PEMANFAATAN SOUND CARD KOMPUTER UNTUK SIMULATOR ELEKTROKARDIOGRAFI (EKG) (Skripsi) Oleh Alvionita Rosyandi JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG BANDAR LAMPUNG 2016 ABSTRAK PEMANFAATAN SOUND CARD KOMPUTER UNTUK SIMULATOR ELEKTROKARDIOGRAFI (EKG) Oleh Alvionita Rosyandi Telah dilakukan penelitian untuk mendesain dan membuat simulator elektrokardiografi (EKG) dengan memanfaatkan sound card komputer. Simulator dibangun dari hasil konversi sinyal digital kelistrikan jantung menjadi sinyal analog. Sampel sinyal jantung diambil dari database PhysioNet berupa data matriks (.txt). Database sinyal jantung meliputi MIT-BIH Arrythmia Database (mitdb), MIT-BIH Normal Sinus Rhytm Database (nsrdb), MIT-BIH ST Change Database (stdb), MITBIH Supraventricular Database (svdb), dan MIT-BIH Long Term Database (ltdb). Data format txt dikonversi menjadi audio wav dengan frekuensi sampling 1000 Hz dan 8000 Hz. File digital audio format (.wav) dikonversi menjadi sinyal analog. Tegangan yang dihasilkan masing-masing sampel analog sebesar 5 mV. Hasil penelitian dianalisis secara kualitatif dan kuantitatif dengan membandingkan grid interval sampel analog terhadap sampel digital. Sinyal analog jantung ditampilkan pada osiloskop dengan menggunakan kabel audio mono dan potensiometer untuk memperkecil tegangan. Kata kunci. Elektrokardiografi, simulator EKG, sound card,. i ABSTRACT COMPUTER SOUND CARD USED FOR ELECTROCARDIOGRAM (ECG) SIMULATOR By Alvionita Rosyandi This conducted the research to design and create an electrocardiography simulator (ECG) by using the computer sound card. Simulator has been built from the conversion of the heart's electrical digital signals into analog signals. The samples taken from the cardiac signals PhysioNet database in data matrix (.txt) form. The heart signal database includes the MIT-BIH arrythmia Database (mitdb), MIT-BIH Normal Sinus Rhythm Database (nsrdb), MIT-BIH ST Change Database (stdb), MIT-BIH Supraventricular Database (svdb), and the MIT-BIH Long Term Database (ltdb). The txt format data converted to wav audio with a sampling frequency of 1000 Hz and 8000 Hz. Digital format audio (.wav) files was converting into an analog signal. The voltage generated of each analog samples at 5 mV. The results were analyzed qualitatively and quantitatively by comparing the grid interval sampled analog to digital samples. Cardiac analog signal displayed on the oscilloscope with mono audio cable and potentiometer to minimize output voltage. Keywords. ECG simulator, electrocardiography, sound card. ii PEMANFAATAN SOUND CARD KOMPUTER UNTUK SIMULATOR ELEKTROKARDIOGRAFI (EKG) Oleh ALVIONITA ROSYANDI Skripsi Sebagai Salah Satu Syarat untuk Memperoleh Gelar SARJANA SAINS Pada Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG BANDAR LAMPUNG 2016 iii iii iv v RIWAYAT HIDUP Penulis yang bernama lengkap Alvionita Rosyandi dilahirkan di kota Bengkulu pada tanggal 20 Agustus 1992 anak dari Bapak (Alm) Andi Murni dan Ibu Rosmiyati. Penulis menyelesaikan pendidikan Sekolah Dasar (SD) di SD Negeri 08 Pagi Pancoran Jakarta Selatan pada tahun 2004, Sekolah Menengah Pertama (SMP) di SMP Al-Azhar 3 Wayhalim Bandar Lampung pada tahun 2007 dan Sekolah Menengah Atas (SMA) di SMA Al-Azhar 3 Wayhalim Bandar Lampung pada tahun 2010. Penulis terdaftar sebagai mahasiswa di Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam (MIPA) Universitas Lampung melalui jalur SNMPTN pada tahun 2010. Selama menempuh pendidikan, penulis pernah menjadi Asisten Praktikum Fisika Dasar I dan II, Asisten Praktikum Sains Dasar, Asisten Praktikum Elektronika Dasar, Asisten Praktikum Asembler, Asisten Praktikum Pemrograman Komputer, Asisten Praktikum Sistem Digital. Penulis pernah aktif di kegiatan organisasi kemahasiswaan HIMAFI pada tahun 2011-2012. Kerja Praktik (KP) penulis dilakukan di PT. Pertamina (Persero) TBBM Panjang tahun 2013 dengan judul “Analisis Kerja Alat Uji Titik Nyala (Flash Point) Cawan Terbuka dan Cawan Tertutup PT.Pertamina (Persero) TBBM Panjang” Telah melakukan penelitian skripsi pada tahun 2016 dengan judul “Pemanfaatan Sound Card Komputer untuk Simulator Elektrokardiografi (EKG)”. vii - MOTTO “Apa yang ada di sisimu akan lenyap, dan apa yang ada di sisi Allah adalah kekal. Dan sesungguhnya Kami akan memberi balasan kepada orang-orang yang sabar dengan pahala yang lebih baik dari apa yang telah mereka kerjakan.” (QS: An-Nahl ayat 96) “Semua impian kita dapat menjadi nyata, jika kita memiliki keberanian untuk mengejarnya.” -Walt Disney- “Seseorang yang memiliki impian itu luar biasa. Namun, seseorang yang hidup bersama impiannya itu mengagumkan.” -Alvionita Rosyandi- viii Bismillahirrohmanirrohim Kuniatkan karya berharga ini karena Allah SWT dan Aku Persembahkan Karya Ini Untuk: Mama tersayang yang menjadi penyemangat hidupku dan yang selalu menyisipkan do’a untukku di setiap sujudnya Kedua Uni terkasih, Terese Rosyandi dan Feriska Rosyandi yang selalu mendukungku Sahabat seperjuangan, Fisika Angkatan 2010 Almamater Tercinta. ix KATA PENGANTAR Segala puji bagi Allah SWT berkat rahmat dan hidayah Nya, penulis dapat menyelesaikan kuliah serta skripsi dengan baik. Judul skripsi ini “Pemanfaatan Sound Card Komputer untuk Simulator Elektrokardiografi (EKG)”. Shalawat dan salam kepada Nabi Muhammad SAW, keluarga dan pengikutnya. Skripsi ini dilaksanakan dari bulan Maret 2016 sampai Juni 2016 bertempat di Laboratorium Elektronika Dasar Jurusan Fisika, Fakultas MIPA Universitas Lampung. Penekanan skripsi ini adalah merancang dan merealisasikan simulator elektrokardiografi (EKG) dengan memanfaatkan sound card komputer untuk penggunaan yang lebih mudah, praktis dan ekonomis. Penulis menyadari dalam penyajian laporan ini masih banyak kekurangan dalam penulisan maupun referensi data. Semoga laporan ini dapat menjadi rujukan untuk penelitian berikutnya agar lebih sempurna dan dapat memperkaya khasanah ilmu pengetahuan. Bandar Lampung, Agustus 2016 Penulis. x SANWACANA Puji dan syukur kehadirat Allah SWT yang telah memberikan rahmat serta hidayah-Nya, karena atas kuasa-Nya penulis masih diberikan kesempatan untuk mengucapkan terima kasih kepada pihak yang telah banyak membantu dalam penyelesaian penelitian dan skripsi ini, terutama kepada : 1. Bapak Arif Surtono, S.Si, M.Si, M.Eng, sebagai pembimbing I yang telah memberikan waktu untuk diskusi berkepanjangan. Senantiasa memberi nasehat, saran, serta solusi bagi penelitian ini, serta mendengarkan keluh kesah penulis selama menyelesaikan tugas akhir. 2. Bapak Gurum Ahmad Pauzi, S.Si, M.T, sebagai pembimbing II yang senantiasa memberikan nasehat dan saran dalam proses penyelesaian tugas akhir. 3. Bapak Drs. Amir Supriyanto, M.Si, sebagai penguji yang telah mengoreksi kekurangan, memberi kritik dan saran selama penulisan skripsi. 4. Bapak Drs. Pulung Karo Karo, M.Si, selaku pembimbing akademik (PA) yang telah senantiasa membimbing dan memberi nasihat dalam menyelesaikan studi. 5. Kepada orang tua yang selalu sabar menanti hingga penelitian ini selesai, serta doa yang tiada putus-putusnya. 6. Uni Ishe, Uni Icka, Kak Widi, A’ Dani, terima kasih atas semua dukungannya selama ini. xi 7. Kak Catur, Kak Mardi, Mujiono, Kak Imam Nasiqin, terima kasih atas bantuan dan semangat yang diberikan. 8. Sahabatku Mufli Fita Firna Sari, Siti Kholifah, Rita Budiati, Afrida Hafizhathul Ulum, Siti Fadilah, Andry Nofrizal, Dede Iswadi, Ayu Sevtia Anggraini, terima kasih untuk waktu-waktu curhat yang berharga serta perhatian kalian. 9. Teman-teman masa seperjuangan penelitian Helrita Maulina, Anisa Nurdina, Devi Yulianti, Trunggana, Rini. Semoga Allah SWT senantiasa memberikan rahmat dan hidayah-Nya, serta memberkahi hidup kita. Amin. Bandar Lampung, Agustus 2016 Alvonita Rosyandi xii DAFTAR ISI Halaman ABSTRAK ......................................................................................................... i ABSTRACT....................................................................................................... ii HALAMAN JUDUL ......................................................................................... iii HALAMAN PERSETUJUAN ......................................................................... iv HALAMAN PENGESAHAN........................................................................... v SURAT PERNYATAAN .................................................................................. vi RIWAYAT HIDUP ........................................................................................... vii MOTTO ……….. .............................................................................................. viii PERSEMBAHAN ............................................................................................ ix KATA PENGANTAR....................................................................................... x SANWACANA .................................................................................................. xi DAFTAR ISI...................................................................................................... xiii DAFTAR GAMBAR .................................................................................... xv DAFTAR TABEL ............................................................................................. xix I. PENDAHULUAN A. B. C. D. E. Latar Belakang .......................................................................................... Rumusan Masalah .................................................................................... Tujuan Penelitian....................................................................................... Manfaat Penelitian..................................................................................... Batasan Masalah ........................................................................................ xiii 1 4 4 4 4 II. TINJAUAN PUSTAKA A. Penelitian Terkait....................................................................................... 6 B. Biolistrik .................................................................................................... 8 1. Kelistrikan sel ...................................................................................... 9 2. Potensial Listrik pada Permukaan Tubuh ............................................11 3. Hubungan Potensial Elektris Permukaan dengan Vektor Lead dan Dipole ..................................................................................................13 4. Aktifitas Kelistrikan Jantung ...............................................................18 5. Sinus Node...........................................................................................19 6. Potensial Aksi Jantung ........................................................................20 C. Elektrokardiografi......................................................................................21 1. Prinsip dasar pengukuran Elektrokardiografi ......................................23 2. Sensor EKG .........................................................................................26 3. Karakteristik EKG ...............................................................................27 4. Gelombang EKG .................................................................................28 D. Kartu Suara (Sound Card) .........................................................................33 E. Potensiometer ............................................................................................38 F. MATLAB (Matrik Laboratory).................................................................39 III. METODE PENELITIAN A. Waktu dan Tempat Penelitian ....................................................................42 B. Alat dan Bahan .......................................................................................... 42 C. Prosedur Penelitian .....................................................................................42 1. Diagram Alir ........................................................................................42 2. Prosedur Penelitian ...............................................................................44 IV. HASIL DAN PEMBAHASAN A. B. C. D. E. F. G. Sampel Sinyal Elektrokardiografi (EKG) ...............................................48 Kalibrasi Sinyal Sinus.............................................................................58 Konversi Data .txt ke .wav......................................................................60 Pengujian Sampel Data Digital .wav menjadi Analog Suara .................63 Data Uji Penurunan Tegangan Keluaran ................................................66 Hasil Pengujian dan Analisis Kualitatif .................................................69 Hasil Perbandingan Data Digital dan Analog .........................................72 V. KESIMPULAN DAN SARAN A. Kesimpulan .............................................................................................79 B. Saran........................................................................................................80 DAFTAR PUSTAKA LAMPIRAN xiv DAFTAR GAMBAR Gambar Halaman 2.1. Potensial membran negatif (polarisasi) .................................................. 9 2.2. Depolarisasi dan Potensial aksi membran ............................................10 2.3. Repolarisasi sel .....................................................................................11 2.4. Perambatan potensial aksi jantung........................................................12 2.5. Distribusi ekipotensial dada ketika ventrikel terdepolarisasi separoh ..13 2.6. Pengembangan konsep vektor lead a) sifat linieritas, potensial di titik Pberbanding lurus dengan dipole tiap sumbu, b) prinsip superposisi, potensial di titik P merupakan penjumlahan dipole tiap sumbu, c) aljabar vektor lead, potensial di titik P merupakan perkalian skalar sumber dipole dan vektor lead ...................................14 2.7. Menentukan tegangan antara dua titik di dalam atau di permukaan konduktorvolume bipolar lead, a) tegangan bipolar lead Vij b) superposisi dipole satuan c) vektor aljabar bipolar lead.......................16 2.8. Sinus node, dan sistem Purkinje jantung ..............................................18 2.9. Debit ritmis dari sinus nodal serat ........................................................19 2.10. Durasi periode refrakter......................................................................21 2.11. Paramaeter isyarat pada EKG .............................................................22 2.12. Lead standar bipolar ...........................................................................24 2.13. Lead ekstremitas unipolar ditingkatkan..............................................25 xv 2.14. Lead unipolar dada .............................................................................26 2.15. (a) bagian-bagian Elektroda. (b) Elektroda ........................................27 2.16. Gelombang Q......................................................................................30 2.17. Gelombang R ......................................................................................30 2.18. Gelombang S ......................................................................................31 2.19. Morfologi gelombang kompleks QRS................................................31 2.20.Gelombang T .......................................................................................32 2.21. Sound card ..........................................................................................33 2.22. Bagian-bagian Sound Card.................................................................36 2.23. Sirkuit mixer chip ...............................................................................37 2.24. (a) Rangkaian potensiometer (b) simbol rangkaian potensiometer ....39 2.25. Proses pengambilan data menggunakan sound card ..........................41 3.1. Diagram alir penelitian .........................................................................43 3.2. Tampilan beranda Physionet.org ..........................................................44 3.3. Langkah ke Physiobank ATM ..............................................................44 3.4. Tampilan Physiobank ATM .................................................................45 3.5. Perancangan Simulator EKG................................................................46 3.6. Rancangan rangkaian Simulator EKG..................................................47 4.1. Perancangan Simulator menggunakan Sound Card .............................48 4.2. Tampilan awal PhysioNet.....................................................................49 4.3. Tampilan menuju PhysioBank..............................................................49 4.4. Tampilan PhysioBankATM..................................................................50 4.5. Arsip Database......................................................................................51 4.6. MIT-BIH Arrhythmia ...........................................................................52 xvi 4.7.MIT-BIH Normal Sinus Rhytm.............................................................52 4.8.MIT-BH ST Change ..............................................................................52 4.9.MIT-BH Supraventrikular .....................................................................53 4.10.MIT-BIH Long Term...........................................................................53 4.11. Macam-macam rekaman (records) .....................................................54 4.12. Pilihan lead sinyal EKG .....................................................................54 4.13. Bagian-bagian pada Toolbox..............................................................55 4.14. Describe Record..................................................................................56 4.15. Sample as text .....................................................................................56 4.16. Simpan data sampel sinyal EKG ........................................................57 4.17. Plot waveform sampel mitdb record:100 ECG-1 ...............................57 4.18. Sinyal Sinus pada Matlab ...................................................................58 4.19. Keluaran sinyal sinus pada osiloskop .................................................59 4.20. Pengkonversian sukses .......................................................................62 4.21. Data hasil konversi .............................................................................63 4.22. Line ou/in Sound Card .......................................................................65 4.23. Kabel Audio Mono .............................................................................66 4.24. Potensiometer .....................................................................................67 4.25. Sambungan keseluruhan rangkaian ....................................................67 4.26. Rancangan rangkaian Simulator EKG (1) Jack audio, (2) sound card, (3) potensiometer, (4) osiloskop..............................................68 4.27. Sampel Supraventrikular dengan tegangan 5 mV ..............................69 4.28. Sampel nsrdb fs 8000 Hz (a) sampel analog, (b) sampel digital ........74 4.29. Sampel nsrdb fs 1000 Hz (a) sampel analog, (b) sampel digital ........74 xvii 4.30. Sampel ltdb fs 8000 Hz (a) sampel analog, (b) sampel digital ...........75 4.31. Sampel ltdb fs 1000 Hz (a) sampel analog, (b) sampel digital ...........75 4.32. Sampel mitdb fs 8000 Hz (a) sampel analog, (b) sampel digital........76 4.33. Sampel svdb fs 8000 Hz (a) sampel analog, (b) sampel digital..........77 4.34. Sampel stdb fs 8000 Hz (a) sampel analog, (b) sampel digital ..........77 xviii DAFTAR TABEL Tabel Halaman 1. Data penurunan tegangan sampel analog ..................................................68 2. Hasil Penelitian dan analisis kualitatif.......................................................70 xix 1 I. PENDAHULUAN A. Latar Belakang Jantung adalah organ penting dalam tubuh manusia yang difungsikan untuk memompa darah ke seluruh tubuh. Pada proses pemompaan darah, otot jantung akan berkontraksi akibat mendapatkan rangsangan elektris atau impuls. Impuls ini berawal dari potensial aksi yang terjadi pada sel-sel otot jantung. Impuls akan menyebar pada jantung hingga jaringan di sekeliling jantung. Sebagian kecil dari impuls ini akan menyebar ke seluruh permukaan tubuh. Bila titik-titik tertentu pada kulit ditempatkan elektroda, maka potensial listrik yang disebabkan oleh adanya arus dari impuls tersebut akan dapat direkam. Rekaman ini dikenal dengan istilah Elektrokardiogram. Elektrokardiografi (EKG) merupakan sebuah instrumen medis yang digunakan sebagai alat untuk memperoleh informasi seputar kerja jantung manusia. Mekanisme kerja dari alat ini adalah mengukur potensial listrik sebagai fungsi waktu yang dihasilkan oleh jantung. Perbedaan potensial tersebut kemudian divisualisasikan sebagai sinyal pada layar monitor atau pada kertas perekam (Busono dkk, 2004). Sinyal elektrik jantung yang dihasilkan pada EKG umumnya merupakan sinyal domain waktu dalam kertas rekaman yang disebut elektrokardiogram. 2 Kegunaan EKG ini sangat bermanfaat untuk mengetahui kondisi jantung pasien, sehingga menjadikan alat ini sebagai peralatan standar bagi semua rumah sakit (Busono dkk, 2004). Alat ini telah diaplikasikan untuk berbagai keperluan yakni klinik, monitoring, dan pendeteksi gelombang QRS (Tompkins, 1993). Kondisi jantung manusia tidak semuanya sehat. Ada beberapa jantung yang mengalami kondisi berbeda misalnya infark miokard dan iskemi miokard (jantung koronel), gangguan irama jantung atau arrhythmias, gangguan jantung karena penyakit sistemik dan gangguan karena pengaruh obat-obatan yang berpengaruh terhadap fungsi jantung. Sesuai fungsinya, monitor EKG dapat memperlihatkan adanya kelainan-kelainan tersebut (Dubowik, 1999). Namun dalam pengoperasiannya tentu akan ada faktor-faktor yang mempengaruhi hasil kerja monitor EKG ini. Faktor-faktor yang mempengaruhi tersebut diantaranya seperti akurasi alat. Jika akurasi alat diragukan maka hasil rekam EKG yang keluar juga akan diragukan sehingga interpretasi terhadap EKG tersebut menjadi kurang akurat. Akurasi hasil pengukuran yang diragukan tentunya akan menimbulkan masalah dikemudian hari. Pada era sekarang ini terdapat sebuah cara yang mampu menguji akurasi monitor EKG sebelum difungsikan dalam bidang medis. Alat uji ini disebut dengan simulator EKG. Simulator EKG merupakan rancangan simulasi yang bisa digunakan untuk keperluan kalibrasi serta uji standar monitor EKG. Dalam penelitian Michalek (2006) mengatakan simulator EKG bisa didesain untuk memproduksi sinyal gelombang EKG yang tepat dan sama seperti 3 gelombang sinyal yang dimiliki impuls jantung manusia. Keluaran dari simulator akan tampak pada LCD dengan akurasi yang hampir sama seperti pengujian alat dengan menggunakan objek manusia secara langsung. Dewasa ini tersedia sinyal referensi EKG berupa sinyal digital dengan berbagai macam format file. Untuk menguji sebuah EKG monitor diperlukan keluaran sinyal berupa sinyal analog. Simulator EKG sebagai perantara perubahan sinyal digital EKG tersebut menjadi sinyal analog EKG. Dalam perancangannya, sinyal digital EKG akan dikonversi menjadi sinyal analog EKG dengan memanfaatkan rangkaian D/A konverter (Lucena, 2006). Penelitian ini bertujuan untuk merancang simulator EKG dengan memanfaatkan perangkat komputer untuk mengirim sinyal digital EKG melalui pemanfaatan sistem kartu suara atau sound card. Sound card dikenal fungsinya sebagai perangkat keras di setiap perangkat komputer guna mengeluarkan suara atau merekam suara. Pemanfaatan fungsi soundcard yang mampu mengkonversi sinyal digital berupa data waveform (.wav) atau MPEG-1 Audio Layers 3 (mp3) ini dimanfaatkan untuk mengeluarkan sinyal digital EKG berupa data .wav menjadi sinyal analog. Hasil keluaran dari perangkat ini akan ditampilkan di osiloskop. Manfaat simulator EKG hasil penelitian ini adalah dapat menyediakan alternatif simulator EKG yang dijual di pasar peralatan medis karena dapat direalisasikan hanya berbentuk laptop sehingga harganya lebih murah. Selain itu juga bermanfaat untuk penelitian instrumentasi medis ketika akan menguji sebuah rangkaian perekam sinyal EKG. 4 B. Rumusan Masalah Rumusan masalah pada penelitian ini adalah sebagai berikut: 1. Bagaimana mengubah data sinyal EKG format .mat menjadi data format .wav agar dapat dikeluarkan melalui sound card komputer. 2. Bagaimana membuat simulator EKG dengan memanfaatkan fungsi sound card pada perangkat komputer. C. Tujuan Penelitian Tujuan dari penelitian ini adalah sebagai berikut: 1. Mendesain dan membuat simulator EKG sederhana berbasis perangkat komputer. 2. Memanfaatkan perangkat keras sound card yang disediakan setiap perangkat komputer sebagai media konversi sinyal digital EKG menjadi sinyal analog EKG. D. Manfaat Penelitian Manfaat dari penelitian ini adalah dihasilkannya suatu prototipe EKG simulator yang dapat digunakan (Electrocardiographs untuk Monitors). mengkalibrasi Simulator alat EKG rekam jantung dirancang dengan memanfaatkan sound card yang tersedia di semua perangkat komputer untuk penggunaan yang lebih praktis dan ekonomis. E. Batasan Masalah Untuk menghindari bahasan masalah menjadi lebih jauh, penelitian ini dibatasi pada: 5 1. Perancangan alat ini hanya digunakan untuk menguji kebenaran sinyal analog EKG terhadap sinyal digital EKG yang sudah melalui tahap pengkonversian dengan memanfaatkan sound card pada perangkat komputer, 2. Simulasi yang dilakukan hanya mencakup lima sinyal EKG dengan diagnosa yang berbeda-beda, yaitu MIT-BIH Arrhythmia, MIT-BIH Normal Sine Rhytm, MIT-BIH Supraventrikular, MIT-BIH ST Change, MIT-BIH Long Term. 6 II. TINJAUAN PUSTAKA A. Penelitian Terkait Lucena (2006) merancang simulator EKG yang difungsikan untuk tes/uji, demonstrasi dan perbaikan alat EKG monitor. Perancangan ini membangun sembilan ritme penting EKG dan kalibrasi gelombang kotak.Teknik ini digunakan untuk menghasilkan sinyal menggunakan mikrokontroler dengan nilai program memori yang relatif kecil, hal ini menjadi kelebihan dari alat yang dirancang.Kualitas sinyal simulator EKG yang tepat bisa digunakan untuk pemeliharaan kualitas EKG.Kesederhanaan alat ini menjadisebuah keuntungan dibandingkan dengan EKG simulator yang sudah ada sebelumnya. Pada penelitian Husain (2002) berjudul An Electrocardiogram Simulator and Amplifier, mengatakan EKG sangat penting sebagai alat diagnosa medis untuk mengukur beda potensial pada permukaan tubuh secara akurat. Pada pengukuran beda potensial tubuh ditemukan tegangan dan noisemeski nilainya sangat kecil. Dengan menggunakan aktif ground, high pass filter, low pass filter, dan penguat beda tegangan dua tingkat, sinyal tetap bisa dideteksi di tengah-tengah keadaan noisetersebut. Elemen paling penting dari rangkaian untuk bisa mendapatkan sinyal EKG yang baik adalah dengan aktif ground. Aktif groundmampu menghilangkan pemindahan arus listrik pada tubuh. Sementara itu, high pass filter 7 digunakan untuk memfilter keadaan tegangan yang dibentuk oleh elektroda. Beda amplifier dengan impedansi input besar dan common mode yang besar. Mode rejecton ratio digunakan untuk menjelaskan perbedaan sinyal dari tegangan common mode yang ada. Penelitian berjudul Development of an Analog ECG Simulator Using Standalone Embedded System oleh Das, dkk (2012) merupakan contoh lain dalam penelitian terkait simulator EKG. Pada penelitian tersebut simulator memiliki sistem kerja perangkat lunak yakni data ptb-db array dalam format .mat digunakan sebagai input data untuk perangkat lunak program. Selanjutnya, data array diperkuat dan kuantisasi beresolusi 8-bit. Setelah itu data array ditransmisikan pada tingkat baud konstan dengan port serial dari komputer pribadi menggunakan RS-232 protokol. Berikutnya perancangan perangkat keras dengan sistem tertanam mandiri yang terdiri dari empat komponen yaitu, MAX232 converter, Atmel 89C2051 Unit mikrokontroler (MCU), digital ke analog converter (DAC 0808) dan konverter arus ke tegangan (menggunakan LM324). Sistem mandiri ini mengubah 8-bit data serial menjadi data paralel 8-bit, maka menjadi sinyal analog dalam kisaran dari 05 volt. Dari penelitian tersebut dapat diambil kesimpulan salah satunya efek noise yang tidak dihapus dari sinyal ECG simulasi menyebabkan perlunya dilakukan denoising. Selain itu sistem ini juga mampu menghasilkan jenis lain dari sinyal biomedis seperti EEG dan EMG dengan menggunakan faktor amplifikasi yang tepat untuk database. Penelitian Deshmukh (2014) berjudul Simulation of ECG Signals Using Advanced Virtual Instrumentation system Based on LAB VIEW merupakan penelitian 8 simulator EKG dengan memanfaatkan kehadiran program LabVIEW. Penggunaan sistem instrumentasi virtual berbasis LabView-11 jauh lebih bermanfaat untuk akuisisi dan studi dari berbagai jenis elektrokardiogram virtual. Jadi software membuat sistem yang efisien dan dapat dimanfaatkan sebagai media pembelajaran sinyal ECG di tingkat laboratorium dengan lebih interaktif dan sederhana. Instrumentasi virtual menyediakan fleksibilitas untuk peneliti biomedis. Dapat membuat aplikasi menggunakan bahasa grafis intuitif, mudah untuk menyesuaikan instrumen dan menambahkan fungsi baru dengan memodifikasi kode LabVIEW. Sistem eksperimental EKG menganalisis ini berdasarkan instrumen virtual sangat membantu untuk meningkatkan inisiatif belajar dan meningkatkan pemahaman teoritis pengetahuan. B. Biolistrik Biolistrik merupakan fenomena sel. Sel-sel jaringan tubuh manusia mampu menghasilkan potensial listrik dengan muatan positif pada permukaan luar sel dan muatan negatif pada permukaan dalam bidang sel (Carr, 2001). Di seluruh permukaan atau membran neuron dalam sel terdapat beda potensial (tegangan) yang disebabkan adanya ion negatif yang lebih di bagian dalam membran daripada di luar. Pada kondisi ini, neuron dikatakan terpolarisasi. Bagian dalam sel biasanya mempunyai tegangan 60-90 mV lebih negatif daripada di bagian luar sel. Beda potensial ini disebut potensial istirahat neuron. 9 1. Kelistrikan sel Sel mempunyai lapisan yang disebut membran sel, di dalam sel ini terdapat ion Na, K, Cl dan protein (A-). Sel mempunyai kemampuan memindahkan ion dari satu sisi ke sisi yang lain. Kemampuan sel ini disebut akifitas listrikan sel. Dalam keadaan biasa konsentrasi ion Na+ lebih besar di luar sel dari pada di dalam sel. Potensial di dalam sel relatif bernilai negatif dibandingkan potensial di luar sel, dalam keadaan ini disebut potensial membran negatif. Jika konsentrasi ion Na+terdapat banyak di dalam sel daripada di luar sel, perbedaan potensial listrik di dalam sel lebih positif daripada di luar sel, keadaan ini disebut potensial membran positif. Membran otot pada keadaan istirahat yakni tidak adanya proses konduksi impuls listrik, konsentrasi Na+lebih banyak di luar sel dari pada di dalam sel. Apabila perbedaan potensial diukur dengan galvanometer akan mencapai -90 mV, membran sel ini disebut dalam keadaan polarisasi seperti terlihat pada gambar 2.1. Gambar 2.1. Potensial membran negatif (polarisasi) (Gabriel, 1996). 10 Jika terjadi suatu rasangan terhadap membran, maka beberapa ion Na+ akan masuk dari luar sel ke dalam sel. Di dalam sel akan menjadi kurang negatif dari pada di luar sel dan potensial membran akan meningkat. Keadaan ini disebut dengan depolarisasi. Rangsangan yang cukup kuat mencapai titik tertentu sehingga dapat menimbulkan depolarisasi membran pada titik tertentu dinamakan nilai ambang. Pada keadaan ini potensial membran akan naik dengan cepat mencapai overshoot +40 mV. Terjadinya depolarisai membran secara tiba-tiba disebut dengan potensial aksi, yang berlangsung kurang dari 1 ms. Potensial aksi ditunjukkan pada gambar 2.2. Potensial Aksi Gambar 2.2. Depolarisasi dan Potensial aksi membran (Gabriel, 1996). Potensial aksi yang berarti bahwa begitu nilai ambang tercapai, peningkatan waktu dan amplitudo dari potensial aksi akan selalu sama. Setelah potensial aksi mencapai puncak mekanisme pengaturan dalam sel membran dengan cepat mengembalikan ion Na+ keluar sel sehingga mencapai potensial membran istirahat (-90mV). Proses ini disebut repolarisasi seperti gambar 2.3. 11 Gambar 2.3. Repolarisasi sel (Gabriel, 1996). 2. Potensial Listrik pada Permukaan Tubuh Aktivitas jantung diketahui dengan mengukur aktivitas elektris atau teganganlistrik pada permukaan tubuh. Karena untuk melihat atau mendeteksi mekanisme kontraksi jantung sebagai wujud kerja jantung secara langsung belum ditemukan metodenya oleh para ahli. Secara fisika tegangan listrik (beda potensial) terjadi disebabkan oleh adanya sumber pembangkit listrik. Oleh karena itu jantung dapat dikatakan sebagai sumber pembangkit listrik yang tertutup di dalam dada dan perut, sehingga kita sulit mengukur kelistrikan jantung secara langsung. Informasi untuk diagnostik jantung dapat diperoleh dengan mengukur potensial listrik yang dihasilkan jantung di berbagai tempat pada permukaan tubuh. Rekaman potensial listrik jantung pada permukaan disebut elektrokardiogram (EKG) (Surtomo, 2012). Hubungan antara aksi pompa jantung dan potensial listrik pada kulit dapat dipahami dengan meninjau perambatan potensial aksi di dalam dinding jantung seperti pada gambar 2.4. 12 Gambar 2.4. Perambatan potensial aksi jantung (Cameron, 1978). Aliran arus listrik (ion) di dalam perut/dada menimbulkan potensial listrik pada tubuh yang dianggap sebagai medium resistor, seperti pada gambar 2.4. Distribusi potensial listrik seluruh jantung ketika ventrikel terdepolarisasi separuh ditunjukkan dengan garis-garis ekipotensial (garis putus-putus) pada gambar 2.5. Tegangan listrik diukur pada permukaan tubuh yang nilainya tergantung pada letak elektrode. Elektroda pada titik A, B dan C menunjukkan potensial sesaat (saat itu). Garis-garis potensial pada gambar 2.5 sama seperti garis potensial yang diperoleh dari dipole listrik, dimana garis-garis potensial pada siklus jantung juga dapat direpresentasikan dengan dipole-dipole listrik. Namun dipole listrik pada saat yang berbeda selama siklus jantung akan berubah ukuran dan arahnya. Model dipole listrik jantung ini pertama kali diusulkan oleh A.C Waller pada tahun 1889. 13 Gambar 2.5. Distribusi ekipotensial dada ketika ventrikel terdepolarisasi separoh (Cameron, 1978). Potensial listrik yang diukur pada permukaan kulit merupakan proyeksi sesaat vector dipole listrik dalam arah tertentu. Begitu vektor dipole listrik tersebut berubah terhadap waktu maka potensial proyeksi juga berubah (Surtono, 2012). 3. Hubungan Potensial Elektris Permukaan dengan Vektor Lead dan Dipole Vektor lead menyatakan besar dan arah dipole listrik yang diperoleh dari tegangan (potensial) aksi / aktivitas jantung. 14 Gambar 2.6. Pengembangan konsep vektor lead a) sifat linieritas, potensial di titik P berbanding lurus dengan dipole tiap sumbu, b) prinsip superposisi, potensial di titik P merupakan penjumlahan dipole tiap sumbu, c)aljabar vektor lead, potensial di titik P merupakan perkalian skalar sumber dipole dan vektor lead (Malmivou, 1995). Untuk mengetahui hubungan potensial listrik pada permukaan tubuh dengan vector lead dan dipole listrik, kita telaah potensial listrik pada titik P di permukaan konduktor volume yang disebabkan oleh dipole satuan (unit dipole) I (suatu vector satuan pada arah sumbu x) pada lokasi yang tetap Q, seperti pada gambar 2.6. Diasumsikan pada titik P, potensial p yang disebabkan oleh dipole satuan adalah cx. Dengan asumsi bersifat linier, maka potensial p oleh sumber dipole pxi magnitude sembarang adalah = (2.1) 15 dimana : p= potensial listrik di titik P. cx = potensial dipole listrik satuan pada sumbu x. p x= sumber dipole listrik pada sumbu x. Persamaan ini juga berlaku untuk dipole-dipole pada arah y dan z. Asumsi sifat linier ini membuat berlakunya prinsip superposisi, yaitu sembarang dipole ̅ dapat diurai ke dalam tiga komponen saling tegak lurus ̅, ,̅ sehingga potensial elektris pada titik P oleh dipole ̅ yang terletak di titik Q adalah = + + (2.2) Koefisien cx, cy, cz diperoleh dengan memasangkan dipole-dipole satuan terkait. Pada titik Q sepanjang sumbu x, y dan z dan dengan mengukur potensial terkait. Persamaan 2.1 dan 2.2 merupakan hubungan linier, yaitu jika sumber dikuatkan sebesar c maka tegangan yang dihasilkan berlipat sebesar c. Persamaan 2.2 dapat disederhanakan jika koefisien Cx, Cy, Cz diartikan sebagai komponen vektor ̅ . Vektor ini disebut aljabar vektor lead, merupakan perkalian skalar sumber dipole dan vektor lead sehingga persamaan 2.2 menjadi, dimana : c = vektor lead EKG. p = dipole listrik sembarang. = ̅ ∙ = | ̅| ∙ | ̅| cos (2.3) 16 Vektor lead adalah koefisien transfer tiga dimensi yang melukiskan bagaimana sumber dipoleelektris pada titik tetap Q di dalam konduktor volume mempengaruhi potensial elektris pada titik di dalam atau di permukaan konduktor volume relatif terhadap potensial pada titik acuan (reference). Jadi nilai vektor lead bergantung pada letak Q dipole listrik ̅ , letak titik medan P, bentuk konduktor volume, distribusi resistivitas konduktor volume. Konsep vektor lead di atas merupakan tinjauan tegangan lead yang diukur relatif terhadap acuan yang jauh (remote reference) dan cocok untuk kasus unipolar lead. Untuk kasus bipolar lead yang dibentuk oleh pasangan lead/elektrode (tidak ada ektrode yang jauh), hubungan vektor lead seperti gambar 2.7. Gambar 2.7. Menentukan tegangan antara dua titik di dalam atau di permukaan konduktor volume bipolar lead, a) tegangan bipolar lead Vij b) superposisi dipole satuan c) vektor aljabar bipolar lead (Malmivou, 1995). 17 Untuk setiap lokasi Po .... Pn dari P, yang berada di dalam atau di permukaan konduktor volume, dapat ditentukan vektor lead, ̅ . . . ̅ untuk dipole ̅ pada lokasi yang tetap, sehingga sesuai dengan persamaan 2.3 diperoleh : = ̅ ∙ ̅ = | | ∙ | ̅ | cos (2.4) keterangan : = potensial listrik di titik i ̅ = vektor lead EKG ke-i p = dipole listrik Maka beda potensial antara sembarang dua titik Pi dan Pj pada permukaan konduktor volume adalah = − = ∙ ̅= ∙ | ̅ | ∙ cos (2.5) dimana : = beda potensial listrik antara titik i dan titik j = vektor lead EKG resultan dari vektor lead ci dan cj P = dipole listrik Jadi berdasarkan persamaan 2.5 dapat dikatakan bahwa tegangan elektris pada permukaan tubuh merupakan: 1. Beda potensial istrik antara titik-titik dimana elektroda dipasang. 2. Proyeksi magnitude dipole listrik ̅ pada vektor lead . 18 4. Aktifitas Kelistrikan Otot Jantung Jantung adalah organ penting dalam tubuh manusia yang difungsikan untuk memompa darah keseluruh tubuh. Proses pemompaan darah terjadi karena otot jantung berkontraksi akibat mendapat rangsangan elektris atau impuls. Rangsangan elektris berawal dari potensial aksi yang terjadi pada sel-sel otot jantung (Bronzino, 1995). Sistem ritmis dan konduktif jantung rentan terhadap kerusakan akibat penyakit jantung, terutama karena iskemia jaringan jantung akibat aliran darah koroner. Hasilnya jantung memiliki ritme yang abnormal dan efektivitas pemompaan jantung bermasalah. Gambar 2.8. Sinus node, dan sistem Purkinje jantung (Guyton, 2006). Gambar 2.8 menunjukkan sistem yang mengontrol kontraksi jantung. Terdapat node sinus (SA node) yang menghasilkan impuls ritmis normal yang mengalir ke atrioventrikular (A-V) node. A-V Simpul menunda impuls dari atrium sebelum melewati ventrikel. A-V bundle yang akan melakukan impuls dari atrium ke ventrikel, dari cabang bundle kiri ke kanan, hingga ke seluruh bagian ventrikel. 19 5. Sinus Node Sinus nodal (sinoatrial node) terhubung langsung dengan otot atrium, sehingga setiap potensial aksi yang dimulai di sinus node akan menyebar ke dinding otot atrium. Sinus node biasanya mengontrol laju detak seluruh jantung. Gambar 2.9 menunjukkan potensial aksi direkam dari dalam sinus nodal selama tiga detak jantung dan dengan perbandingan otot ventrikel potensial aksi serat tunggal. Gambar 2.9. Debit ritmis dari sinus nodal serat(Guyton, 2006). Resting membrane potential dari sinus nodal memiliki nilai negatif sekitar -55 hingga -60 mV. Sementara serat otot ventrikel berada pada kisaran -85 sampai -90 mV. Penyebab nilai negatif yang rendah ini karena membran sel dari serat sinus secara alami menuju natrium dan kasium ion. Otot jantung memiliki tiga jenis saluran ion membran yang memiliki peran penting dalam perubahan tegangan potensial aksi yakni, (1) Fast sodium channel (2) Slow sodium-calcium channel 20 (3) Pottasium channel. Fast sodium channel selama beberapa detik bertanggung jawab atas lonjakan dari potensial aksi pada otot ventrikel. Kemudian plateau dari potensial aksi ventrikel terjadi akibat slow sodium-calcium channel, yang berlangsung selama 0,3 detik. Akhirnya pottasium channel memungkinkan terjadinya difusi sejumlah ion. Ketika potensial mencapai tegangan ambang sekitar 40 mV, soidum-calcium channel akan aktif sehinggal menyebabkan potensial aksi (Guyton, 2006). 6. Potensial Aksi Jantung Potensial aksi pada otot jantung disebabkan terbukanya dua channel yakni the same fast channel dan slow calcium channel. Segera setelah timbulnya potensial aksi, premeabilitas membran otot jantung untuk ion kalium menurun. Ketika sodium-calcium channel terjadi ada akir 0,2 hingga 0,3 detik dan fluk ion berhenti, premeabilitas membran untuk ion kalium uga menngkat pesat. Cepat hilangnya kalium dari serat segera mengembalikan potensial membran ke tingkat restingnya, dengan begini potensial aksi berakhir. Kecepatan dari sinyal konduksi pada jantung sekitar 0,3 sampai 0,5 m/sec. Periode refrakter normal ventrikel adalah 0,25-0,30 detik. Periode refrakter otot atrium jauh lebih pendek dari itu untuk ventrikel, sekitar 0,15 detik untuk atrium dibandinan dengan 0,25-0,30 detik untuk ventrikel. Kontraksi otot jantung terjadi beberapa milidetik setelah potensial aksi dimulai dan terus berkontraksi sampai beberapa milidetik sampai potensial aksi berakhir. Oleh karena itu, durasi kontraksi otot jantung terutama fungsi dari durasi ponsial 21 aksi, termasuk plateau sekitar 0,2 detik pada otot atrium dan 0,3 detik pada otot ventrikel. Durasi dari periode refrakter ditunjukkan pada gambar 2.10. Gambar 2.10. Durasi periode refrakter (Guyton, 2006). C. Elektrokardiografi Untuk mengetahui aktivitaselektris otot jantung diperlukan pencatatan atau perekaman pada permukaan tubuh. Elektrokardiogram adalah grafik atau gambaran rekaman aktivitas elektris otot jantung. Rekaman ini dapat dilihat pada alat yang disebut elektrokardiografi. Dengan meletakkan elektroda dipermukaan tubuh, pada tempat yang sesuai, tegangan listrik yang dihasilkan dapat direkam. Grafik rekaman tegangan listrik yang dihasikan otot-otot jantung selama siklus jantung inilah yang disebut elektrokardiogram. Elektrokardiogram diperoleh sesuai dengan depolarisasi dan repolarisasi serambi dan bilik (Feldman, 1999). Untuk memperoleh elektrokardiogram beberapa elektroda dipasang pada permukaan tubuh. 22 Gambar 2.11. Parameter pada isyarat EKG (Feldman, 1999). Elektrode berfungsi sebagai sensor yang mengubah besaran kimia dari energi ionis menjadi besaran elektris. Perekaman ini akan menampilkan keadaan depolarisasi dan repolarisasi otot jantung, berupa gelombang P yang disebabkan oleh depolarisasi serambi, gelombang QRS terjadi disebabkan karena repolarisasi bilik dan gelombang T juga disebabkan oleh repolarisasi bilik, seperti diperlihatkan pada gambar 2.11. Dari grafik ini dokter akan mendapatkan informasi tentang aktivitas elektris otot jantung untuk membantu diagnosis tentang keadaan jantung. Standar klinis elektrokardiogram terdiri dari tiga yaitu menggunakan 12 lead, vectorcardiogram dan monitoring EKG. Penggunaan 12 lead (sandapan) dapat digunakan untuk menganalisa kesehatan jantung pasien. Vectorcardiogram merupakan salah satu teknik pengambilan sinyal jantung menggunakan konfigurasi segitiga Einthoven yang hanya menggunakan 3 lead. Monitoring EKG digunakan untuk memantau kondisi kesehatan jantung pasien dalam jangka waktu 23 yang panjang, metoda ini hanya menggunakan 1 atau2 elektroda yang ditempelkan pada titik tertentu. 1. Prinsip Dasar Pengukuran Elektrokardiografi Untuk mendapatkan sinyal jantung manusia dilakukan dengan cara menempelkan elektroda ditubuh manusia. Istilah “lead” didefinisikan sebagai susunan spasial sepasang elektroda atau suatu pasangan elektroda yang merupakan kombinasi beberapa elektroda melalui jaringan resistif (resistive network). Satu lead ditandai “+” dan yang lain ditandai “-“. Penempatan elektroda menentukan arah rekaman lead yang disebut sumbu lead atau sudut lead. Sumbu ditentukan oleh arah dari elektroda negatif ke elektroda positif. Alat EKG menghitung besarnya beda potensial listrik antara elektroda positif dan elektroda negatif (Bao, 2003). Dalam lead 12 lead dikelompokkan menjadi 3, yaitu sebagai berikut : a) Lead Standar Bipolar atau dikenal dengan lead Einthoven, yaitu lead I, lead II , dan lead III. b) Lead standar unipolar (Augmented Extremity Leads), yaitu lead aVR,aVL dan aVF. c) Lead Precordial(Lead Dada) atau lead Wilson, yaitu V1,V2,V3,V4,V5 dan V6. a. Lead Standar Bipolar Lead standar bipolar merekam perbedaan potensial dari 2 elektrode. Lead ini terlihat seperti gambar 2.12. 24 Gambar 2.12. Lead standar bipolar (Widodo,2000) Lead I = merekam beda potensial antara tangan kanan (RA) dengan tangan kiri (LA). Tangan kanan pada potensial (-) dan tangan kiri pada potensial (+). Lead II : merekam beda potensial antara tangan kanan (RA) dengan kaki kiri (LF). Tangan kanan pada potensial (-) dan kaki kiri pada potensial (+). Lead III : merekam beda potensial antara tangan kiri (LA) dengan kaki kiri (LF). Tangan kiri pada potensial (-) dan kaki kiri pada potensial (+). b. Lead Standar Unipolar (Augmented Extremity Leads) Lead ini mengukur tegangan suatu titik ukur terhadap tegangan rerata dua titik lainnya, menggabungkan kombinasi dua polar sehingga menghasilkan aVR, aVL dan aVF seperti gambar 2.13. 25 Gambar 2.13. Lead Ekstremitas unipolar ditingkatkan (Widodo,2000) Lead aVL dihasilkan dari perbedaan antara muatan LA yang dibuat bermuatan positif dengan RA dan LF yang dibuat indifferent sehingga listrik bergerak ke arah -30 derajat (sudutnya ke arah lateral kiri). Dengan demikian, bagian lateral jantung dapat dilihat juga oleh Lead aVL. LeadaVF dihasilkan dari perbedaan antara muatan LF yang dibuat bermuatan positif dengan RA dan LA dibuat indifferent sehingga listrik bergerak ke arah positif 90 derajat (tepat ke arah inferior). Dengan demikian, bagian inferior jantung selain lead II dan III dapat juga dilihat oleh Lead aVF. Lead aVR dihasilkan dari perbedaan antara muatan RA yang dibuat bermuatan positif dengan LA dan LF dibuat indifferent sehingga listrik bergerak ke arah berlawanan dengan arah listrik jantung -150 derajat (ke arah ekstrem). Lead - lead ini belum cukup sempurna untuk mengamati adanya kelainan di seluruh permukaan jantung. Oleh karena itu, sudut pandang akan dilengkapi dengan lead prekordial (lead dada). 26 c. Lead Precordial ( Lead Dada ) Lead prekordial V1, V2, V3, V4, V5, dan V6 ditempatkan secara langsung di dada. Karena terletak dekat jantung, 6 lead itu tidak memerlukan augmentasi. Terminal sentral Wilson digunakan untuk elektrode negatif, dan lead-lead tersebut dianggap unipolar. Lead prekordial memandang aktivitas jantung di bidang horizontal. Sumbu kelistrikan jantung di bidang horizontal disebut sebagai sumbu Z. Penempatan prekordial lead ditunjukkan pada gambar 2.14. Gambar 2.14. Lead unipolar dada Lead V1, V2, dan V3 disebut sebagai lead prekordial kanan sedangkan V4, V5, dan V6 disebut sebagai lead prekordial kiri. 2. Sensor EKG Sensor yang digunakan untuk mendeteksi denyut jantung adalah sensor elektroda seperti tampak pada gambar 2.15. Elektroda adalah sensor/tranduser yang mengubah energi ionis dari sinyal jantung menjadi enegi elektris untuk akuisisi dan pengolahan datanya (Aston, 1991). Elektroda ini ditempelkan pada permukaan kulit pasien pada lokasi yang sudah ditentukan yang disebut sandapan 27 atau leads. Elektroda yang dipakai adalah jenis tempel dengan bahan dari perak klorida (AgCl). (a) (b) Gambar 2.15. (a) bagian-bagian Elektroda. (b) Elektroda (Komang, 2009). 3. Karakteristik EKG Komite elektrokardiografi perkumpulan jantung Amerika (Committee on Electrocardiography of American Heart Association, AHA) dan banyak organisasi lainnya telah membuat rekomendasi untuk standarisasi EKG. Beberapa rekomendasi untuk desain instrumentasi EKG antara lain adalah: 1) Instrumen mempunyai kemampuan mendeteksi sinyal lemah dalam rentang 0,05 – 10 mV, sedangkan sinyal EKG normal adalah 2 mV. 2) Impedans masukan antara elektroda dan latar (ground) hendaknya kurang dari 5 MΩ pada frekuensi 10 Hz, sementara sinyal EKG mempunyai impedans sumber tinggi. 3) Respon frekuensi instrumen hendaknya dalam rentang 0,05 Hz – 150 Hz. 4) Instrumen tidak mengijinkan arus bocor lebih dari 10 μA mengalir melewati pasien. 5) Dibuat isolasi agar pasien terpisah dari rangkaian AC. 6) Instrumen hendaknya memiliki CMRR tinggi pada bagian penguat awal(Bao, 2003). 28 Untuk memenuhi rekomendasi tersebut maka desain sistem instrumen EKG umumnya terdiri atas lima pokok tahapan/bagian, yaitu (Chen, et.all, 2008): 1) Tahap pertama adalah suatu elektrode (transduser), misalnya Ag-AgCl, yang mengubah sinyal EKG ke dalam tegangan elektris (dalam orde mV). 2) Tahap kedua adalah suatu penguat yang berfungsi untuk memperkuat sinyal yang lemah dari elektrode. Biasanya digunakan penguat instrumentasi dan dalam instrumentasi medik disebut penguat bioelektrik (biopotensial). Penguat bioelektrik dibutuhkan memiliki nilai CMRR yang tinggi, minimal 90 dB, agar dapat memperkecil derau tegangan bersama (common mode noise). 3) Tahap ketiga adalah isolasi, yang berfungsi mengamankan pasien dari bahaya kejutan listrik. 4) Tahap keempat adalah penapis (tapis), berfungsi untuk menapis berbagai derau yang mengganggu sinyal EKG murni. Penapis yang digunakan adalah tapis pelewat bidang agar melewatkan sinyal pada jangkauan frekuensi sinyal EKG, 0,05 Hz – 150 Hz. 5) Tahap kelima adalah penampil sinyal EKG, dapat berupa osiloskop atau display monitor lainnya. 4. Gelombang EKG Elektrokardiogram atau sinyal EKG merupakan sinyal AC dengan bandwith antara 0.05 Hz sampai 100 Hz (Najeb, 2005). Parameter isyarat EKG seperti tampak pada gambar 2.11 di bagian sebelumnya, terdiri atas sebuah gelombang P, gelombang QRS dan gelombang T. 29 a. Gelombang P Gelombang P terjadi selama depolarisasi atrium normal ketika vektor listrik utama diarahkan dari nodus SA (sinoatrial) ke nodus AV (atrioventrikular), dan menyebar dari atrium kanan ke atrium kiri. Vektor akan membentuk gelombang P di EKG, yang tegak pada sadapan II, III, dan aVF karena aktivitas kelistrikan umum sedang menuju elektrode positif di sadapan-sadapan itu, dan membalik di sadapan aVR karena vektor ini sedang berlalu dari elektrode positif untuk sadapan itu. Hubungan antara gelombang P dan kompleks QRS membantu membedakan sejumlah aritmia jantung. Bentuk dan durasi gelombang P dapat menandakan pembesaran atrium (Nazmah,2011). b. Interval PR Interval PR diukur dari awal gelombang P ke awal kompleks QRS. Interval PR merupakan gambaran dari gelombang EKG yang menyatakan lamanya waktu perjalanan yang diperlukan sebelum mendepolarisasi otot vertikal. Pada pencatatan EKG, ini berhubungan dengan 3-5 kotak kecil atau 3 mm-5 mm atau 0,12 detik-0,20 detik. Jika interval PR kurang dari 3mm (<3mm) menandakan adanya peningkatan perjalanan atau bypass untuk mendepolarisasi ventrikal. Dan jika Interval PR lebih dari 5mm (>5mm) menandakan adanya AV blok atau Heart blok ( Nazmah,2011). c. Segmen PR Segmen PR mulai dari akhir gelombang P sampai awal komplek QRS atau awal gelombang Q. Segmen PR adalah bagian dari Interval PR yang menyatakan 30 berapa lama waktu yang diperlukan AV Node untuk menunda implus yang diterimanya sebelum mendepolirisasi otot vertikal ( Nazmah,2011). d. Gelombang Q Gelombang Q adalah gelombang pada EKG yang menggambarkan adanya aktivitas listrik jantung yang sedang terjadi di septal ventrikel, dengan depolarisasi otot ventrikel. Gelombang Q merupakan gelombang yang terdefleksi negatif pertama setelah gelombang P. Pada keadaan normal gelombang Q tidak boleh melebihi 1/3 atau 25 % dari gelombang R. Jika gelombang Q melebihinya, maka dinamakan dengan gelombang Q patologis ( Nazmah,2011). Gambar 2.16. Gelombang Q e. Gelombang R Gelombang R adalah gelombang positif pertama setelah gelombang Q. Gelombang R merupakan bagian gambaran gelombang EKG yang terjadi pada saat otot ventrikel mengalami depolarisasi. Pada keadaan normal gelombang EKG memiliki gelombang R kecil di V1 sampai V6( Nazmah,2011). Gambar 2.17. Gelombang R 31 f. Gelombang S Gelombang S adalah gelombang negatif kedua setelah gelombang R. Gelombang S merupakan bagian dari gambaran gelombang EKG yang terjadi pada saat otot ventrikel mengalami depolarisasi ( Nazmah,2011). Gambar 2.18. Gelombang S g. Kompleks QRS Kompleks QRS adalah gambaran EKG yang menyatakan adanya proses depolarisasi di kedua ventrikal sehingga kedua ventrikal bisa berkontraksi. Kompleks QRS diukur mulai dari awal kompleks QRS atau awal gelombang Q sampai dengan akhir kompleks QRS atau gelombang S. Pada prakteknya akan ditemukan morfologi kompleks QRS yang bermacam-macam. Hal yang perlu diperhatikan bahwa semua gelombang menyatakan gambaran depolarisasi dari kedua otot ventrikal yang menyebabkan otot kedua ventrikal berkontraksi (Nazmah,2011). Gambar 2.19. Morfologi gelombang kompleks QRS. 32 h. Segmant ST Segmen ST menghubungkan kompleks QRS dan gelombang T. Memiliki durasi 0,08-0,12 s (80-120 ms). Segmen ini bermula di titik persimpangan antara kompleks QRS dan segmen ST dan berakhir di awal gelombang T. Namun, karena biasanya sulit menentukan dengan pasti di mana segmen ST berakhir dan gelombang T berawal, hubungan antara segmen ST dan gelombang T harus ditentukan bersama ( Nazmah,2011). i. Gelombang T Gelombang T menggambarkan repolarisasi atau kembalinya ventrikel. Interval dari awal kompleks QRS ke puncak gelombang T disebut sebagai periode refraksi absolut. Separuh terakhir gelombang T disebut sebagai periode refraksi relatif. Pada sebagian besar sadapan, gelombang T bernilai positif. Namun, gelombang T negatif biasanya berada di sadapan aVR. Sadapan V1 bisa memiliki gelombang T yang positif, negatif, atau bifase. Gambar 2.20. Gelombang T j. Interval QT Interval QT merupakan gambaran EKG yang menyatakan waktu yang diperlukan untuk mendepolarisasi otot vertrikel sampai otot ventrikal mengalami repolarisasi. 33 Interval QT diukur dari awal kompleks QRS ke akhir gelombang T. Interval QT yang normal biasanya sekitar 0,40 s (Nazmah,2011). Besar amplitudo sinyal EKGtergantung pada pemasangan elektroda dan pada kondisi fisik pasien. Variabel-variabel klinis yang penting dari sinyal EKG antara lain magnitudo, polaritas dan durasi waktu. Variasi dari tanda-tanda tersebut dapat mengindikasikan sebuah penyakit (Aston, 1990). D. Kartu Suara (SoundCard) Kartu suara (sound card) adalah perangkat yang terhubung pada papan induk (motherboard) sebagai alat untuk mengolah dan mengontrol suara, baik suara yang masuk (merekam) dan suara yang keluar melalui speaker (Darma, dkk, 2009). Gambar 2.21. Sound card (Darma, dkk, 2009). Sound card atau sering disebut audio card, juga merupakan periferal yang terhubung ke slot ISA atau PCI pada motherboard yang memungkinkan komputer untuk memasukkan input, memproses dan menghantarkan data berupa suara. Sound Card memiliki empat fungsi utama, yaitu sebagai synthesizer, sebagai MIDI interface, pengonversi data analog ke digital (misalnya merekam suara dari 34 mikrofon) dan pengkonversi data digital ke bentuk analog (misalnya saat memproduksi suara dari spiker). Berikut rincian fungsi utama dari kartu suara yaitu: a. Synthesizer/Sintesis (generasi suara dari sinyal digital), melalui teknologi frequency modulation (FM) atau Sintesa lewat FM adalah cara yang paling efektif untuk menghasilkan suara yang jernih. Suara disimulasikan dengan menggunakan bilangan algoritma untuk menghasilkan sine wave atau gelombang yang lentur sehingga menghasilkan suara yang mirip suara sumber aslinya. b. MIDI (Musical Instrument Digital Interface: standar protokol yang memungkinkan perangkat elektronik berkomunikasi, kontrol dan sinkronisasi satu sama lainnya. Dengan kata lain, MIDI memungkinkan pertukaran data sistem). c. Analog-ke-digital konverter (misalnya mengubah masukan sinyal analog suara dari mikrofon ke mode digital). d. Digital-ke-analog konverter (misalnya reconverts digital ke sinyal output sinyal analog) (Pratama, 2012). Perangkat ini telah banyak disertakan pada motherboard-motherboard sekarang, atau dikenal dengan istilah onboard. Namun, jika motherboard tidak menyertakan fasilitas ini, maka diperlukan sound card eksternal atau memasang perangkat sound card sendiri agar dapat menikmati file sound yang dimiliki (Kurniawan, 2014). 35 Cara kerja sound card sebagai pemutar suara atau play sound yaitu data digital suara berupa waveform .wav atau mp3 dikirim ke sound card. Data digital ini diproses oleh DSP (Digital Signal Processing) yang bekerja dengan DAC (Digital Analog Converter). Mengubah sinyal digital menjadi sinyal analog, yang kemudian sinyal analog diperkuat dan dikeluarkan melalui speaker. Sebaliknya terjadi pada saat merekam suara melalui microphone. Input suara berupa analog diolah oleh DSP (Digital Signal Processing), dalam mode ADC (Analog Digital Converter). Sinyal digital ini simpan dalam format waveformtable atau biasa ditulis .wav dalam disk atau dikompresi menjadi bentuk lain seperti mp3 (Lahawa, 2015). Proses konversi audio ke dalam format digital dipecahkan menjadi serangkaian snapshot, masng-masing adalah potongan informasi yang berlainan dari audio terseut. Snapshot ini, atau disebut juga sample, bisa diputar dan dikonversi kembali dari format digital ke analog sehingga menghasilkan suara. Kecepatan saat sampel diambil disebut dengan sample rate. Semakin tinggi sample rate, semakin tinggi pula kualitas suara yang dihasilkan, namun ukuran file juga semakin besar(Tim Penerbit Andi, 2004). Sound card termasuk aplikasi yang dirancang untuk berjalan di bawah sistem operasi MS-DOS. Kekeliruan bisa terjadi pada sound card numbers. Pengertian yang sering disalah artikan tentang “32 bit sound card” atau “64 bit sound card”. 32 berarti merupakan AWE32, Terratec Maestro 32, dan suara MIDI dapat dimainkan pada satu titik. 64 berarti bahwa suara MIDI dapat dimainkan pada 36 satu titik di Terratec EWS64 (AWE64 bisa bermain 64 suara ketika jumlah daya prosesor PC cukup untuk memainkan setengah dari suara-suara tersebut). Gambar 2.22. Bagian-bagian Sound Card (Engdahl, 2016). Dari gambar 2.17 tunjukkan bagian-bagian yang terdapat di dalam sound card dengan keterangan sebagai berikut : 1) ROM termasuk sampel synthesizer wavetable ditetapkan. 2) RAM adalah instrumen wavetable down load synthesizer. 3) Wavetable membuat suara out dari sampel di ROM dan RAM. 4) CODEC melakukan A/D dan D/A konversi sinyal audio. 5) Fmsyntetizer memainkan suara FM (untuk orignal kompatibilitas Sound Blaster/Adlib). 6) MIXER adalah mixer analog IC yang mencampur bersama-sama suara dari berbagai masukan untuk (mikrofon, auxinput, syntetizerwavetable, FMsyntetizer, CD-ROM audio,) untuk hasil akhir yang kemudian dikirim ke line leveld an speaker output. Soundcard saat ini memiliki banyak bagian untuk menghasilkan suara seperti, D/A converter untuk pemutaran sampel, syntetizer, dll. Suara dari semua sumber tersebut akan dicampur pada mixer chip seperti pada gambar 2.23. 37 Gambar 2.23. Sirkuit mixer chip (Engdahl, 2016). Mixer chip memilikipengaturan gain untuk semua masukan dan volume output. Jika masukan dari mixer chip terlalu tinggi, mixer tidak bisa menangani sinyal tersebutr dan ini menyebabkan terjadi distorsi dalam mixer. Jika volume diputar dan output terlalu tinggi juga menyebabkan output amplifer mampu mengalami distorsi. Untuk beberapa alas an tertentu jalur SB32 dari Creative Labs mengatur posisi gain input dan output amplifier sebanyak x2, yang menyebabkan sering terjadi kebisingan dan distorsi. Gain tersebut dapat diatur menggunakan alat pada card untuk x1 dandistorsi akan berhenti. Saat menghubungkan sound card untuk amplifier eksternal (speaker amplifier) selalu gunakan output line level bukan output spaker sebab speakeramplifer menambah kebisingan dan distorsi suara (Engdahl, 2016). Selain itu beberapa masalah lain yang juga sering muncul dalam penggunaan sound card adalah sebagai berikut ini, 38 1) Kualitas untuk merekam suara kurang bagus, banyaknya noise yang mengalahkan suara yang ingin direkam. Biasanya soundcard on board hanya bisa merekam maksimal 16bit. Soundcard on board mempunyai sample rate yang kecil, 44,1Khz. 2) Latency, atau beberapa orang menyebutnya delay. 3) Koneksi masih menggunakan jack 3,5 mm, sedangkan instrumen musik menggunakan jack 1/4 atau kabel XLR atau kabel TRS. 4) Kualitas AD/DA konverter yang tidak diperuntukan untuk rekaman professional. AD konverter adalah bagian dari soundcard yang mengubah data analog menjadi data digital (Input). Sedangkan DA konverter mengubah data digital menjadi data analog (output) (Pratama, 2012). E. Potensiometer Potensiometer adalah sebuah instrument yang dapat digunakan untuk mengukur tge sebuah sumber tanpa menarik arus dari sumber itu. Potensiometer juga mampu menyeimbangkan selisih potensial yang tidak diketahui terhadap sebuah selisih potensial yang dapat diukur dan diatur. Prinsip potensiometer secara skematik terlihat seperti gambar 2.22. sebuah kawat hambatan ab yang memiliki hambatan total Rab disambungkan secara permanen ke terminal-terminal sebuah sumber tge-nya ε1 diketahui. Sebuah kontak peluncur c disambungkan melalui galvanometer G ke sumber kedua tge-nya ε2 yang akan diukur. Sewaktu kontak c digerakkan sepanjang kawat hambatan, hambatan Rcb di antara titik c dan titik b berubah. Jika kawat hambatan itu homogen, Rcb sebanding dengan panjang kawat di antara c dan b. untuk menentukan nilai ε2 kontak c 39 digerakkan sampai didapatkan sebuah posisi dimana galvanometer itu tidak memperlihatkan simpangan, ini bersesuaian dengan arus nol yang lewat melalui ε2. Dengan I2 = 0, kaidah Kirchoff memberikan ε2 = IRcb (2.6) dengan I2 = 0, arus I yang dihasilkan oleh tge ε1 mempunyai nilai yang sama berapapun nilai tge ε2. Untuk mengkalibrasi alat itu dengan mengganti ε2 dengan sebuah sumber yang tge-nya diketahui, maka setiap tge ε2 yang tidak diketahui dapat dicari dengan mengukur panjang kawat eb. Istilah potensial juga digunakan untuk setiap resistor yang dapat diubah, biasanya yang mempunyai elemen hambatan berbentuk lingkaran. Simbol untuk rangkaian potensiometer diperlihatkan gambar 2.24 (b) (Young dan Freedman, 2003). Gambar 2.24. (a) Rangkaian potensiometer, (b) simbol rangkaian potensiometer (Young dan Freedman, 2003). F. MATLAB (Matrik Laboratory) MATLAB (Matrix Laboratory) merupakan bahasa pemrograman dengan kemampuan tinggi untuk komputasi teknis, yang mengintegrasikan komputasi, visualisasi dan pemrograman di dalam lingkungan yang mudah penggunaannya 40 dalam memecahkan persoalan dengan solusinya yang dinyatakan dengan notasi matematik (Wijaya, 2007). Dikatakan bahwa MATLAB adalah bahasa pemrograman tingkat tinggi karena struktur bahasa pemrograman MATLAB sangat ringkas dan lebih mudah untuk dipahami dibandingkan dengan bahasa mesin seperti bahasa Asembler, dan bahasa tingkat menengah seperti C, C++, Java, Fortran. Penggunaan MATLAB sangat luas, dapat digunakan untuk signal and image processing, teknik komunikasi, control design, uji coba dan pengukuran, financialmodeling and analysis, dan masih banyak lagi. Selain itu, MATLAB juga bisa diintegrasikan dengan bahasa pemrograman lain seperti C, C++, Java, FORTRAN, COM, Microsoft Excel (Stefandi, 2010). Kegunaan lainnya dari MATLAB yakni sebagai matematika dan komputasi, pengembangan algoritma, pemodelan, simulasi dan pembuatan ‘prototipe’, analisis data, eksplorasi dan visualisasi, grafik untuk sains dan teknik dan pengembangan aplikasi termasuk pembuatan antar muka grafis untuk penggunaan GUI (Grafik User Interface) (Wijaya, 2007). Dalam bahasa Matlab dikenal istilah data acquisition toolbox yang menyediakan satu set lengkap alat untuk input analog, analog output, dan digital I/O dari berbagai hardware akuisisi data PC yang kompatibel. Toolboxmemungkinkan konfigurasi perangkat hardware eksternal,membaca data ke dalam MATLAB dan simulink untuk analisislangsung, dan mengirimkan data.Data Acquisition Toolbox 41 juga mendukungsimulink dengan blok yang memungkinkan untuk memasukkan data atau konfigurasi hardwarelangsung. Salah satu fungsi lain dari data acquisition toolbox yaitu untuk pengaksesan soundcard yang dapat dilakukan menggunakan fungsi-fungsi data acquisition toolbox. Dalam lingkungan simulink, pengaksesan soundcard dapat dilakukan menggunakan blok yang ada pada DSP Blockset. Blockset ini menyediakan solusi yang kuat untuk pemodelan dan simulasi sistem elektronik di Simulink. Hal ini cocok untuk pengembangan sistem multi-tingkat yang kompleks, seperti yang ditemukan di otomotif, konsumen dan medis elektronik(The Mathworks, 2002). Kegunaan lainnya yang berkaitan dengan pengolahan audio menggunakan Matlab yakni dapat memperoleh data daribeberapa saluran input audio. Menghasilkan data audio untuk beberapa saluran output audio. Mengkonfigurasi tingkat suara kartu sampling dan pengaturan lainnya. Menganalisis data kartu suara seperti yang diakuisisi. Selain dapat menerima atau mengambil data, juga dapat dilakukan proses pengiriman data dengan mengakses audio file yang akan digunakan. Gambar 2.25 menunjukkan diagram proses mendapatkan data dengan sound card (The Mathworks, 2002). Gambar 2.25. Pengambilan data menggunakan sound card (The Mathworks, 2002). 42 III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini telah dilaksanakan pada bulan Maret 2016 sampai dengan Mei 2016. Perancangan alat penelitian dilakukan di Laboratorium Elektronika Dasar Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung. B. Alat dan Bahan Alat yang digunakan dalam penelitian ini adalah : 1. Perangkat komputer, sebagai pengolah sinyal digital sumber elektrokardiografi. 2. kabel audio, sebagai media pengirim sinyal EKG ke osiloskop. 3. osiloskop, sebagai penampil keluaran sinyal EKG dari sound card komputer. 4. Potensiometer, sebagai penurun tegangan. C. ProsedurPenelitian 1. Diagram Alir Penelitian Penelitian ini didasari oleh pengolahan sinyal digital yang bersumber dari rekaman denyut jantung manusia. Prosedur yang dilaksanakan menyangkut proses 43 pengkonversian sinyal EKG digital tersebut menjadi sinyal analog. Adapun diagram alir dari perancangan dan realisasi simulator EKG seperti pada gambar 3.1. Mulai Mulai Sampel sinyal EKG Konversi .mat ke .wav Play sound .wav Sound card Kabel audio Potensiometer Osiloskop Selesai Gambar 3.1. Diagram alir penelitian. 44 2. Prosedur Penelitian Prosedur yang akan dilakukan pada penelitian ini adalah sebagai berikut : 1. Penelitian ini diawali dengan mengunduh data rekam jantung yang tersimpan di dalam arsip website www.physionet.org. Pertama-tama website diakses dan akan tampil beranda seperti tampak pada gambar 3.2. Gambar 3.2. Tampilan beranda Physionet.org 2. Setelah tampilan pada gambar 3.2 muncul pilih PhysioNet dan akan tampil berbagai pilihan, dari semua itu pilih PhysioBank, lalu PhysioBank ATM. Seperti pada gambar 3.3. Gambar 3.3. Langkah ke Physiobank ATM. 45 3. Setelah pilih menu Physiobank ATM akan tampil seperti gambar 3.4. Pada penelitian ini dipilih masing-masing satu dari lima arsip yakni MIT-BIH Arrythmia Database (mitdb), MIT-BIH Normal Sinus Rhytm Database (nsrdb), MIT-BIH ST Change Database (stdb), MIT-BIH Supraventricular Database (svdb), dan MIT-BIH Long Term Database (ltdb). Gambar 3.4. TampilanPhysiobank ATM Sinyal rekam yang dipilih merupakan format txt yang dapat diakses menggunakan matlab atau program konverter yang lain. 4. Kemudian lakukan pengkonversian sinyal .txtmenjadi format .wav. Proses konversi yang dilakukan pada Matlab dimulai dengan membuat program konversi .txt to .wav. 5. Buka M-file pada Matlab sebagai ruang kerja. Tentukan frekuensi sample rate yang akan digunakan. 6. Input file .txt ke dalam format program wavwrite dalam M-file. Setelah running tidak terdapat eror, maka file audio telah tersimpan di dalam folder Matlab pada komputer dalam format .wav.. 46 7. Jika pengkonversian telah berhasil berikutnya dilakukan pengujian dengan memutar hasil rekam .wav. Komputer terlebih dulu disambungkan kabel audio mono dengan masing-masing sisi positif dan negatif kabel terhubung dengan potensiometer. Hal ini berguna untuk memperkecil tegangan keluar. 8. Terakhir, kabel audio mono dan potensiometer disambungkan ke probe dan kutub negatif osiloskop. Adapun perancangan keseluruhan simulator yang diinginkan pada penelitian ini adalah seperti gambar 3.5. 5 1 2 3 4 Gambar 3.5.Perancangan Alat Simulator EKG 47 Keterangan: 1. Personal Komputer 2. Kabel Audio 3. Probe 4. Potensiometer 5. Osiloskop Perancangan rangkaian dari penelitian ini seperti tampak pada gambar 3.6. + Perangkat Komputer/ Laptop 3 2 Osiloskop + 4 1 - Gambar 3.6. Rancangan rangkaian Simulator EKG Keterangan : 1. Jack audio 2. Kabel Sound Card 3. Potensiometer 4. Kabel Osiloskop V. KESIMPULAN DAN SARAN A. Kesimpulan Berdasarkan analisis data dari penelitian yang telah dilakukan diperoleh kesimpulan sebagai berikut: 1. Desain dan pembuatan simulator EKG sederhana berbasis perangkat komputer dinyatakan berhasil setelah keluaran pada osiloskop memperlihatkan kesamaan dengan sampel sinyal digital, dengan keterangan sebagai berikut: a. Penelitian cukup berhasil dengan tegangan akhir sebesar 5 mV sesuai dengan referensi tegangan sinyal EKG. b. Frekuensi sampling menentukan kerapatan gelombang sehingga semakin kecil frekuensi sampling maka gelombang semakin merenggang dan nilai time/div semakin besar. c. Frekuensi sampling 1000 Hz tepat untuk menyempurnakan penelitian ini, menghasilkan nilai time/div sebesar 0,2 dan jumlah div masingmasing gelombang sampel analog mendekati jumlah grid interval gelombang sampel digital. d. Analisis secara kualitatif menunjukkan sinyal analog EKG memiliki kemiripan yang hampir sama persis dengan sinyal digtal EKG. 80 2. Perancangan simulator ektrokardiografi (EKG) dengan memanfaatkan sound card komputer telah direalisasikan dengan berbagai aspek kesimpulan yakni: a. Sinyal digital EKG tidak mampu ditampilkan dalam rentang frekuensi sampling di bawah 1000 Hz. b. Frekuensi sampling sebesar 8000 Hz menghasilkan keluaran gelombang yang baik tetapi berada dalam rentang waktu yang jauh dari referensi. c. Hasil pengujian fungsi sound card komputer yang digunakan dengan memanfaatkan sinyal sinus dinyatakan berhasil dengan frekuesi sinyal sebesal 100 Hz dan frekuensi sampling 8000 Hz. d. Sampel sinyal format .txt yang berisi matriks data rekam jantung berhasil dikonversi menjadi format audio wav dalam rentang waktu 1 menit. B. Saran Adapun saran-saran untuk penelitain mendatang terkait dengan perancangan rangkaian elektrokardiografi meliputi : 1. Memperhatikan kualitas osiloskop yang digunakan karena osiloskop yang bagus akan menghasilkan keluaran yang lebih jernih. 2. Penggunaan osiloskop digital akan memberikan analisis secara kuantitatif yang lebih mudah dan tidak hanya mengandalkan analisis kualitatif dengan menyamakan visual sampel saja. 81 3. Penggunaan filter bisa jadi menekan gangguan-gangguan kecil pada keluaran analog. 4. Pengembangan dan pengujian lebih lanjut terhadap lebih banyak sampel yang disediakan PhysioNet. DAFTAR PUSTAKA Aston, Richard;. 1990. “Principles of Biomedical Instrument.” Merril: Toronto. Bronzino, J.D. (995. “The Biomedical Engineering Handbook.” Florida: CRC Press & IEEE Press. Bao, Z. 2003. “Investigation of New ECG Amplifier Circuits and Heart Rate Detector”. Master Thesis, Medical Electronics and Physics, Dept. of Engineering, University of London Busono, Pratindo., Susanto, Eddy., Wiewie., Sadeli Yuliana. 2004. “Algoritma untuk Deteksi QRS Sinyal ECG”. Prosiding Semiloka Teknologi Simulasi dan Komputasi serta Aplikasi 2004.+ Cameron, J.R &Skofronick, 1978, Medical Physics, John Wiley & Sons, Inc., Toronto, Canada Carr, J.J, and John, M Brown , 2001, Introduction to Biomedical Equipment Technology, Prentice Hall, New Jersey, USA. Chen, et al. 2008. “ECG Measurement System.” http://www.cisl.columbia.edu. (diakses pada tanggal 25 September 2014. Pukul 13.30 WIB). Darma et al. 2009. “Buku Pintar Menguasai Multimedia.” Jakarta: Mediakita. Das, Sangita., Rajanshi Gupta,., Mitra, Madhuchhanda. 2012. “Development of an Analog ECG Simulator using Standalone Embedded System”. International Journal of Electrical, Electronics, and Computer Engineering. Deshmukh, Anjali, dan Yogendra, Gandole. 2014. “Simulation of ECG Signal Using Advanced Virtual Instrumentation system Based on LabVIEW”. International Journal of Scienc and Research. Volume.3, No. 9. Dubowik, K. 1999. Automated Arrhythmia Analysis –An Expert System for an Intensive Care Unit. New Jersey: Prentice-Hall. Engdahl, Tomi. “Sound Card Tips and http://www.epanorama.net/documents/pc/soundcard_tips.html tanggal 2 Maret 2016, pukul 11:30). Facts.” (diakses Feldman, Henry. 1999. “A Guide to Reading and Understanding the EKG.” New York: NYU School of Medcine. Gabriel, J. F. 1996. “Fisika Kedokteran”. Jakarta: Penerbit Buku Kedoktran. Gayakwad, R. A. 1993. “Op-Amp and Linear Integrated Circuit.” New Jersey: Prentice –Hall. Hussain, Daniar. 2002. “An Electrocardiogram Simulator and Amplifier.” HST-6.121 Laboratory report Jakarta. Kurniawan, Bobi. 2014. “PerangkatKeras Komputer.” Jakarta: PT.Elex Media Komputindo. Lahawa, Wahyudin. “Sound Card Komputer.” http://wahyudinlahawa.smkn1galang.sch.id/sound-card-komputer/ (Diakses pada tanggal 2 Maret 2016, pukul 11.10). Lucena, Samuel E. 2006. “Ecg Simulator For Testing And Servicing Cardiac Monitors And Electrocardiographs.” São Paulo State University of Brazil. Malmivou, Jaakko and Plonsey,P. 1995. Bioelectromagnetism : Principles and Aplications of Bioelectric and Biomagnetic Fields. Oxford University Press. New York. Michaelek, Paul J. 2006. “An Authentic ECG Simulator”. University of Central Florida. Najeb, J.M. 2005. “12-Channel USB Data Acquisition System For QT Dispersion Analysis, Proceedings of the International Conference on Robotics, Vision. Information and Signal Processing ROVISP.” Nazmah, A. 2011. “Cara Praktis dan Sistematis Belajar Membaca Elektrokardiograf (EKG).” Jakarta: Gramedia. Pratama, Ilham A P. “Sound Card.” http://ilhamadjiputrap.blogspot.co.id/2012/09/makalah-sound-card_608.html (diakses tanggal 1 Maret 2016, pukul 10.20). Simakov, Sergey. 2005. “Introducion to MATLAB Graphical User Interfaces”. Edinburgh: Maritime Operation Division. Splinter, Robert. 2010. “Handbook of Physics in Medicine and Biology”. Boca Raton: CRC Press. Stefandi, Andrias. 2010. “Kumpulan Proyek Fisika dengan Menggunakan MATLAB.” Jakarta: Fiveritas. Surtono, Arif. 2012. “Analisis Klasifikasi Sinyal EKG Berbasis Wavelet dan Jaringan Syaraf Tiruan”. Tesis. Teknik, Teknik Elektro dan Teknologi Informasi, Universitas Gadjah Mada Yogyakarta. The Mathworks, Inc. 2002. Data Acquisition ToolboxUser’s Guide, Ver.2, Online Reference, The Mathworks, Inc, 2002, DSP Blockset User’s Guide, Ver.5, Sixth printing, The Mathworks, Inc. Tim Penerbit ANDI. 2004. “Mudah dan Cepat Mengolah AudioMenggunakan Cool Edit 2000.” Yogyakarta: Penerbit ANDI. Tompkins, W J, and John G. Webster. 1998. “Interfacing Sensor to The IBM PC.” New Jersey: Prentice- Hill.Inc. Widodo, T.S. 2000. Instrumentation Ilmu Hayati. JurusanTeknikElektro. Univrsitas Gajah Mada. Wijaya, M., Agus, Prijono. 2007. “Pengolahan Citra Digital menggunakan MATLAB.” Bandung: Informatika. Williams, Arthur B, and Fred, J Taylor. 1988. “Electronic Filter Design Handbook.” Singapore: McGraw-Hill.