ANALISIS SAMBUNGAN RANGKA ATAP BAJA RINGAN YANG DIDESAIN MENURUT AS 4600 TERHADAP BEBAN GEMPA DI INDONESIA TUGAS AKHIR SEBAGAI SALAH SATU SYARAT UNTUK MENYELESAIKAN PENDIDIKAN SARJANA TEKNIK DI PROGRAM STUDI TEKNIK SIPIL oleh SANDI NURJAMAN DELTA RAHYUDA PUTRA 15003093 15003124 PEMBIMBING Dr. Ir. DYAH KUSUMASTUTI PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN LINGKUNGAN INSTITUT TEKNOLOGI BANDUNG 2008 ANALISIS SAMBUNGAN RANGKA ATAP BAJA RINGAN YANG DIDESAIN MENURUT AS 4600 TERHADAP BEBAN GEMPA DI INDONESIA TUGAS AKHIR SEBAGAI SALAH SATU SYARAT UNTUK MENYELESAIKAN PENDIDIKAN SARJANA TEKNIK DI PROGRAM STUDI TEKNIK SIPIL oleh SANDI NURJAMAN DELTA RAHYUDA PUTRA 15003093 15003124 PEMBIMBING Dr. Ir. DYAH KUSUMASTUTI PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN LINGKUNGAN INSTITUT TEKNOLOGI BANDUNG 2008 i PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL DAN LINGKUNGAN INSTITUT TEKNOLOGI BANDUNG TUGAS AKHIR ANALISIS SAMBUNGAN RANGKA ATAP BAJA RINGAN YANG DIDESAIN MENURUT AS 4600 TERHADAP BEBAN GEMPA DI INDONESIA oleh Sandi Nurjaman 15003093 15003118 Delta Rahyuda Putra 150031124 DISETUJUI oleh PEMBIMBING Dr. Ir. Dyah Kusumastuti NIP. 132 162 431 KOORDINATOR TUGAS AKHIR KK REKAYASA STRUKTUR Ir. Made Suarjana, Ph.D NIP. 131 667 735 KETUA PROGRAM STUDI Dr.Ir Herlien Dwiarti Setio NIP. 131 121 658 Bandung, Februari 2008 ii ABSTRAKSI ANALISIS SAMBUNGAN RANGKA ATAP BAJA RINGAN YANG DIDESAIN MENURUT AS 4600 TERHADAP BEBAN GEMPA DI INDONESIA Sandi Nurjaman ( 15003093 ) dan Delta Rahyuda Putra ( 15003124 ), Program Studi Teknik Sipil, Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung, 2008. Seiring dengan perkembangan teknologi dan kebutuhan, struktur sipil dituntut untuk menjadi lebih berkualitas disegala aspek selain aspek kekuatan yang mutlak harus dipenuhi seperti aspek ekonomi dan kemudahan pembangunan/perakitan. Salah satu struktur yang menjadi perhatian saat ini adalah struktur rangka atap dimana semakin banyaknya pilihan material pembentuk yang tersedia. Struktur rangka atap baja ringan saat ini sudah semakin populer dan banyak digunakan di Indonesia sebagai material alternatif selain kayu dan baja konvensional. Hal itu dikarenakan karena rangka atap jenis ini dianggap lebih ekonomis dan cepat dari segi perakitan. Namun Indonesia belum memiliki peraturan mengenai material cold formed steel yang merupakan material pembentuk rangka jenis ini. Hal tersebut menyebabkan desain rangka atap baja ringan yang digunakan di Indonesia masih didesain menurut standar Australia ( AS 4600 ) . Beban gempa yang sangat berpengaruh pada struktur yang dibangun di Indonesia tidak diperhitungkan dalam desain rangka atap jenis ini. Sedangkan dari hasil pengamatan diketahui bahwa pada beberapa bencana gempa bumi di Indonesia rangka atap jenis ini banyak mengalami kegagalan terutama di bagian sambungan. Melihat hal tersebut perlu dilakukan analisis mengenai kekuatan rangka atap jenis ini dalam memikul beban gempa. iii KATA PENGANTAR Maha besar Allah SWT yang telah menciptakan ilmu pengetahuan dan memberikan kita kesempatan dan kemampuan untuk mempelajarinya. Puji dan syukur kami panjatkan karena atas rahmat dan karunia-Nyalah kami dapat menyelesaikan Laporan Tugas Akhir (SI 40Z1) ini. Pada kesempatan ini kami mengucapkan terima kasih kepada pihak-pihak yang telah banyak membantu dalam penyusunan Tugas Akhir, antara lain: 1. Ibu Dr.Ir.Dyah Kusumastuti selaku dosen pembimbing. 2. Bapak Dr. Ir. Saptahari Soegiri, MP dan Ibu Dr.Ir.Herlien D Setio selaku dosen penguji yang telah memberi banyak masukan dalam pengerjaan Tugas Akhir ini 3. Teman-teman dari Teknik Sipil yang tidak bisa disebutkan satu per satu yang telah membantu dalam penyelesaian Tugas Akhir ini. Kami menyadari sepenuhnya, bahwa Tugas Akhir ini masih jauh dari sempurna. Untuk itu, kami memohon maaf atas kekurangan yang ada dan sangat mengharapkan saran dan kritik yang membangun mengenai isi dari Tugas Akhir ini. Penulis berharap semoga Tugas Akhir ini dapat berguna dan bermanfaat bagi kami pada khususnya dan pembaca pada umumnya. Akhir kata kami mengucapkan terima kasih. Bandung, Februari 2008 Penulis iv UCAPAN TERIMA KASIH Sandi ( 15003093 ) Tugas Akhir ini aku persembahkan sebagai ucapan terima kasihku kepada: Allah SWT , Tuhan semesta alam atas semua kesempatan dan kelebihan yang telah engkau karuniakan. Semoga setiap detik dan hela nafasku yang lalu, saat ini dan yang akan datang menjadi media syukurku kepada-Mu. Rasulullah SAW, manusia pilihan yang telah memberikan cahaya kehidupan kepada kita semua. Orangtua tercinta atas curahan kasih sayang dan pengorbanan yang takkan mungkin bisa kubayar. Atas sentuhan cinta yang membuat setiap kesederhanaan menjadi kebahagiaan yang tak terhingga. Semoga Tugas akhir ini menjadi awal perwujudan inginku untuk selalu berbakti, memberikan yang terbaik dan membahagiakan kalian. Ibu Dr.Ir.Dyah Kusumastuti selaku dosen pembimbing yang tak penah lelah mengarahkan kami agar mendapatkan hasil terbaik dalam penyusunan Tugas Akhir ini. Bpk Dr.Ir.Saptahari Soegiri dan Ibu Dr.Ir.Herlien Dwiarti Setio yang telah memberikan masukan yang sangat berarti bagi penyusunan Tugas Akhir ini. Saudara tercinta, Aa, teh inun, teh esti atas semangat yang diberikan selama ini. Semoga kasih sayang dan kebersamaan selalu menyelimuti keluarga kita. Bpk Drs.H. Masor dan Ibu atas dukungan yang sangat berarti selama ini. Lia tersayang , sumber inspirasi terbesar dalam setiap karyaku. Seseorang yang tak pernah membiarkanku sendirian dalam menjalani kisah ini. Yang selalu mengingatkan bahwa selalu ada tanggung jawab disaat kita merangkai setiap mimpi dan harapan walaupun kadang kita harus menepikan hal yang sangat kita inginkan. Semoga engkau selalu menjadi mimpi indah disaat aku terjaga dan terlelap bahkan disaat waktu telah meninggalkan kita. Bpk Dr.Ir.Agung Wiyono selaku dosen wali dan Bpk Dr. Ir.Indradjati Sidi selaku pembimbing tekwondo ITB. v Dosen-dosen Program Studi Teknik Sipil yang telah memberikan ilmu yang dimiliki. Semoga menjadi amal yang tak akan pernah terputus. Partnerku di Tugas Akhir ini Yuda, Akhirnya kita bisa menyelesaikannya Bung!!! Teman-teman HMS 2003 T-25 untuk tahun keempat SMA sampai saat ini yang sangat berkesan:Aa Bagja bersama dede, Jendy LP, Wiyono, Erdi Tama S, Dharma, Ramen, Bintang, Medi, Edi, icha, Sabi, Ayu, Hita, Olive, Dania, Um Rohmat, Doyo, Fajar, Dennee, Bang Frengky, Koko Nuswantoko, Adjie, Evan, Arthur, Marshel dan Korlas Julianto. Teman-teman seperjuangan HMS 2003 yang akan selalu menjadi sahabat terbaikku: Adi Kros, Rangga, Tibo, Shandi Darmojai, Tandika marcel Septimius, Alex de Binjai, Both of Didit, Pandu, Tantra, Anto, Anton, Lia, Sunu, Inta, Lulita, Tofan, Jejen, Seto, Nana, Ana, Anatona, Tyo, Elias, Ericson, Fajar panji, Luki Kadiman, Hellboy, Leo, Riano, Joshua, Andreas, Joli, Domu, Faisal, Tezar, Aya, Daisy, Mery 1 dan 2, Sofie, Adam, Putra, Ipe, Qoni, Apri, Roni, Turnip. HMS 2003 kelompok rekstruk yang selalu memberikan semangat agar segera menyusul mereka : Arin, Dince, Bartho, dan Dwi Rian. Calon-calon pemimpin bangsa dengan kecerdasan luar biasa yang selalu belajar SKS at Mono’s House dimalam sebelum ujian : Reza Thole, Madun, Ariting & Khusus buat Mono dan Ame Semangat ya! Partner KP ku Adhika, semoga kau telah belajar bagaimana kehidupan yang sebenarnya. Teman-teman Taekwondo ITB khususnya Sabeum Roni, Dentje, Bimo, Kris, Iqbal, Fery, Gradika, Cheta, Dwi, Putri, Julius. Terima kasih atas kebersamaan, kekeluargaan dan kepercayaan yang diberikan selama ini. Semoga kalian selalu menjadi unit beladiri terbaik dan dapat menjadi juara nasional suatu saat nanti. Teman-teman 2003 lain yang telah sangat membantu : Dion, Intan, Adi, Eeng, Erik, Eko. Sobat-sobatku : Angga, Vadi, Ago, Opik, Risti, Irfan Barudak LSS 2003 anu abdi kenal, hatur nuhun. Seluruh pegawai di lingkungan Program Studi Teknik Sipil atas bantuan selama saya kuliah. Serta seluruh teman-teman yang telah menjadi bagian hidupku di kampus ini. Yang belum lulus tetep semangat ya!!! vi Yuda (150 03 124) Puji dan syukur saya haturkan kepada Allah SWT karena atas berkat dan rahmatnya, saya dan teman saya Sandi dapat menyelesaikan Tugas Akhir ini. Pada kesempatan ini, saya ingin berterima kasih kepada banyak pihak yang telah membantu saya dalam penyelesaian tugas akhir ini, yang diantaranya adalah : • Orang tua dan keluarga saya yang tentunya selalu mendukung saya selama pengerjaan Tugas Akhir ini • Ibu Dr.Ir.Dyah Kusumastuti selaku dosen pembimbing • Bapak Dr. Ir. Saptahari Soegiri dan Ibu Dr.Ir.Herlien Dwi A. selaku dosen penguji yang telah memberi banyak masukan dalam pengerjaan Tugas Akhir ini. • Dosen-dosen teknik Sipil ITB yang tidak dapat disebutkan satu per satu yang tentunya telah mendidik saya dalam cara berpikir dan memberikan ilmu-ilmu mereka dengan sangat baik • Teman kerja Tugas Akhir ini, yaitu Sandi Nurjaman (15003097) • Teman-teman dari Teknik Sipil : Tezar, Didit, Qoni, Jhon, Frengki, Anton, Dion, Roy, Digby, Irwan, Sabrina, Ngurah, Tandika, Adhika dan temanteman lain yang tidak bisa disebutkan satu per satu disini yang telah membantu dalam penyelesaian Tugas Akhir ini • Bidadari malamku yang terus memberi inspirasi dan semangat vii DAFTAR ISI HALAMAN JUDUL i LEMBAR PENGESAHAN ii ABSTRAKSI iii KATA PENGANTAR iv UCAPAN TERIMA KASIH v DAFTAR ISI viii DAFTAR GAMBAR xi DAFTAR TABEL xiii DAFTAR NOTASI xiv BAB I PENDAHULUAN 1.1 Latar Belakang 1-1 1.2 Maksud dan Tujuan 1-2 1.3 Ruang Lingkup 1-2 1.4 Sistematika Laporan 1-3 BAB II STUDI PUSTAKA 2. 1 Umum 2-1 2.1.1 Lingkup 2-1 2.1.2 Definisi 2-2 2.1.3 Perbandingan Material Rangka Atap dan Material yang dipilih 2-4 2.1.3.1 Baja Struktural Cold Formed 2-6 2.1.3.2 Desain Tegangan 2-11 2.1.4 Persyaratan Desain 2-13 2.1.4.1 Beban dan Kombinasi Beban 2-13 2.1.4.2 Analisis dan Desain Struktural 2-13 2. 2 Kekuatan Penampang Cold Formed Steel 2-18 2.2.1 Kekuatan tarik penampang 2-18 2.2.2 Kekuatan tekan penampang 2-19 2. 3 Analisis Gempa Statik Ekivalen 2.3.1 Klasifikasi beban gempa 2-24 2-24 viii 2.3.1.1 Beban gempa rencana 2-24 2.3.1.2 Beban gempa nominal 2-24 2.3.2 Kategori gedung 2-24 2.3.3 Stuktur bangunan gedung beraturan 2-25 2.3.4 Daktilitas struktur dan pembebanan gempa nominal 2-25 2.3.5 Wilayah gempa dan spektrum respon 2-26 2.3.6 Pembatasan waktu getar alami fundamental 2-27 2.3.7 Arah pembebanan gempa 2-27 2.3.8 Beban gempa nominal statik ekivalen 2-28 2. 4 Sambungan Sekrup 2-29 2.4.1 Umum 2-29 2.4.2 Sambungan Sekrup Untuk Menahan Geser 2-31 2.4.3 Sambungan Sekrup Untuk Menahan Tarik 2-33 2.4.4 Kekuatan Tarik Elemen Pada bagian Sambungan 2-35 Desain Seismik Gusset Plate 2-36 2.5 BAB III METODOLOGI BAB IV STUDI KASUS 4. 1 Pemodelan Struktur Rangka Atap 2D 4-2 4. 2 Pembebanan dalam Pemodelan SAP 4-6 4.2.1 Beban Mati 4-6 4.2.2 Beban Hidup 4-8 4.2.3 Beban Angin 4-9 4.2.4 Beban Hujan 4-10 4.2.5 Beban Gempa Statik Ekivalen 4-11 4.2.6 Beban Mati Total Struktur 4-12 4.2.7 Perhitungan Gaya Gempa 4-15 4.2.7.1 Perhitungan Periode Alami Fundamental 4-15 4.2.7.2 Perhitungan Faktor Respon Gempa ( C ) 4-15 4.2.7.3 Faktor Keutamaan Bangunan ( I ) dan Faktor Tahanan Gempa (R) 4-15 ix 4.2.7.4 Gaya Geser Total 4-16 4.2.7.5 Gaya geser akibat gempa 4-16 4. 3 Kombinasi Pembebanan 4-17 4.4 Sambungan Struktur Rangka Atap Baja Ringan 4-19 4.4.1 Sambungan Pada Joint 1 4-20 4.4.2 Sambungan Pada Joint 2 4-20 4.4.3 Sambungan Pada Joint 3 4-21 4.4.4 Sambungan Pada Joint 4 4-22 4.4.5 Sambungan Pada titik 5 4-22 Gaya Dalam Maksimum 4-24 4.5 BAB V ANALISIS DAN DESAIN SAMBUNGAN 5. 1 Desain Sambungan Rangka Atap 5-1 5.1.1 Sambungan pada Joint 1 5-1 5.1.2 Sambungan pada Joint 2 5-7 5.1.3 Sambungan pada Joint 3 5-16 5.1.4 Sambungan pada Joint 4 5-30 5.1.5 Sambungan pada Joint 5 5-36 5. 2 Desain Sambungan Rangka Atap Tanpa Memperhitungkan Beban Gempa 5-37 5 .3 Mode Kegagalan Sambungan 5-39 5. 4 Pengaruh Peningkatan Diameter Sekrup 5-40 5. 5 Pemilihan Profil DoubleZ dan DoubleC 5-44 5. 6 Penggunaan Faktor Resitensi Ф Akibat Pembebanan Dinamik 5-48 5. 7 Jumlah Maksimum Elemen Yang Disambung 5-48 5. 8 Kapasitas Sambungan 5-49 BAB VI KESIMPULAN DAN SARAN 6. 1 Kesimpulan 6-1 6. 2 Saran 6-3 DAFTAR PUSTAKA xviii LAMPIRAN xix x DAFTAR GAMBAR Gambar 2.1 Tekuk distorsional - compression 2-3 Gambar 2.2 Distorsional - Flexure Buckling 2-4 Gambar 2.3 Pengaruh coldwork terhadap spesifikasi mekanis pada penampang baja cold-formed Gambar 2.4 2-7 Pengaruh strain hardening dan strain ageing terhadap spesifikasi mekanis tegangan-regangan 2-8 Gambar 2.5 Kurva tegangan-regangan baja 2-12 Gambar 2.6 Kurva tegangan-regangan menunjukkan metode titik leleh dan penentuan kuat leleh 2-13 Gambar 2.7 Doubly-symmetric sections dan Singly-symmetric sections 2-20 Gambar 2.8 Point-symmetric sections 2-22 Gambar 2.9 Non-symmetric sections 2-22 Gambar 2.10 Zonasi wilayah gempa Indonesia 2-26 Gambar 2.11 Self-drilling screw 2-31 Gambar 2.12 Pembatasan jarak sekrup 2-32 Gambar 2.13 Empat zona kritis pada sambungan dengan gusset plate 2-36 Gambar 2.14 Area Whitmore pada gusset plate 2-37 Gambar 2.15 Kolom gusset plate 2-38 Gambar 3.1 Metodologi Penyusunan Tugas Akhir 3-1 Gambar 4.1 Garis Besar pengerjaan tugas akhir 4-1 Gambar 4.2 Model dasar portal 2D 4-2 Gambar 4.3 Pemodelan untuk profil rangka atap baja ringan 4-3 Gambar 4.4 Profil B 4-4 Gambar 4.5 Arah pembebanan pada kuda-kuda 4-7 Gambar 4.6 Beban mati pada rangka atap baja ringan 4-8 Gambar 4.7 Beban hidup pada rangka atap baja ringan 4-9 xi Gambar 4.8 Beban angin pada rangka atap baja ringan 4-10 Gambar 4.9 Beban hujan pada rangka atap baja ringan 4-11 Gambar 4.10 Model 3D rangka baja ringan 4-11 Gambar 4.11 Beban gempa pada portal 2D 4-12 Gambar 4.12 Lokasi lima joint sambungan baja ringan yang dianalisis 4-20 Gambar 4.13 Sambungan pada joint 1 4-20 Gambar 4.14 Sambungan pada joint 2 4-21 Gambar 4.15 Sambungan pada Joint 3 4-21 Gambar 4.16 Sambungan pada Joint 4 4-22 Gambar 4.17 Sambungan pada titik 5 4-22 Gambar 4.17 Lokasi pemasangan sekrup pada titik 5 4-22 Gambar 5.1 Lokasi joint sambungan baja ringan yang akan dianalisis 5-1 Gambar 5.2 Sambungan pada joint 1 5-2 Gambar 5.3 Contoh sambungan pada bagian heel 5-2 Gambar 5.4 Detail pemasangan sekrup pada joint 1 5-6 Gambar 5.5 Sambungan pada joint 2 5-7 Gambar 5.6 Detail pemasangan sekrup pada joint 2 dan Whitmore Area 5-11 Gambar 5.7 Dimensi kolom buckle gusset plate 5-15 Gambar 5.8 Desain awal joint 3 5-16 Gambar 5.9 Sambungan dengan gusset plate pada joint 3 5-23 Gambar 5.10 Detai sambungan dengan gusset plate pada joint 3 5-24 Gambar 5.11 Area Whitmore e pada joint 3 5-25 Gambar 5.12 Kolom buckle batang C9 5-30 Gambar 5.13 Kolom buckle batang C8 5-30 Gambar 5.14 Sambungan pada joint 4 5-31 Gambar 5.15 Contoh sambungan tipikal pada joint 4 5-31 Gambar 5.16 Detail pemasangan sekrup pada joint 4 5-36 Gambar 5.17 Sambungan pada joint 5 5-37 Gambar 5.18 Detail pemasangan sekrup pada joint 5 5-37 xii Gambar 5.19 Mode kegagalan tilting dan bearing dengan peningkatan t2 5-39 DAFTAR TABEL Tabel 2.1 Nilai faktor koreksi kt 2-19 Tabel 2.2 Percepatan puncak batuan dasar untuk masing-masing zona gempa 2-27 Tabel 2.3 Koefisien ζ yang membatasi waktu getar alami struktur bangunan gedung 2-27 Tabel 2.4 Diameter Nominal Sekrup 2-31 Tabel 2.5 Kuat tarik aksial minimum untuk sekrup self-drilling 2-35 Tabel 4.1 Daftar profil hasil desain menurut ketentuan AS 4600 4-5 Tabel 4.2 Massa batang tekan 4-13 Tabel 4.3 Massa batang tarik 4-13 Tabel 4.4 Massa batang dalam 4-14 Tabel 4.5 Gaya dalam pada top chord 4-24 Tabel 4.6 Gaya dalam pada bottom chord 4-24 Tabel 4.7 Gaya dalam pada batang horizontal 4-25 Tabel 4.8 Gaya dalam pada batang dalam 4-25 Tabel 4.10 Gaya dalam pada batang tekan 4-25 Tabel 5.1 Mode Kegagalan Sambungan berdasarkan nilai t2 4-40 Tabel 5.2 Desain sambungan sekrup pada joint 1 dengan variasi diameter 4-41 Tabel 5.3 Desain sambungan sekrup pada joint 2 dengan variasi diameter 4-41 Tabel 5.4 Desain sambungan sekrup pada joint 3 dengan variasi diameter 4-42 Tabel 5.5 Desain sambungan sekrup pada joint 4 dengan variasi diameter 4-43 Tabel 5.6 Desain sambungan sekrup pada profil C atau double-C pada joint 1 4-45 Tabel 5.7 Desain sambungan sekrup pada profil C atau double-C pada joint 2 4-45 Tabel 5.8 Desain sambungan sekrup pada profil C atau double-C pada joint 3 4-46 Tabel 5.9 Desain sambungan sekrup pada profil C atau double-C pada joint 4 4-47 Tabel 5.10 Kapasitas sambungan 4-44 xiii DAFTAR NOTASI a jarak antar kuda-kuda, span b lebar dari elemen tidak termasuk bagian melingkar b2 lebar elemen yang memiliki pengaku pada bagian tengah, tidak termasuk bagian melingkar be lebar efektif suatu bagian penampang c koefisien pengali untuk lebar efektif penampang d dimensi pengaku db diameter baut df diameter sekrup ds reduksi lebar efektif dari pengaku dsc lebar efektif dari pengaku fn f kritis foc nilai dari tegangan yang nilainya bervariasi sesuai dengan proses yang diterima oleh bagian struktur yang ditinjau fy tegangan leleh penampang fya rata-rata tegangan leleh desain dari baja berpenampang utuh dari elemen tekan fyc rata-rata tegangan leleh tarik dari penampang tertekuk fyf rata-rata tegangan leleh tarik lembaran fyv tegangan leleh tarik dari penampang yang belum dibentuk secara cold form fu tegangan fraktur penampang fuv kuat tarik dari penampang yang belum dibentuk secara cold form fu1 kekuatan tarik ultimate dari penampang yang menempel dengan bagian kepala sekrup fu2 kekuatan tarik ultimate dari penampang yang tidak menempel dengan bagian kepala sekrup f* tegangan desain dari elemen tekan berdasarkan lebar efektif, diambil sama dengan nilai fy kt faktor koreksi akibat distribusi dari gaya yang bekerja xiv l panjang tak terkekang le bentang efektif dari bagian struktur yang ditinjau m ⎛ f ⎞ konstanta yang bernilai 0,192⎜ uv ⎟ − 0,068 ⎜f ⎟ ⎝ yv ⎠ r rasio tahanan - beban kombinasi aksial dan momen rf rasio dari gaya yang disalurkan oleh sekrup pada luasan penampang yang ditinjau dibagi dengan kekuatan tarik yang ada pada luasan penampang tersebut. ri radius girasi penampang sf jarak antar baut tegak lurus dengan garis gaya t ketebalan penampang t1 ketebalan dari penampang yang menempel dengan bagian kepala sekrup t2 ketebalan dari penampang yang tidak menempel dengan bagian kepala sekrup x0 pusat geser arah x y0 pusat geser arah y A luas area dari penampang Ae luas efektif dalam keadaan leleh Ag luas kotor dari penampang An luas bersih dari penampang As luas area reduksi pengaku Asc luas area efektif dari pengaku Bc ⎛ f ⎞ ⎛ f ⎞ konstanta yang bernilai 3,69⎜ uv ⎟ − 0,819⎜ uv ⎟ − 1,79 ⎜f ⎟ ⎜f ⎟ ⎝ yv ⎠ ⎝ yv ⎠ C rasio luas area tertekuk terhadap luas penampang total Cb koefisien amplifikasi momen Cm koefisien momen D beban mati yang diakibatkan oleh berat konstruksi permanen, termasuk dinding , 2 B lantai, atap, plafon, partisi tetap, tangga, dan peralatan layan tetap E modulus young Et tangen modulus F rasio dari rata-rata terhadap spesifikasi penampang xv Fpr proportional limit G modulus geser H beban hujan, tidak termasuk yang diakibatkan oleh genangan air E beban gempa, yang ditentukan menurut SNI 03-1726-1989, atau penggantinya Ia second moment yang dibutuhkan di daerah pengaku, sehingga setiap komponen elemen bertindak sebagai elemen pengaku Ib second moment dari daerah dengan luas penampang tak tereduksi Is second moment dari daerah dengan pengaku utuh di sekitar sumbu sentroid parallel terhadap elemen yang harus diperkaku Iw nilai kelengkungan untuk luas penampang J nilai torsi untuk luas penampang K koefisien tekuk L beban hidup yang ditumbulkan oleh penggunaan gedung, termasuk kejut, tetapi tidak termasuk beban lingkungan seperti angin, hujan, dan lain-lain La beban hidup di atap yang ditimbulkan selama perawatan oleh pekerja, peralatan, dan material, atau selama penggunaan biasa oleh orang dan benda bergerak M rasio dari rata-rata terhadap spesifikasi nominal material Nc kapasitas nominal member tekan Ns kapasitas nominal penampang tekan Nt* kekuatan tarik desain * N kuat ultimit aksial desain Nt kekuatan nominal tarik R kapasitas Rd kapasitas desain Ru kapasitas nominal S koefisien kelangsingan * S efek desain V koefisien variasi Vb kekuatan geser dari penampang dimana terdapat sistem sambungan W beban angin X tinggi penampang xvi Zc modulus penampang efektif Zf modulus penampang efektif tak tereduksi α sudut kemiringan atap αnx faktor amplifikasi momen β reliability index βo reliability target δ deformasi ε regangan γL koefisien pengali kombinasi beban hidup ρ faktor lebar efektif λ angka kelangsingan σ tegangan Ф faktor kapasitas Фb faktor reduksi untuk kekuatan lentur Фc faktor reduksi untuk kekuatan tekan Фt faktor reduksi untuk kekuatan tarik xvii