Ayasha Sagita 15308072 Pencemaran Udara oleh Industri Komponen di dalam Udara Udara tersusun atas komponen-komponen gas utama nitrogen (N2), oksigen (O2), dan beberapa gas mulia serta jenis gas hasil kegiatan biologic dan kegiatan alami gunung berapi. Jadi, udara alami tidak pernaha dalam keadaan murni. Atmosfer dalam kenyataan merupakan system dinamik disamping watak nyata yang tidak berubah-rubah karena selalu saling bertukar alih dengan gas pembentuk udara secara berkesinambungan dari tumbuh-tumbuhan, kelautan dan makhluk hidup lainnya. Siklus gas dalam atmosfer mencakup berbagai proses fisik dan proses kimiawi. Berbagai jenis gas dihasilkan dari proses kimiawi di dalam atmosfer itu sendiri, proses biologic, kegiatan gunung berapi, peluruhan senyawa radioaktif dan kegiatan industry. Gas-gas ini juga disisihkan dari atmosfer oleh berbagai proses kimiawi, proses biologic dan proses fisik seperti pembentukan partikel, pengendapan dan penyerapan oleh air laut dan kulit bumi. Waktu tinggal suatu jenis molekul gas yang memasuki atmosfer berada dalam rentang hitungan jam hingga jutaan tahun yang bergantung pada jenis gas tersebut. Sebagian jenis gas dapat dipandang sebagai pencemar udara (terutama jika konsentrasi gas itu melebihi dari tingkat konsentrasi latar normal) baik gas yang berasal dari sumber alami atau sumber yang berasal dari kegiatan manusia (anthropologic sources). Table 1 menyatakan konsentrasi gas di dalam atmosfer yang bersih dan kering pada permukaan tanah. Table 1. Konsentrasi gas di dalam atmosfer bersih dan kering Jenis Gas Rumus Kimia Konsentrasi volum) (ppm Konsentrasi volum) Nitrogen N2 780900 78.09 Oksigen O2 209500 20.95 Argon Ar 9300 0.93 Karbondioksida CO2 320 0.032 Neon Ne 18 0.0018 (% Ayasha Sagita 15308072 Helium He 5.2 0.00052 Metan CH4 1.5 0.00015 Krypton Kr 1.0 0.0001 Hydrogen H2 0.5 0.00005 Dinitrogen oksida N2O 0.2 0.00002 Karbonmonoksida CO 0.1 0.00001 Xenon Xe 0.08 0.000008 Ozon O3 0.02 0.000002 Ammonia NH3 0.006 0.0000006 Nitrogen dioksida NO2 0.001 0.0000001 Sulfur dioksida SO2 0.0002 0.00000002 Hydrogen sulfida H2S 0.0002 0.00000002 [Peave et al, 1986: 423] Lapisan udara yang menjadi perhatian utama dalam kaitan dengan pencemaran adalah troposfer. Pada lapisan inilah terjadi peristiwa hujan asam. Hujan asam ini diakibatkan oleh reaksi dari gas SOx dan NOx dengan H2O di dalam atmosfer serta sinar matahari yang menghasilkan asam kuat seperti asam sulfat (H2SO4) dan asam nitrat (H2NO3). Asam ini dapat merusak/mematikan tumbuhan, hewan bahkan manusia serta mmerusak bangunan. Jenis dan Pengaruh Senyawa Pencemar Udara Udara alami tidak pernah dalam keadaan murni, karena gas-gas missal SO2, H2S dan CO akan dibebaskan ke atmosfer akibat proses-proses alami yang berlangsung seperti pembusukan (putrefaction) tumbuhan atau bangkai, kebakaran hutan dan letusan gunung berapi. Gas dan partikel padat atau cair akan disebarkan oleh angin ke seluruh bagian dan sebagian partiikel ini akan mengendap akibat kecepatan yang dimiliki tidak dapat melawan gaya tarik bumi. Pencemaran alami dan pencemar dari berbagai kegiatan manusia mengakibatkan kualitas uudara tidak sesuai dengan kualitas udara bersih. Pengenceran senyawa-senyawa pencemar ini oleh udara tidak berlangsuung secara keseluruhan pada tiap ketinggian dan tiap saat. Difusi atmosferik adalah sangat kecil pada ketinggian 3000-4000 meter dan bahkan pada keadaan nyata senyawa pencemar tidak ditemui pada ketinggian lebih dari 600 meter. Hambatan geologik dan hambatan manusia mengakibatkan hambatan pada gerakan Ayasha Sagita 15308072 udara sehingga terjadi penurunan kemampuan pencampuran dan pengenceran. Istilah senyawa pencemar digunakan untuk berbagai senyawa asing dalam susunan udara bersih dan senyawa ini dapat mengakibatkan gangguan atau penurunan kualitas udara bersih serta penurunan kondisi fisik atmosfer. Senyawa-senyawa pencemar udara dikelompokkan dalam senyawa-senyawa yang mengandung: a. b. c. d. e. f. g. Unsur karbon, seperti CO dan hidrokarbon Unsur nitrogen, seperti NO dan NO2 Unsur sulfur, seperti H2S, SO2 dan SO3 Unsur halogen, seperti HF Partikel padat atau cair Senyawa beracun, dan Senyawa radioaktif Senyawa pencemar digolongkan sebagai: (a) senyawa pencemar primer, dan (b) senyawa pencemar sekunder. Senyawa pencemar primer adalah senyawa yang langsung dibebaskan dari sumber, sedangkan senyawa pencemar sekunder adalah senyawa baru yang terbentuk akibat interaksi dua atau lebih senyawa pencemar primer selama berada di atmosfer. Lima jenis senyawa pencemar yang umum dikaitkan dengan pencemaran udara adalah (1) karbonmonoksida (CO), (2) oksida nitrogen (NOx), (3) oksida sulfur (SOx), (4) hidrokarbon dan (5) partikel/debu. Satuan konsentrasi yang digunakkan untuk menyatakan konsentrasi senyawa pencemar adalah µg/m3 yang menyatakan bobot zat dalam satu satuan m3 udara atau mg/m3 untuk keadaan yang tercemar berat atau ppm volum yang diukur pada keadaan standar (25 ºC dan 1 atm). Nitrogen Oksida Karakteristik Rumus kimiawi NOx digunakan untuk menyatakan gabungan oksida nitrogen NO (nitric oxide) dan NO2 (nitrogen dioxide). Meskipun senyawa nitrogen yang lain juga ditemui, tetapi dua senyawa ini yang terlibat pencemaran udara di daerah urban. Ggas NO adalah gas yang tidak berwarna, tidak berbau, tetapi gas NO2 berwarna merah coklat dan berbau yang menyengat dan menyesakkan. Reaksi NO di Udara Ayasha Sagita 15308072 Gas NO dibebaskan ke atmosfer dalam jumlah yang lebih besar daripada NO2. Persamaan reaksii pebentukan kedua senyawa ini dinyatakan sebagai: N2 + O2 → 2NO [a] 2NO + O2 → 2NO2 [b] Reaksi yang dapat bersaing adalah reaksi yang mencakup hidrokarbon yang terbebaskan bersama sama NOx. Antar aksi hidrokarbon menghasilkan reaksi yang tak seimbangdan pengubahan NO ke NO2 adalah lebih cepat daripada penguraian NO2 ke NO dan O sehingga penimbunan ozon berlangsung waktu tinggal NO2 di atmosfir yang didasarkan emisi global adalah 3 hari. Waktu tinggal ini menunjukkan peristiwa yang alami yang mencakup pula reaksi foto kimiawi yang menghasilkan penyusutan konsentrasi oksida ini. Hasil akhir dari proes oksida ini adalah asam nitrat yang akan mengendap dalam bentuk garam nitrat . pernyataan persamaan reaksi untuk peristiwa ini adalah: 2NO2 + H2O → HNO3 + HNO2 3NO2 + H2O → 2HNO3 + NO Reaksi – reaksi yang berlangsung ini kurang bermakna. Jika perhitungan di dasarkan pada konsentrasi NO, NO2, H2O di daerah urban dan laju reaksi 0,1 pbb per jam. Hasil ini adalah sangat lambat bila dikaitkan dengan waktu tinggal yang telah dinyatakan. Suatu mekanisme pembentukan HNO3 di daerah yang tercemar telah diajukan. Konsentrasi ozon akan berperan pada keadaan yang memiliki konsentrasi NO2 maximum. Suatu rangkaian persamaan yang menyatakan pembentukan HNO3 adalah: O3 + NO2 → NO3 + O2 NO3 + NO2 → N2O5 N2O5 + H2O → 2HNO3 Pengaruh NO di Lingkungan Hal yang penting dilakukan pembentukan HNO3 dan NO2 berlangsung dengan cepat diikuti oleh pembentukan partikel yang mengandung senyawa nitrat pengaruh NOx pada tumbuhan mengakibatkan kerusakan atau penyakit. Tetapi pengaruh langsung NOx atau pengaruh senyawa pencemar skunder akibat siklus fotolitik NO2 adalah sulit ditentukan. Ayasha Sagita 15308072 Sumber Polusi NO di Industri Kerusakan akibat NO2 di udara tampak di daerah industry membebaskan NOx dalam konsentrasi yang tinggi misalnya industry asam nitrat. Senyawa NO dan NO2 adalah berbahaya bagi kesehatan manusia dan hewan. Hasil penelitian tentang uji kematian hewan menunjukan bahwa tingkat peracunan NO2 adalah 4 kali lebih tinggi daripada tingkat peracunan NO. konsentrasi NO dalam udara ambient dinyatakan tidak berbahaya bagi kesehatan, tetapi bahaya akan timbul bila NO berubah ke NO2 yang lebih beracun di atmosfir, NO2 menyerang paru-paru dan pernafasan. Hasil pengujian dengan hewan menyatakan bahwa konsentrasi NO 100 ppm adalah konsentrasi yang mematikan bagi hewan. Bahan juga akan mengalami kerusakan akibat pemaparan pada atmosfir yang mengandung gas NOx missal pemudaran warna textile. Korosi regangan pada logam paduan nikel dapat diakibatkan pula oleh senyawa NOx. Pegas relay telfon dapat dirusak oleh debu senyawa nitrat yang dibentuk oleh hasil reaksi senyawa NOx di atmosfir. Hidrokarbon Karakteristik Uraian hidrokarbon sebagai senyawa pencemar sering dikaitkan dengan photochemical oxidant. Senyawa hidrokarbon adalah senyawa primer pencemar udara danphotochemical oxidant adalah senyawa sekunder pencemar udara yang dihasilkan reaksi antara senyawa pencemar primer udara di atmosfir. Senyawa hidrokarbon yang dicakup dalam istilah pencemaran hidrokarbon adalah senyawa-senyawa yang mengandung unsur C dan H dalam rumus molekulnya. Senyawa-senyawa ini dapat berada dalam bentuk fasa gas, fasa cair, atau fasa padat. Sumber Polusi Hidrokarbon di Industri Senyawa hidrokarbon akan membentuk fasa gas jika kandungan C di dalamnya adalah lebih kecil dari 5 bahkan kandungan atom C yang lebih banyak ditemuidalam senyawa hidrokarbon yang berbentuk fasa padat missal aspal dan batubara. Senyawa hidrokarbon yang dicakup dalam masalah pencemaran udara adalah senyawa hidrokarbon yang berbentuk fasa gas dan cair yang mudah menguap. Senyawa-senyawa ini memiliki jumlah atom C yang kurang dari 12 dan struktur yang sederhana. Senyawasenyawa ini dapat berupa senyawa alifatik, aromatic, atau alisiklik. Ayasha Sagita 15308072 Partikulat Karakteristik Partikulat atau padayan renik dapat berbentuk cairan atau padatan. Partikulat ini adalah bahan yang tersebar di udara baik cairan atau padatan yang merupakan agregat individu dengan ukuran yang lebih besar daripada molekul tunggal tetapi lebih kecil dari 500 µm. particulat ini dapat dipilah dan dibahas atas dasar warna fisik, kimia, dan biologic. Watak fisik meliputi ukuran proses pembentukan, watak pengendapan, dan watak optic. Watak kimia mencakup senyawa organic atau senyawa anorganik. Watak biologic berkaitan dengan jenis bakteri, spora atau virus. Ukuran partikulat merupakan watak fisik yang utama. Klasifikasi Partikel dikelompokan atas dasar pembentukan dalam : debu (dust), asap (smoke),fumes, abu terbang (fly-ash), kabut (mist), atau spray. Empat jenis pertama berupa padatan dan dua jenis yang lain adalah cairan. Debu dihasilkan dari pemecahan massa yang lebih besar missal pemecahan, penggerusan atau peledakan. Debu juga dihasilkan dari proses atau penanganan bahan misalnya batubara, semen, padi-padian atau produk samping proses mekanik missal penggergajian kayu. Ukuran berkisar antara 1-10000 µm dan mudah mengendap akibat gaya gravitasi. Asap adalah partikel yang halus akibat dari pembakaran tak sempurna senyawa organic missal tembakau, kayu atau batubara. Asap ini terutama disusun oleh karbon dan bahan lain dan berukuran 0,5-1 µm. Fumes adalah partikel yang halus dan merupakan hasil kondensasi uap bahan padat missal oksida seng, oxide timbale. Fumes ini dapat dihasilkan dari proses sublimasi, distilasi, kalsinasi,atau pencairan logam. Ukuran fumes adalah 0,03-0,3 µm. Abu terbang berasal dari hasil pembakaran batubara yang berupa partikel tak terbakar yang semula dikandung oleh batubara. Ukuran abu ini berkisar 1-1000 µm. abu ini berwatak seperti asap akibat hasil pembakaran dan berwatak pula seperti fumes akibat kandungan bahan anorganik atau mineral. Kabut adalah butir cair yang terbentuk akibat kondensasi uap atau disperse cairan. Ukuran kabut adalah kurang dari 10 µm. jika konsentrasi kabut ini tinggi, maka jarak pandang akan munurun. Spray merupakan partikel cairan yang dibentuk oleh proses atomisasi cairan awal missal pestisida dan herbisida. Ukuran partikel berkisar antara 10-1000 µm. Ayasha Sagita 15308072 Efek Polusi Udara di Industri Dampak lingkungan fisik diakibatkan oleh padatan renik atau debu, gas-gas karbonmonoksida, hidrookarbon, nitrogen oksiida dan sulfur oksida. Dampak ini dapat mengakibatkan dampak lanjutan pada lingkungan kesehatan, yang terlihat pada: a. Penurunan jarak pandang dan radiasi matahari, b. Kenyamanan yang berkurang c. Kerusakan tanaman, d. Percepatan kerusakan bahan konstruksi dan sifat tanah, dan e. Peningkatan laju kematian atau jenis penyakit. Sumber Pencemaran Udara di Industri Ross [1972] menyatakan bahwa pencemaran udara yang merupakan akibat dari kegiatan manusia dibangkitkan oleh enam sumber uutama: a. b. c. d. e. f. Pengankutan Kegiatan rumah tangga Pembangkitan daya yang menggunakan bahan bakar minyak atau batubara Pembakaran sampah Pembakaran sisa pertanian dan kebakaran hutan Pembakaran bahan bakar dan emisi proses. Industry memberikan bagian yang relative kecil pada pencemaran atmosferik jika dibandingkan dengan pengangkutan. Meskipun industry dalam kenyataan memberikan bagian yang kecil dalam emisi senyawa pencemar, tetapi suumber ini mudah diamati, karena industry meruppakan sumber pencemaran tiitik (point source of pollution). Bagian paling besar yang dibebaskan oleh industry adalah padatan renik atau debu. Debu ini memberikan dampak negative bagi lingkungan biotic dan fisik. Pengendalian Kesehatan Keselamatan Kerja Pengendalian senyawa pencemar pada sumber merupakan upaya yang paling berhasil-guna bahkan pengendalian ini dapat mengghilangkan atau paling sedikit mengurangi kadar senyawa pencemar dalam aliran udara atau fasa yang dibebaskan ke lingkungan. Pengendalian pencemaran dapat dicapai dengan pengubahan: a. Jenis senyawa pembantu yang digunakan dalam proses b. Jenis peralatan proses c. Kondisi operasi, dan d. Keseluruhan proses produksi itu sendiri. Ayasha Sagita 15308072 Pemilihan tingkat kerja (actions) itu selalu dikaitkan dengan penilaian ekonomik seluruh produksi. Hal-hal yang menyulitkan adalah proses produksi yang berada di bawah lisensi. Jika pembentukan senyawa pencemar ini tidak dapat dihindarkan lagi, maka pemasangan alat untuk menangkap senyawa ini harus dilakukan. Secara umum penghilangan senyawa pencemar yang akan memasuki atmosfer adalah metoda yang didasarkan atas pengurangan (reduction) senyawa pencemar. Berbagai jenis alat pengumpul (collectors) didasarkan atas pengurangan kadar debu saja atau kadar debu dan gas. Prinsip pengurangan kadar debu dalam aliran gas yang dibebaskan ke lingkungan diantaranya: a. Pemisah Brown Pemisahan jenis ini menerapkan gerakan partikel menurut Brown. Alat ini dapat memisahkan debu dengan rentang ukuran 0.01-0.05 mikron. Alat yang dipatenkan dibentuk dengan susunan filament gelas dengan jarak antar filament yang lebih kecil dari lintasan bebas rata-rata partikel. b. Penapisan Deretan penapis atau penapis kantung (filter bag) akan dapat menghilangkan debu hingga ukuran diameter 0.1 mikron. Penapis ini dibatasi oleh pembebanan yang rendah, karena pembersihan membutuhkan waktu dan biaya yang tinggi. Susunan penapis yang bias digunakan untuk gas buang yang mengandung minyak atau debu higroskopik. Temperature gas buang dibatasi oleh komposisi bahan penapis. Electrostatic Precipitator c. Pengendap elektrostatik Alat ini memberikan tegangan tinggi pada aliran gas berkecepatan rendah. Debu yang telah menempel dapat dihilangkan secara beraturan dengan cara getaran. Keuntungan yang diperoleh adalah debu yang kering dengan ukuran rentang 0.3-0.5 mikron. Tetapi secara teoritik ukuran partikel yang dapat dikumpulkan tidak memiliki batas minimum. Ayasha Sagita 15308072 d. Pengumpul sentrifugal Pemisah debu dari aliran gas didasarkan atas gaya sentrifugal yang dibangkitkan oleh bantik saluran masuk alat. Gaya ini melemparkan partikel ke dinding dan gas berputar (vortex) sehingga debu akan menempel di dinding serta terkumpul di dasar alat. Alat yang menggunakan prinsip ini dapat digunakan untuk pemisahan partikel besar dengan rentang ukuran diameter hingga 10 mikron. e. Pemisah inersia Pemisah ini bekerja atas gaya inersia yang dimiliki oleh partikel di dalam aliran gas. Pemisahan ini menggunakan susunan penyekat, sehingga partikel akan bertumbukan dengan penyekat ini dan akan dipisahkan dari aliran fasa gas. Kendala daya guna ditentukan oleh jarak antar penyekat. Alat yang didasarkan atas prinsip gaya inersia bekerja dengan baik untuk partikel yang memiliki ukuran diameter lebih besar daripada 20 mikron. Rancangan yang baru dapat memisahkan partikel yang berukuran hingga 5 mikron. f. Pengendapan akibat gaya gravitasi Rancangan alat ini didasarkan perbedaan gaya gravitasi dan kecepatan yang dialami oleh partikel. Alat ini akan bekerja dengan baik untuk partikel dengan ukuran diameter yang lebih besar daripada 40 mikron dan tidak digunakan sebagai pemisah debu tingkat akhir.