Pengembangan Kandidat Vaksin Oral Berbasis Protein

advertisement
LAPORAN AKHIR
PENELITIAN STRATEGIS NASIONAL
PENGEMBANGAN KANDIDAT VAKSIN ORAL BERBASIS PROTEIN
ADHESIN BM 38kD M. Tuberculosis PADA KONDISI MALNUTRISI
Tahun ke 2 dari rencana 3 tahun
dr. NOVIKHILA FIRANI, M.Kes
(NIDN 0002117601)
Prof. Dr. dr. SUMARNO, Sp.MK
(NIDN 0006074808)
KUMBOYONO, S. Kep., M. Kep., SpKom
(NIDN 0022027502)
Dibiayai oleh :
Direktorat Penelitian dan Pengabdian kepada Masyarakat
Direktorat Jenderal Pendidikan Tinggi
Kementerian Pendidikan dan Kebudayaan,
sesuai dengan Surat Perjanjian Pelaksanaan Penugasan Penelitian Strategis Nasional
Nomor: 107/SP2H/PL/DIT.LITABMAS/V/2013, tanggal 13 Mei 2013
Keterangan:
Warna sampul kuning janur UNIVERSITAS BRAWIJAYA
November 2013
1
2
ABSTRAK
Penyakit tuberkulosis (Tbc) yang disebabkan Mycobacterium tuberculosis merupakan
penyebab utama morbiditas dan mortalitas di seluruh dunia, yang sering mengenai anak-anak
dengan malnutrisi, khususnya defisiensi protein atau kwashiorkor. Pemerintah Indonesia sudah
berupaya memberikan program vaksinasi BCG yang berasal dari M. bovis secara perkutan pada
bayi untuk meningkatkan kekebalan terhadap infeksi M.tuberculosis, namun dilaporkan masih
belum efektif. Pada proses perkembangan penyakit tuberkulosis, tahapan paling dini adalah
perlekatan M. tuberculosis pada sel hospes. Penelitian sebelumnya berhasil mengidentifikasi
protein adhesin berat molekul (BM) 38kD M. tuberculosis, yang bersifat imunogenik. Pada
penelitian sebelumnya, mengukur respon imun seluler setelah pemberian imunisasi per oral protein
adhesin 38kD M. tuberculosis, menunjukkan bahwa jumlah limfosit CD4 dan CD8 di intestinal dan
pulmonal tikus dengan kondisi malnutrisi masih lebih rendah dibandingkan tikus dengan diit
normal. Adanya penemuan ini menunjukkan bahwa pemberian protein adhesin 38kD M.
tuberculosis belum mampu meningkatkan respon imun seluler di jaringan pulmonal dan intestinal.
Diduga penurunan jumlah limfosit berhubungan dengan rendahnya asupan asam amino glutamin
dalam diet akibat kondisi malnutrisi. Sel limfosit memerlukan glutamin, baik dalam kondisi
istirahat maupun dalam kondisi teraktivasi oleh mitogen. Glutamin yang tidak adekuat bisa
menghambat proliferasi limfosit yang akhirnya berdampak pada jumlah limfosit di dalam sirkulasi
maupun di jaringan. Pada penelitian ini diberikan terapi glutamin disamping pemberian protein
adhesin BM 38 kDa M. tuberculosis. Dari hasil penelitian menunjukkan induksi protein adhesin
BM 38 kDa M.tuberculosis per oral disertai suplementasi glutamin bisa meningkatkan sistem imun
seluler pada tikus model kwashiorkor, yang ditandai dengan peningkatan jumlah limfosit darah
serta limfosit CD8 usus dan CD8 pulmonal.
Kata kunci: diit rendah protein, imunisasi protein adhesin 38 kD M. tuberculosis, suplementasi
glutamin, respon imun seluler
3
ABSTRACT
Tuberculosis (TB ) caused by Mycobacterium tuberculosis is a major cause of morbidity
and mortality throughout the world, who are often the children with malnutrition, especially protein
deficiency or kwashiorkor. The Indonesian government has attempted to give the BCG vaccination
program derived from M. bovis percutaneously in infants to increase immunity against M.
tuberculosis infection, but reportedly have not been effective. In the process of the development of
tuberculosis disease, the earliest stage is the attachment of M. tuberculosis in the host cell. Previous
studies have identified adhesin protein molecular weight 38kD M. tuberculosis, which is
immunogenic. In previous studies, measuring the cellular immune response after oral immunization
38kD adhesin protein of M. tuberculosis showed that the number of CD4 and CD8 lymphocytes in
mice with intestinal and pulmonary conditions of malnutrition was lower than mice with a normal
diet. This discovery suggests that administration of 38kD adhesin protein of M. tuberculosis has
not been able to increase the cellular immune response in pulmonary and intestinal. The reduction
in lymphocyte count was associated with lower intake of the amino acid glutamine in the diet due
to the condition of malnutrition. The lymphocyte cells require glutamine, both at rest and under
conditions activated by mitogen. Inadequate glutamine can inhibit lymphocyte proliferation that
ultimately have an impact on the number of lymphocytes in the circulation and in tissues. In this
study, glutamine therapy is given in addition to the immunization of 38 kDa adhesin protein of M.
tuberculosis. The results showed that the induction of 38 kDa adhesin protein M. tuberculosis orally
with glutamine supplementation can improve the cellular immune system in a rat model of
kwashiorkor, which is characterized by an increased number of blood lymphocytes and CD8
lymphocyte intestinal and pulmonary CD8.
Key words : low-protein diet, immunization adhesin protein 38 kD M. tuberculosis, glutamine
supplementation, cellular immune response
4
RINGKASAN
Kondisi malnutrisi seringkali disertai dengan kerentanan terhadap berbagai penyakit infeksi,
khususnya penyakit tuberkulosis. Penyakit tuberkulosis yang disebabkan Mycobacterium
tuberculosis (M. tuberculosis), sampai saat ini merupakanpenyebab utama morbiditas dan
mortalitas di seluruh dunia, yang sering mengenai anak-anak dengan malnutrisi, khususnya
defisiensi protein. Kasus tuberkulosis dan kematian yang masih tinggi mendorong penelitian dalam
mengembangkan vaksin yang lebih sempurna untuk pencegahan penyakit tuberkulosis. Vaksinasi
tuberkulosis yang telah lama digunakan adalah BacilleCalmette Guerin (BCG), merupakan mutan
Mycobacterium bovis yang telah dilemahkan. Meskipun telah digunakan sejak lama, ternyata
efektivitasnya masih diragukan, sehingga walaupun sudah divaksinasi anak tetap bisa sakit.
Bakteri M. tuberculosis diketahui banyak mengandung substansi imunoreaktif, dan
terbanyak terdapat di dinding sel. Pada proses perkembangan penyakit tuberkulosis, tahapan paling
dini adalah perlekatan M. tuberculosis pada sel hospes. Perlekatan ini diakibatkan oleh faktor
virulensi, yang diperantarai protein adhesin, terdapat pada permukaan dan pili bakteri. Penemuan
terbaru menunjukkan adanya pengembangan vaksin yang berdasar pada molekul adhesin bakteri.
Adhesin bakterial, yang dikombinasikan dengan ajuvan mukosal poten, merupakan pendekatan
yang menjanjikan untuk vaksin mukosal. Penelitian sebelumnya berhasil mengidentifikasi protein
adhesin berat molekul 38kDM.tuberculosis, dan mengukur respon imun seluler setelah pemberian
imunisasi per oral protein adhesin 38kDM.tuberculosis. Hasil penelitian Firani, dkk (2012) pada
tahun I menunjukkan bahwa jumlah limfosit CD4 intestinal dan pulmonal pada kelompok tikus
dengan dit rendah protein lebih rendah dibandingkan kelompok tikus dengan diit normal. Jumlah
limfosit CD8 pulmonal kelompok perlakuan tikus dengan diit rendah protein 4% tidak berbeda
signifikan dibandingkan kelompok tikus diit normal, sedangkan kelompok tikus dengan diit 2%
protein dan 0% protein lebih rendah jumlah limfosit CD8 pulmonal dibandingkan kelompok tikus
dengan diit normal. Adanya penemuan ini menunjukkan bahwa pemberian protein adhesin 38kDM.
tuberculosis belum mampu meningkatkan respon imun seluler di jaringan pulmonal dan intestinal.
Diduga penurunan jumlah limfosit berhubungan dengan rendahnya asupan asam amino glutamin
dalam diet akibat kondisi malnutrisi.
5
Menurut Linder (1992), penekanan imunitas seluler merupakan sesuatu yang khas
ditemukan pada hampir semua penderita protein energi malnutrisi. Hal ini disebabkan karena
pembentukan berbagai sistem imun dalam tubuh tergantung dari kemampuan tubuh untuk
mensintesa protein. Sel limfosit memerlukan glutamin, baik dalam kondisi istirahat maupun dalam
kondisi teraktivasi oleh mitogen (Kew, 1999). Glutamin yang tidak adekuat bisa menghambat
proliferasi limfosit yang akhirnya berdampak pada jumlah limfosit di dalam sirkulasi maupun di
jaringan. Dari penemuan tersebut dapat diduga bahwa tidak adekuatnya respon imun seluler setelah
induksi protein adhesin 38 kDa M. tuberculosis disebabkan oleh kurangnya suplementasi glutamin,
sehingga pada penelitian tahun II ini diberikan suplementasi glutamin disamping pemberian
imunisasi per oral dengan protein adhesin 38 kDa M. tuberculosis.
Dari penelitian ini diperoleh hasil kadar limfosit dalam darah pada tikus dengan diit normal
yang diberi imunisasi per oral dengan protein adesin 38kDa M. tuberculosis per oral disertai
suplementasi glutamin, rata-rata sebesar 77,1%, dan kadar limfosit dalam darah pada tikus dengan
diit rendah protein 4%, 2% dan 0% berturut-turut adalah 76,9%, 75,05%, dan 70,5%. Berdasarkan
data tersebut memperlihatkan bahwa kadar limfosit darah pada tikus dengan diit rendah protein
yang diberi imunisasi per oral dengan protein adesin 38kDa M. tuberculosis per oral disertai
suplementasi glutamin menunjukkan tidak adanya perbedaan yang signifikan dengan tikus dengan
diit normal (p>0,05). Kadar limfosit CD8 dalam usus pada tikus dengan diit normal yang diberi
imunisasi per oral dengan protein adesin 38kDa M. tuberculosis per oral disertai suplementasi
glutamin, rata-rata sebesar 92,63%, dan kadar limfosit CD8 dalam usus pada tikus dengan diit
rendah protein 4%, 2% dan 0% berturut-turut adalah 88,05%, 90,8%, dan 86,5%. Berdasarkan data
tersebut memperlihatkan bahwa kadar limfosit CD8 dalam usus pada tikus dengan diit rendah
protein yang diberi imunisasi per oral dengan protein adesin 38kDa M. tuberculosis per oral disertai
suplementasi glutamin juga menunjukkan tidak adanya perbedaan yang signifikan dengan tikus
dengan diit normal. Kadar limfosit CD8 dalam paru-paru pada tikus dengan diit normal yang diberi
imunisasi per oral dengan protein adesin 38kDa M. tuberculosis per oral disertai suplementasi
glutamin, rata-rata sebesar 89,17%, dan kadar limfosit CD8 dalam paru pada tikus dengan diit
rendah protein 4%, 2% dan 0% berturut-turut adalah 84,97%, 83,18%, dan 86,7%. Berdasarkan
data tersebut memperlihatkan bahwa kadar limfosit CD8 dalam paru pada tikus dengan diit rendah
protein yang diberi imunisasi per oral dengan protein adesin 38kDa M. tuberculosis per oral disertai
suplementasi glutamin juga menunjukkan tidak adanya perbedaan yang signifikan dengan tikus
dengan diit normal. Maka hasil penelitian tahun ini menunjukkan bahwa induksi protein adhesin
BM 38 kDa M.tuberculosis per oral disertai suplementasi glutamin bisa meningkatkan sistem imun
6
seluler pada tikus model kwashiorkor, yang ditandai dengan peningkatan jumlah limfosit darah
serta limfosit CD8 usus dan CD8 pulmonal seperti pada tikus dengan diit normal.
7
SUMMARY
Conditions of malnutrition, often accompanied by susceptibility to various infectious
diseases, particularly tuberculosis. Tuberculosis, which is caused by Mycobacterium tuberculosis
(M. tuberculosis), until now still a major cause of morbidity and mortality often the children with
malnutrition throughout the world. Tuberculosis cases and deaths are still high to encourage
research in developing a more perfect vaccine for the prevention of tuberculosis. Tuberculosis
vaccination which has been used is BacilleCalmette Guerin (BCG), a mutant Mycobacterium bovis
that was attenuated. Although it has been used for a long time, it turns its effectiveness is still in
doubt, so despite having been vaccinated children still get sick.
M. tuberculosis bacteria has been known to contain many immunoreactive substances, and
most are in the cell walls. In the process of the development of tuberculosis disease, the earliest
stage is the attachment of M. tuberculosis in the host cell. This is caused by the attachment of
virulence factors, mediated by adhesin protein and pili on the surface of the bacteria. Recent
findings indicate that the development of vaccines based on bacterial adhesin molecules. Bacterial
adhesin, which is combined with a potent mucosal adjuvant, is a promising approach for mucosal
vaccines. Previous studies have identified a protein adhesin 38kD M.tuberculosis and measure the
cellular immune response after oral immunization 38kD M.tuberculosis adhesin protein. The results
of the study Firani, et al (2012) in the first year showed that the number of CD4 lymphocytes in the
intestinal and pulmonary groups of rats with low protein dit lower than the group of mice with a
normal diet. The number of pulmonary CD8 lymphocytes treated group of mice with 4 % low
protein diet did not differ significantly compared to normal diet group rats, while the rats with
dietary 2% and 0 % protein have lower protein pulmonary CD8 lymphocyte counts compared with
the diet group rats normal. This invention showed that administration of protein adhesin 38kD M.
tuberculosis has not been able to increase the cellular immune response in pulmonary and intestinal
tissues. The reduction in lymphocyte count may associated with lower intake of the amino acid
glutamine in the diet due to the condition of malnutrition.
According to Linder (1992), suppression of cellular immunity is typically found in virtually
all patients with protein energy malnutrition. This is due to the formation of a variety of immune
system in the body depends on the body's ability to synthesize protein. Lymphocyte cells require
glutamine, both at rest and under conditions of mitogen-activated by (Kew, 1999). Inadequate
glutamine can inhibit lymphocyte proliferation that ultimately have an impact on the number of
lymphocytes in the circulation and in tissues. From these findings it can be presumed that an
inadequate cellular immune response after induction of 38 kDa adhesin protein of M. tuberculosis
8
is caused by a lack of glutamine supplementation, making it the second year of this study are given
glutamine supplementation in addition to oral immunization with 38 kDa adhesin protein of M.
tuberculosis.
From this study, the results showed that the average levels of lymphocytes in the blood of
rats fed with normal diet orally immunized with 38kDa protein adesin M. tuberculosis orally and
supplemented with glutamine , is 77.1 % , and the levels of lymphocytes in the blood of rats with a
low-protein diet 4 % , 2 % and 0 % are 76.9 % , 75.05 % and 70.5 % respectively. Based on these
data showed that the levels of blood lymphocytes in rats with a low protein diet fed orally
immunized with 38kDa protein adesin M. tuberculosis accompanied by oral glutamine
supplementation showed no significant difference with rats with normal diet (p > 0.05). The average
levels of CD8 lymphocytes in the intestine in rats fed with normal diet immunized with 38kDa
protein adesin M. tuberculosis orally and supplemented with glutamine, is 92.63 % , and the levels
of CD8 lymphocytes in the intestine in rats with a low-protein diet 4 % , 2 % and 0 % are 88.05 %
, 90.8 % , and 86.5 % respectively. Based on these data showed that the levels of CD8 lymphocytes
in the intestine in mice with a low protein diet fed orally immunized with 38kDa protein adesin M.
tuberculosis accompanied by oral glutamine supplementation also showed no significant difference
with mice with normal diet. The average levels of CD8 lymphocytes in the lung of rats fed with
normal diet immunized with 38kDa protein adesin M. tuberculosis orally and supplemented with
glutamine, is 89.17 % , and the levels of CD8 lymphocytes in the lung of rats with a low-protein
diet 4 % , 2 % and 0 % are 84.97 % , 83.18 % , and 86.7 % respectively. Based on these data
showed that the levels of CD8 lymphocytes in the lung of rats fed a low-protein diet and given with
oral immunization of adesin protein 38kDa M. tuberculosis accompanied by oral glutamine
supplementation also showed no significant difference with rats with normal diet. The results of the
study showed that the induction of adhesin protein 38 kDa M. tuberculosis accompanied by oral
glutamine supplementation can improve the cellular immune system in a rats model of kwashiorkor,
which is characterized by an increased number of blood lymphocytes and CD8 lymphocyte
intestinal and lung CD8 as much as in rats with diet normal .
9
DAFTAR PUSTAKA
Abbas, Lichtman, and Pober. 2000. Cellular and Molecular Immunology. Fourth Edition. W.B.
Saunders Company, Philadelphia, London, New York. 348-351.
Aditama, TY. 2003. Diagnosis of pulmonary tuberculosis. Simposium Nasional 2003: “Recent
advances on TB and COPD”. Bandung, hal. 21 – 22.
Birkness, et al. 1999. An in vitro tissue culture bilayer model to examine early events in
Mycobacterium tuberculosis infection. Infect Immun, 67: 2, 653.
Brandtzaeg P. 2003. Mucosal immunity in infectious
http//:microbiology.utmb.edu. Accessted on 26 April 2003.
disease
and
allergy.
Brock, Madigan, Martinko, and Parker. 1994. The Biology of Microorganisms. Prentice-Hall, Inc.,
New Jersey, 532, 810.
Buxton B. 2001. Interactions between Mycobacterium tuberculosis and the immune system.
Davidson College.
http://virtual.class.uconn.edu/~terry/Spring96/WebTB2/Groups/Group3/Final.html.
Accessed on March 2006.
Dannenberg and Tomashefski. 1998. Pathogenesis of Pulmonary Tuberculosis, in: Fishman et al.
(Editors). Fishman's Pulmonary Diseases and Disorders. Third Edition. Vol 2.
McGrawHill, New York, Toronto, Milan, pp. 2447-2451, 2454, 2462-2463, 2467.
Doherty TM, Olsen AW, van Pinxteren L, and Andersen P. 2002. Oral vaccination with subunit
vaccines protects against aerosol infection with Mycobacterium tuberculosis. Infect Immun.
70: 3111 , 3119.
Dunlap et al. 2000. American Thoracic Society: Diagnostic Standards and Classification of
Tuberculosis in Adults and Children. Am J Respir Crit Care Med. 161: 1376-1377.
Ellner JJ. 1997. Review: The immune response in human tuberculosis—Implication for
tuberculosis control. J Infect Dis. 176: 1351 – 1355.
Feng et al. 1999. Increase in gamma interferon-secreting CD8+, as well as CD4+, T cells in lungs
following aerosol infection with Mycobacterium tuberculosis. Infect Immun. 67: 7, 3242,
3245-6.
Firani NK., Nesdyaningtyas E., 2012. The Lymphocytes Number in The Blood of Kwashiorkor Rat
Model Induced by Oral Immunization with 38-kDa Mycobacterium tuberculosis Protein.
Waset. Issue 69. September 2012.p164-6.
Garay SM. 2004. Chapter 25 : Pulmonary Tuberculosis. In: Tuberculosis. Second edition. Rom
WN, Garay SM and Bloom BR. Lippincott Williams & Wilkins. Philadelphi, New York,
Sydney. 345 – 346.
Goldsby, Kindt, and Osborne. 2000. Kuby Immunology. Fourth Edition, W.H. Freeman and
Company, New York. 436-437.
Harlow E and Lane D, 1989. Antibodies : A. Laboratory Manual, Cold Spring Harbor Laboratory,
USA : 61,150,309,564,597
Jagirdar J and Zagzag D. 2004. Chapter 24: Pathology and Insight into Pathogenesis of
Tuberculosis. In: Tuberculosis. Second edition. Rom WN, Garay SM and Bloom BR.
Lippincott Williams & Wilkins. Philadelphi, New York, Sydney. 323.
Janeway, Travers, Walport, and Capra. 1999. Immunobiology: The Immune System in Health and
Disease. Fourth Edition, CB Publications, Garland Publishing, New York. 24, 302-303.
10
Jawetz E., Melnick JL., and Adelberg EA. 1998. Review of medical Microbiology. Lange Medical
Publication. 278 – 279.
Joklik et al. (Editors). 1992. Zinsser Microbiology. 20th ed. Prentice-Hall International Inc. 498499,
502-503.
Liang X, Lamn ME, Nedrud JG, 1989. Cholera Toxin as Mucosal Adjuvant – Glutaraldehyde
treatment dissociates adjuvanticity from toxicity., The Journal of Immunology, American
Association of Immunologist, USA, 143 (2) : 484-490.
Lietman and Blower. 1999. Science’s Compass: Tuberculosis vaccines. Science. 286: 1300.
Male et al. 1996. Advanced Immunology, Mosby, London, Boston, New York. 10.12, 16.2.
Murray, RK. 2001.Biokimia Harper edisi 25,Jakarta,EGC.
Nicoletti C. 2000. Unsolved mysteries of intestinal M cells. Gut. 47: 735 – 737.
Ogra PL, Faden H, and Welliver RC. 2001. Vaccination strategies for mucosal immune responses.
Clin Microbiol Rev. 14 (2): 432 – 433, 437 – 438.
Orme, Ian. 1995. Medical Intelligence Unit: Immunity to Mycobacteria, Springer-Verlag, New
York, London, R.G. Landes Company, Austin.
Porter JDH and McAdam PWJ. 1994. The re-emergence of tuberculosis. Annu Rev Public Health.
15: 314.
Rambukkana et al., 1998. Role of -dystroglycan as a schwann cell receptor for Mycobacterium
leprae. Science. 282.
Rundless, 2002 Rundless, S.C. Effects of Nutritional Status on Immunological Function.
Am.J.Clin.Nutr, 1202-1210
Schluger and Rom. 1998. The Host Immune Response to Tuberculosis. Am J Respir Crit Care Med.
157: 679-691.
Scrimshaw dan Sangiovanni. Synergism of Nutrition, Infection, and Immunity: an Overview.
Am.J.Clin.Nutr,1997 ; 66:464s-77s
Subandi, Wihastuti, T.A., Firani, N.K., Tandya, S., Soemarno, 2009. Kadar S-IgA Bronkiolus pada
tikus model kwashiorkor yang diinduksi protein adhesin BM 38kD M. tuberculosis. Jurnal
Ilmu Hayati. Universitas Brawijaya.
Tandya, S., 2006. Peran Protein Adhesin Mycobacterium tuberculosis dalam menginduksi
Secretory Imunoglobulin A (S-Ig A) Mukosa usus dan Bronkhiolus Mencit Balb/c. Disertasi.
Ulrichs T and Kaufmann SHE. 2002. Mycobacterial Persistence and Immunity. Frontiers in
Bioscience 7: d458-469.
van Ginkel FW, Nguyen HH, and McGhee JR. 2000. Attenuated viral vaccine for mucosal
immunity to combat emerging infectious diseases. Emerg Infect Dis. 6(2) Centers for
Disease Control and Prevention (CDC).
Winarsih, Sumarno, dan Roekistiningsih. 1998. Fungsi dan sifat immunogenitas protein
hemaglutinin 32 kD dan 20 kD pada Helicobacter pylori. Majalah Kedokteran Unibraw
Malang. 13:135-141.
Wizemann TM, Adamou JE, and Langermann S. 1999. Adhesins as a targets for vaccine
development. Emerg Infect Dis. 5 (3): 396 – 398.
11
Zumla A and Grange J. 1998. Science, medicine, and the future: Tuberculosis. BMJ. 316 : 1962,
1963 , 1964
, MKep, SpKom
12
Download