Sistem Bilangan dan Konversinya Oleh : Agus Pribadi Materi Kuliah Sistem Bilangan dan Konversinya; Aljabar Boole dan Persamaan-persamaannya; Gerbang Logika dan Kombinasi; Implementasi Gerbang Logika; Rangkaian Gerbang Logika dan Aplikasinya. Penjabaran tentang Sistem Bilangan Suatu himpunan aturan-aturan tentang suatu bilangan; Nama dan lambang sebagai perwakilan suatu bilangan; Cara penyajian suatu urutan nyata secara wajar melalui lambang bilangan; Sistem hitung didasarkan pada tempat-nilai / kedudukan; Tiap angka diinterprestasi atas lambang dan kedudukan. Basis Bilangan Sistem Bilangan diwujudkan dalam suatu istilah basis bilangan; Basis bilangan merupakan batasan atas aturan dan ukuran suatu kelompok bilangan; Basis bilangan disebut juga dengan dasar istilahnya dengan sebutan radix; Basis bilangan terdiri atas : à Baku / umum = desimal, biner, à Bebas / khusus = oktal, heksa, radix-R. Basis Bilangan Desimal Terdiri atas 10 deret angka dasar atau bilangan radix 10; Beranggotakan 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; Format dasar sistem desimal = 10n-1; Contoh struktur desimal : N = anRn + an-1Rn-1 + an-2Rn-2 + ..... + a1R + a0 R = 10 n = bilangan asli. Basis Bilangan Biner Terdiri atas 2 deret angka dasar atau bilangan radix 2; Hanya beranggotakan bilangan 0 dan 1; Format dasar sistem desimal = 2n-1; Contoh struktur biner : N = anRn + an-1Rn-1 + an-2Rn-2 + ..... + a1R + a0 R=2 n = bilangan asli. Basis Bilangan Oktal Terdiri atas 8 deret angka dasar atau bilangan radix 8; Beranggotakan 0, 1, 2, 3, 4, 5, 6, 7; Format dasar sistem desimal = 8n-1; Contoh struktur oktal : N = anRn + an-1Rn-1 + an-2Rn-2 + ..... + a1R + a0 R=8 n = bilangan asli. Basis Bilangan Heksa Terdiri atas 16 deret angka dasar atau bilangan radix 16; Beranggotakan 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F; Format dasar sistem desimal = 16n-1; Contoh struktur heksa : N = anRn + an-1Rn-1 + an-2Rn-2 + ..... + a1R + a0 R = 10 n = bilangan asli. Basis Bilangan R Terdiri atas R deret angka dasar atau bilangan radix R; Beranggotakan bilangan 0 sampai dengan R-1; Format dasar sistem ber-radix R = Rn-1; Contoh struktur desimal : N = anRn + an-1Rn-1 + an-2Rn-2 + ..... + a1R + a0 R=R n = bilangan asli. Format Bilangan Tiap penyebutan bilangan disertai dengan lambang basis bilangan yang diletakkan pada sisi belakang bilangan agak kebawah : ⇒ bilanganR Adapun penyebutan pada tiap basis bilangan seperti contoh berikut : à Desimal, berdasar kesepakatan tidak harus disebutkan / dilambangkan, à Biner, dengan angka 2 atau lambang "b"/"B", à Oktal, dengan angka 8 atau lambang "o"/"O", à Heksa, dengan angka 16 atau lambang "f"/"F“, Format Bilangan Adapun penyebutan pada tiap basis bilangan seperti contoh berikut : à Khusus bilangan heksa, angka / lambang basis bilangan dapat tidak disebutkan jika angka yang disebutkan diatas angka 9 contoh 3F, à R, dengan menyebutkan nilai R yang dinyatakan seperti contoh berikut : 45R Tanda ≈ dipergunakan sebagai tanda identikasi bilangan atas suatu konversi atau persamaan terhadap bilangan dengan basis berbeda. Konversi Bilangan Bilangan dasar adalah bilangan desimal; Bilangan desimal dapat dikonversikan ke basis bilangan yang lain (R); Formula dasar konversi : bilangan : R = hasil bagi – bilangan sisa : hasil bagi(terkecil / terakhir) : R = 0 – bilangan sisa Ketentuan hasil bagi : à Hasil bagi tidak dapat kurang dari 1, à Hasil bagi bukan bilangan pecahan, à Jika kedua hal tidak tercapai, maka dibulatkan 0; Konversi Bilangan Bilangan berbasis R dapat dikonversikan menjadi bilangan desimal; Formula dasar konversinya : anRn + an-1Rn-1 + an-2Rn-2 + ..... + a1R + a0 Diketahui : à a adalah bilangan pada digit bersangkutan, à R adalah basis bilangan, à n adalah bilangan asli, merupakan digit bilangan. Konversi Bilangan Contoh konversi pada bilangan 27 ke heksa : 27 : 16 = 1 – 11 => B 1 : 16 = 0 – 1 Maka hasil konversi : 27 ≈ 1B16 Latihan konversi bilangan desimal ke bilangan biner, oktal dan heksa terhadap bilangan berikut: 18, 36, 54, 63, 72. Soal tugas Konversikan angka pada NIM masing-masing ke dalam bilangan biner, heksa, oktal dan bilangan berbasis 5; Tugas diselesaikan dengan tulisan tangan, lengkap seluruh prosesnya; Dikumpulkan pada pertemuan berikutnya. Akhir dari pertemuan kedua…..