sesuai/ Tidak Word graph yang ditampilkan gemersik Sesuai gemulung Sesuai 34 Lampiran 19 Pola Kata Benda-an Skenario Hasil Pengujian Kata Dasar Sifat Kata Dasar No Kata Masukan 1 belakangan Word Graph pola Kata Benda-an Sesuai dengan pola Word Graph Kata Benda-an belakang n (nomina) 2 halimunan Word Graph pola Kata Benda-an Sesuai dengan pola Word Graph Kata Benda-an halimun n (nomina) 3 kampungan Word Graph pola Kata Benda-an Sesuai dengan pola Word Graph Kata Benda-an kampung n (nomina) 4 kosidahan Word Graph pola Kata Benda-an Sesuai dengan pola Word Graph Kata Benda-an kosidah n (nomina) 5 kodian Word Graph pola Kata Benda-an Sesuai dengan pola Word Graph Kata Benda-an kodi n (nomina) 6 kotaan Word Graph pola Kata Benda-an Sesuai dengan pola Word Graph Kata Benda-an kota n (nomina) 7 kudisan Word Graph pola Kata Benda-an Sesuai dengan pola Word Graph Kata Benda-an kudis n (nomina) 8 musikan Word Graph pola Kata Benda-an Sesuai dengan pola Word Graph Kata Benda-an musik n (nomina) 9 pengangguran Word Graph pola Kata Benda-an Muncul pesan anggur : Verb anggur v (kata kerja) 10 sendirian Word Graph pola Kata Benda-an Sesuai dengan pola Word Graph Kata Benda-an sendiri n (nomina) 11 ubanan Word Graph pola Kata Benda-an Sesuai dengan pola Word Graph Kata Benda-an uban n (nomina) 35 Lampiran 20 Contoh Kata Sifat Masukan Word Graph Pola Kata Benda-an Kata Masukan Sesuai/ Tidak Word graph yang ditampilkan halimunan Sesuai ubanan Sesuai 36 Lampiran 21 Pola Kata Benda-al No Kata Masukan 1 fenomenal 2 individual 3 material 4 minimal 5 potensial 6 profesional 7 proporsional 8 rasional 9 regional 10 struktural Skenario Word Graph pola Kata Benda-al Word Graph pola Kata Benda-al Word Graph pola Kata Benda-al Word Graph pola Kata Benda-al Word Graph pola Kata Benda-al Word Graph pola Kata Benda-al Word Graph pola Kata Benda-al Word Graph pola Kata Benda-al Word Graph pola Kata Benda-al Word Graph pola Kata Benda-al Hasil Pengujian Sesuai dengan pola Word Graph Kata Benda-al Sesuai dengan pola Word Graph Kata Benda-al Sesuai dengan pola Word Graph Kata Benda-al Sesuai dengan pola Word Graph Kata Benda-al Sesuai dengan pola Word Graph Kata Benda-al Sesuai dengan pola Word Graph Kata Benda-al Sesuai dengan pola Word Graph Kata Benda-al Sesuai dengan pola Word Graph Kata Benda-al Sesuai dengan pola Word Graph Kata Benda-al Sesuai dengan pola Word Graph Kata Benda-al Kata Dasar Sifat Kata Dasar fenomena n (nomina) individu n (nomina) materi n (nomina) minim n (nomina) potensi n (nomina) profesi n (nomina) proporsi n (nomina) rasi n (nomina) regi n (nomina) struktur n (nomina) 37 Lampiran 22 Contoh Kata Sifat Masukan Word Graph Pola Kata Benda-al Kata Masukan Sesuai/ Tidak Word graph yang ditampilkan potensial Sesuai individual Sesuai 38 Lampiran 23 Pola Kata Benda-il No Kata Masukan 1 materiil 2 moril 3 personil 4 potensil 5 prinsipiil Skenario Word Graph pola Kata Benda-il Word Graph pola Kata Benda-il Word Graph pola Kata Benda-il Word Graph pola Kata Benda-il Word Graph pola Kata Benda-il Hasil Pengujian Sesuai dengan pola Word Graph Kata Benda-il Sesuai dengan pola Word Graph Kata Benda-il Sesuai dengan pola Word Graph Kata Benda-il Sesuai dengan pola Word Graph Kata Benda-il Sesuai dengan pola Word Graph Kata Benda-il Kata Dasar Sifat Kata Dasar materi n (nomina) moril n (nomina) person n (nomina) potensi n (nomina) prinsip n (nomina) Lampiran 24 Contoh Kata Sifat Masukan Word Graph Pola Kata Benda-il Kata Masukan Sesuai/ Tidak Word graph yang ditampilkan materiil Sesuai moril Sesuai 39 Lampiran 25 Pola Kata Benda-iah No Kata Masukan 1 alamiah 2 amaliah 3 harfiah 4 ilmiah 5 insaniah 6 islamiah 7 jasmaniah 8 naluriah 9 lahiriah 10 rohaniah Skenario Word Graph pola Kata Benda-iah Word Graph pola Kata Benda-iah Word Graph pola Kata Benda-iah Word Graph pola Kata Benda-iah Word Graph pola Kata Benda-iah Word Graph pola Kata Benda-iah Word Graph pola Kata Benda-iah Word Graph pola Kata Benda-iah Word Graph pola Kata Benda-iah Word Graph pola Kata Benda-iah Hasil Pengujian Sesuai dengan pola Word Graph Kata Benda-iah Sesuai dengan pola Word Graph Kata Benda-iah Muncul pesan bahwa kata dasarnya null Sesuai dengan pola Word Graph Kata Benda-iah Sesuai dengan pola Word Graph Kata Benda-iah Sesuai dengan pola Word Graph Kata Benda-iah Sesuai dengan pola Word Graph Kata Benda-iah Sesuai dengan pola Word Graph Kata Benda-iah Sesuai dengan pola Word Graph Kata Benda-iah Sesuai dengan pola Word Graph Kata Benda-iah Kata Dasar Sifat Kata Dasar alam n (nomina) amal n (nomina) harfi null ilmu n(nomina) insan n (nomina) islam n (nomina) jasmani n (nomina) naluri n (nomina) lahir n (nomina) roh n (nomina) 40 Lampiran 26 Contoh Kata Sifat Masukan Word Graph Pola Kata Benda-iah Kata Masukan Sesuai/ Tidak Word graph yang ditampilkan insaniah Sesuai islamiah Sesuai 41 Lampiran 27 Pola Kata Benda-i No Kata Masukan 1 abadi 2 agamawi 3 alami 4 duniawi 5 hayati 6 hewani 7 indrawi 8 insani 9 islami 10 jasadi 11 kimiawi 12 kodrati 13 maknawi 14 manusiawi 15 abadi Skenario Word Graph pola Kata Benda-i Word Graph pola Kata Benda-i Word Graph pola Kata Benda-i Word Graph pola Kata Benda-i Word Graph pola Kata Benda-i Word Graph pola Kata Benda-i Word Graph pola Kata Benda-i Word Graph pola Kata Benda-i Word Graph pola Kata Benda-i Word Graph pola Kata Benda-i Word Graph pola Kata Benda-i Word Graph pola Kata Benda-i Word Graph pola Kata Benda-i Word Graph pola Kata Benda-i Word Graph pola Kata Benda-i Hasil Pengujian Kata Dasar Sifat Kata Dasar Sesuai dengan pola Word Graph Kata Benda-i abad n (nomina) Sesuai dengan pola Word Graph Kata Benda-i agama n (nomina) Sesuai dengan pola Word Graph Kata Benda-i alam n (nomina) Sesuai dengan pola Word Graph Kata Benda-i dunia n (nomina) Sesuai dengan pola Word Graph Kata Benda-i hayat n (nomina) Sesuai dengan pola Word Graph Kata Benda-i hewan n (nomina) Sesuai dengan pola Word Graph Kata Benda-i indra n (nomina) Sesuai dengan pola Word Graph Kata Benda-i insan n (nomina) Sesuai dengan pola Word Graph Kata Benda-i islam n (nomina) Sesuai dengan pola Word Graph Kata Benda-i jasad n (nomina) Sesuai dengan pola Word Graph Kata Benda-i kimia n (nomina) Sesuai dengan pola Word Graph Kata Benda-i kodrat n (nomina) Sesuai dengan pola Word Graph Kata Benda-i makna n (nomina) Sesuai dengan pola Word Graph Kata Benda-i manusia n (nomina) Sesuai dengan pola Word Graph Kata Benda-i abad n (nomina) 42 Lampiran 28 Contoh Kata Sifat Masukan Word Graph Pola Kata Benda-i Kata Masukan Sesuai/ Tidak Word graph yang ditampilkan duniawi Sesuai kodrati Sesuai 43 Lampiran 29 Pola Kata Benda-if No Kata Masukan Skenario Hasil Pengujian Kata Dasar Sifat Kata Dasar 1 adaptif Word Graph pola Kata Benda-if Sesuai dengan pola Word Graph Kata Benda-if adaptasi n(nomina) 2 agresif Word Graph pola Kata Benda-if Sesuai dengan pola Word Graph Kata Benda-if agresi n (nomina) 3 aktif Word Graph pola Kata Benda-if Sesuai dengan pola Word Graph Kata Benda-if aksi n (nomina) 4 akumulatif Word Graph pola Kata Benda-if Sesuai dengan pola Word Graph Kata Benda-if akumulasi n (nomina) 5 aplikatif Word Graph pola Kata Benda-if Sesuai dengan pola Word Graph Kata Benda-if aplikasi n (nomina) 6 asimilatif Word Graph pola Kata Benda-if Sesuai dengan pola Word Graph Kata Benda-if asimilasi n (nomina) 7 demonstratif Word Graph pola Kata Benda-if Sesuai dengan pola Word Graph Kata Benda-if demonstrasi n (nomina) 8 deklaratif Word Graph pola Kata Benda-if Sesuai dengan pola Word Graph Kata Benda-if deklarasi n (nomina) 9 diskriminatif Word Graph pola Kata Benda-if Sesuai dengan pola Word Graph Kata Benda-if diskriminasi n (nomina) 10 edukatif Word Graph pola Kata Benda-if Sesuai dengan pola Word Graph Kata Benda-if edukasi n (nomina) 11 fakultatif Word Graph pola Kata Benda-if Sesuai dengan pola Word Graph Kata Benda-if fakultas n (nomina) 12 fluktuatif Word Graph pola Kata Benda-if Sesuai dengan pola Word Graph Kata Benda-if fluktuasi n (nomina) 13 indikatif Word Graph pola Kata Benda-if Sesuai dengan pola Word Graph Kata Benda-if indikasi n (nomina) 14 objektif Word Graph pola Kata Benda-if Sesuai dengan pola Word Graph Kata Benda-if objek n (nomina) 15 sportif Word Graph pola Kata Benda-if Sesuai dengan pola Word Graph Kata Benda-if sportivitas n (nomina) 44 Lampiran 30 Contoh Kata Sifat Masukan Word Graph Pola Kata Benda-if Kata Masukan Sesuai/ Tidak Word graph yang ditampilkan aktif Sesuai fluktuatif Sesuai 45 Lampiran 31 Pola Kata Benda-ik No Kata Masukan Skenario Hasil Pengujian Kata Dasar Sifat Kata Dasar 1 artistik Word Graph pola Kata Benda-ik Sesuai dengan pola Word Graph Kata Benda-ik artis n (nomina) 2 autistik Word Graph pola Kata Benda-ik Sesuai dengan pola Word Graph Kata Benda-ik autis n (nomina) 3 derivatik Word Graph pola Kata Benda-ik Sesuai dengan pola Word Graph Kata Benda-ik derivasi n (nomina) 4 diplomatik Word Graph pola Kata Benda-ik Sesuai dengan pola Word Graph Kata Benda-ik diplomasi n (nomina) 5 eksotermik Word Graph pola Kata Benda-ik Sesuai dengan pola Word Graph Kata Benda-ik eksoterm n (nomina) 6 feodalistik Word Graph pola Kata Benda-ik Muncul pesan bahwa kata dasarnya null feodalis null 7 motorik Word Graph pola Kata Benda-ik Sesuai dengan pola Word Graph Kata Benda-ik motor n (nomina) 8 patriotik Word Graph pola Kata Benda-ik Sesuai dengan pola Word Graph Kata Benda-ik patriot n (nomina) 9 periodik Word Graph pola Kata Benda-ik Sesuai dengan pola Word Graph Kata Benda-ik periode n (nomina) 10 problematik Word Graph pola Kata Benda-ik Sesuai dengan pola Word Graph Kata Benda-ik problem n (nomina) 11 simpatik Word Graph pola Kata Benda-ik Sesuai dengan pola Word Graph Kata Benda-ik simpati n (nomina) 12 sinematik Word Graph pola Kata Benda-ik Sesuai dengan pola Word Graph Kata Benda-ik sinema n (nomina) 13 sintetik Word Graph pola Kata Benda-ik Sesuai dengan pola Word Graph Kata Benda-ik sintetis n (nomina) 46 Lampiran 32 Contoh Kata Sifat Masukan Word Graph Pola Kata Benda-ik Kata Masukan Sesuai/ Tidak Word graph yang ditampilkan derivatik Sesuai patriotik Sesuai 47 Lampiran 33 Pola Kata Benda-is No Kata Masukan Skenario Hasil Pengujian Kata Dasar Sifat Kata Dasar 1 anatomis Word Graph pola Kata Benda-is Sesuai dengan pola Word Graph Kata Benda-is anatomi n (nomina) 2 astronomis Word Graph pola Kata Benda-is Sesuai dengan pola Word Graph Kata Benda-is astronomi n (nomina) 3 biologis Word Graph pola Kata Benda-is Sesuai dengan pola Word Graph Kata Benda-is biologi n (nomina) 4 demografis Word Graph pola Kata Benda-is Sesuai dengan pola Word Graph Kata Benda-is demografi n (nomina) 5 derastis Word Graph pola Kata Benda-is Sesuai dengan pola Word Graph Kata Benda-is deras n (nomina) 6 ekonomis Word Graph pola Kata Benda-is Sesuai dengan pola Word Graph Kata Benda-is ekonomi n (nomina) 7 eksotis Word Graph pola Kata Benda-is Sesuai dengan pola Word Graph Kata Benda-is eksotik n (nomina) 8 filosofis Word Graph pola Kata Benda-is Sesuai dengan pola Word Graph Kata Benda-is filosofi n (nomina) 9 genetis Word Graph pola Kata Benda-is Sesuai dengan pola Word Graph Kata Benda-is genetik n (nomina) 10 higienis Word Graph pola Kata Benda-is Sesuai dengan pola Word Graph Kata Benda-is higien n (nomina) 11 ideologis Word Graph pola Kata Benda-is Sesuai dengan pola Word Graph Kata Benda-is ideologi n (nomina) 12 magnetis Word Graph pola Kata Benda-is Sesuai dengan pola Word Graph Kata Benda-is magnet n (nomina) 13 matematis Word Graph pola Kata Benda-is Sesuai dengan pola Word Graph Kata Benda-is matematika n (nomina) 14 morfemis Word Graph pola Kata Benda-is Sesuai dengan pola Word Graph Kata Benda-is morfem n (nomina) 15 nasionalis Word Graph pola Kata Benda-is Sesuai dengan pola Word Graph Kata Benda-is nasional n (nomina) 48 Lampiran 34 Contoh Kata Sifat Masukan Word Graph Pola Kata Benda-is Kata Masukan Sesuai/ Tidak Word graph yang ditampilkan filosofis Sesuai astronomis Sesuai 49 Lampiran 35 Kata Benda-istis No Kata Masukan Skenario Hasil Pengujian Kata Dasar Sifat Kata Dasar 1 dualistis Word Graph pola Kata Benda-istis Sesuai dengan pola Word Graph Kata Benda-istis dualisme n (nomina) 2 egoistis Word Graph pola Kata Benda-istis Sesuai dengan pola Word Graph Kata Benda-istis ego n (nomina) 3 humoristis Word Graph pola Kata Benda-istis Sesuai dengan pola Word Graph Kata Benda-istis humor n (nomina) 4 individualistis Word Graph pola Kata Benda-istis Sesuai dengan pola Word Graph Kata Benda-istis individu n (nomina) 5 kapitalistis Word Graph pola Kata Benda-istis Sesuai dengan pola Word Graph Kata Benda-istis kapit n (nomina) 6 kompromistis Word Graph pola Kata Benda-istis Sesuai dengan pola Word Graph Kata Benda-istis kompromi n (nomina) 7 komunistis Word Graph pola Kata Benda-istis Sesuai dengan pola Word Graph Kata Benda-istis komunis n (nomina) 8 materialistis Word Graph pola Kata Benda-istis Sesuai dengan pola Word Graph Kata Benda-istis materi n (nomina) 9 militeristis Word Graph pola Kata Benda-istis Sesuai dengan pola Word Graph Kata Benda-istis militer n (nomina) 10 optimistis Word Graph pola Kata Benda-istis Sesuai dengan pola Word Graph Kata Benda-istis optimis n (nomina) 11 pesimistis Word Graph pola Kata Benda-istis Sesuai dengan pola Word Graph Kata Benda-istis pesimis n (nomina) 12 politeistis Word Graph pola Kata Benda-istis Sesuai dengan pola Word Graph Kata Benda-istis politeis n (nomina) 13 rasialistis Word Graph pola Kata Benda-istis Sesuai dengan pola Word Graph Kata Benda-istis ras n (nomina) 14 realistis Word Graph pola Kata Benda-istis Sesuai dengan pola Word Graph Kata Benda-istis realisasi n (nomina) 15 spesialistis Word Graph pola Kata Benda-istis Sesuai dengan pola Word Graph Kata Benda-istis spesialis n (nomina) 50 Lampiran 36 Contoh Kata Sifat Masukan Word Graph Pola Kata Benda-istis Kata Masukan Sesuai/ Tidak Word graph yang ditampilkan kapitalistis Sesuai militeristis Sesuai 51 Lampiran 37 Pola ke-Kata Sifat-an No Kata Masukan Skenario Hasil Pengujian Kata Dasar Sifat Kata Dasar 1 kebesaran Word Graph pola ke-Kata Sifat-an Sesuai dengan pola Word Graph ke-Kata Sifat-an besar a (adjektiva) 2 kebetulan Word Graph pola ke-Kata Sifat-an Sesuai dengan pola Word Graph ke-Kata Sifat-an betul a (adjektiva) 3 kecapaian Word Graph pola ke-Kata Sifat-an Sesuai dengan pola Word Graph ke-Kata Sifat-an capai a (adjektiva) 4 kedinginan Word Graph pola ke-Kata Sifat-an Sesuai dengan pola Word Graph ke-Kata Sifat-an dingin a (adjektiva) 5 kegatalan Word Graph pola ke-Kata Sifat-an Sesuai dengan pola Word Graph ke-Kata Sifat-an gatal a (adjektiva) 6 kekerasan Word Graph pola ke-Kata Sifat-an Sesuai dengan pola Word Graph ke-Kata Sifat-an keras a (adjektiva) 7 kekumalan Word Graph pola ke-Kata Sifat-an Sesuai dengan pola Word Graph ke-Kata Sifat-an kumal a (adjektiva) 8 kekurangan Word Graph pola ke-Kata Sifat-an Sesuai dengan pola Word Graph ke-Kata Sifat-an kurang a (adjektiva) 9 kelamaan Word Graph pola ke-Kata Sifat-an Sesuai dengan pola Word Graph ke-Kata Sifat-an lama a (adjektiva) 10 kemiskinan Word Graph pola ke-Kata Sifat-an Sesuai dengan pola Word Graph ke-Kata Sifat-an miskin a (adjektiva) 11 kepayahan Word Graph pola ke-Kata Sifat-an Sesuai dengan pola Word Graph ke-Kata Sifat-an payah a (adjektiva) 12 kerendahan Word Graph pola ke-Kata Sifat-an Sesuai dengan pola Word Graph ke-Kata Sifat-an rendah a (adjektiva) 13 kesakitan Word Graph pola ke-Kata Sifat-an Sesuai dengan pola Word Graph ke-Kata Sifat-an sakit a (adjektiva) 14 kepanasan Word Graph pola ke-Kata Sifat-an Sesuai dengan pola Word Graph ke-Kata Sifat-an panas a (adjektiva) 15 ketinggian Word Graph pola ke-Kata Sifat-an Sesuai dengan pola Word Graph ke-Kata Sifat-an tinggi a (adjektiva) 52 Lampiran 38 Contoh Kata Sifat Masukan Word Graph Pola ke-Kata sifat-an Kata Masukan Sesuai/ Tidak Word graph yang ditampilkan kebetulan Sesuai kekerasan Sesuai 53 Lampiran 39 Pola me-Kata Dasar-kan No Kata Dasar Sifat Kata Dasar Kata Masukan Skenario Hasil Pengujian 1 membahagiakan Word Graph pola me-Kata Dasar-kan Sesuai dengan pola Word Graph me-Kata Dasar-kan bahagia a (adjektiva) 2 membahayakan Word Graph pola me-Kata Dasar-kan Sesuai dengan pola Word Graph me-Kata Dasar-kan bahaya n (nomina) 3 menyondongkan Word Graph pola me-Kata Dasar-kan Sesuai dengan pola Word Graph me-Kata Dasar-kan sondong n (nomina) 4 menggembirakan Word Graph pola me-Kata Dasar-kan Sesuai dengan pola Word Graph me-Kata Dasar-kan gembira a (adjektiva) 5 menguatkan Word Graph pola me-Kata Dasar-kan Sesuai dengan pola Word Graph me-Kata Dasar-kan kuat a (adjektiva) 6 memalukan Word Graph pola me-Kata Dasar-kan Sesuai dengan pola Word Graph me-Kata Dasar-kan malu a (adjektiva) 7 menyedihkan Word Graph pola me-Kata Dasar-kan Sesuai dengan pola Word Graph me-Kata Dasar-kan sedih a (adjektiva) 8 menyejukkan Word Graph pola me-Kata Dasar-kan Sesuai dengan pola Word Graph me-Kata Dasar-kan sejuk a (adjektiva) 9 merugikan Word Graph pola me-Kata Dasar-kan Sesuai dengan pola Word Graph me-Kata Dasar-kan rugi a (adjektiva) 10 menyusahkan Word Graph pola me-Kata Dasar-kan Sesuai dengan pola Word Graph me-Kata Dasar-kan susah a (adjektiva) 11 menakutkan Word Graph pola me-Kata Dasar-kan Sesuai dengan pola Word Graph me-Kata Dasar-kan takut a (adjektiva) 12 menguntungkan Word Graph pola me-Kata Dasar-kan Sesuai dengan pola Word Graph me-Kata Dasar-kan untung n (nomina) 54 Lampiran 40 Contoh Kata Sifat Masukan Word Graph Pola me-Kata Dasar-kan Kata Masukan Word graph yang ditampilkan Sesuai/ Tidak menyondongkan Sesuai memalukan Sesuai 55 Lampiran 41 Pola Kata Sifat Dasar Skenario Hasil Pengujian Sifat Kata Dasar No Kata Masukan 1 asam Word Graph pola Kata Sifat Dasar Sesuai dengan pola Word Graph Kata Sifat Dasar a (adjektiva) 2 basah Word Graph pola Kata Sifat Dasar Sesuai dengan pola Word Graph Kata Sifat Dasar a (adjektiva) 3 kurus Word Graph pola Kata Sifat Dasar Sesuai dengan pola Word Graph Kata Sifat Dasar a (adjektiva) 4 lemah Word Graph pola Kata Sifat Dasar Sesuai dengan pola Word Graph Kata Sifat Dasar a (adjektiva) 5 pucat Word Graph pola Kata Sifat Dasar Sesuai dengan pola Word Graph Kata Sifat Dasar a (adjektiva) 6 besar Word Graph pola Kata Sifat Dasar Sesuai dengan pola Word Graph Kata Sifat Dasar a (adjektiva) 7 manis Word Graph pola Kata Sifat Dasar Sesuai dengan pola Word Graph Kata Sifat Dasar a (adjektiva) 8 pas Word Graph pola Kata Sifat Dasar Sesuai dengan pola Word Graph Kata Sifat Dasar a (adjektiva) 9 tinggi Word Graph pola Kata Sifat Dasar Sesuai dengan pola Word Graph Kata Sifat Dasar a (adjektiva) 10 mahal Word Graph pola Kata Sifat Dasar Sesuai dengan pola Word Graph Kata Sifat Dasar a (adjektiva) 11 matang Word Graph pola Kata Sifat Dasar Sesuai dengan pola Word Graph Kata Sifat Dasar a (adjektiva) 12 sederhana Word Graph pola Kata Sifat Dasar Sesuai dengan pola Word Graph Kata Sifat Dasar a (adjektiva) 13 lincah Word Graph pola Kata Sifat Dasar Muncul pesan bahwa kata dasarnya null null 14 menawan Word Graph pola Kata Sifat Dasar Muncul pesan tawan: Verb null 15 prima Word Graph pola Kata Sifat Dasar Sesuai dengan pola Word Graph Kata Sifat Dasar a (adjektiva) 56 Lampiran 42 Contoh Kata Sifat Masukan Word Graph Pola Kata Sifat Dasar Kata Masukan Sesuai/ Tidak Word graph yang ditampilkan prima Sesuai manis Sesuai 57